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Objective corotational rates and unified work-conjugacy

relation between Eulerian and Lagrangean strain
and stress measures

H. XIAO!), O.T. BRUHNS and A. MEYERS (BOCHUM)

By VIRTUE OF OBJECTIVE corotational rates and related corotating frames, a unified
work-conjugacy relation between Eulerian and Lagrangean strain and stress measures
is established, which is a natural extension of Hill's work-conjugacy relation between
Lagrangean strain and stress measures. It turns out that the latter is the particular
case of the former one when a corotating frame with the well-known spin 27 = RR”
is concerned, where R is the rotation tensor defined by the polar decomposition of
the deformation gradient. The work-conjugate stress measure of an arbitrary Hill’s
strain measure (either Eulerian or Lagrangean) with regard to any kind of objective
corotational rate is determined in the sense of the introduced unified work-conjugacy
relation. The result is presented both in the principal component form and explicit
basis-free form valid for all cases of the principal stretches. In particular, the intrinsic,
unique relationship between Hencky’s logarithmic strain measures InV and In U and
the fundamental mechanical quantities, i.e. the Eulerian and Lagrangean stretching
tensors D and R"DR and Eulerian and Lagrangean Kirchhoff stress measures ¢ and
R" OR, are disclosed. It is shown that there are objective corotational rates of In V
and In U that are identical with the Eulerian and Lagrangean stretching tensors D and
RTDR respectively, and further that only InV and In U enjoy the just-stated favo-
urable properties. As a result, the two pairs of strain and stress measures, (In'V, 0)
and (In U,R"OR), form a work-conjugate Eulerian strain-stress pair and a work-
conjugate Lagrangean strain-stress pair, respectively, in the sense of the introduced
work-conjugacy relation. Finally, application of the unified work-conjugacy notion in
formulating the rate — type constitutive relations is indicated.

1. Introduction

IN soLID MECHANICS and other related fields, there is a variety of strain and
stress measures (actually infinitely many). It is well-known that strain measures
and stress measures can be associated with each other via the stress power per
unit volume, in a manner independent of any material behaviours. According to
HiLL [21 - 23| (see also WANG and TRUESDELL (53], OGDEN [37-38], et al.),
a Lagrangean strain-stress pair (E,T') forms a work-conjugate pair if the inner
product of the Lagrangean stress measure T and the material time rate E of

the Lagrangean strain measure E furnishes the stress power w (cf. the formulas
(2.13) - (2.14) given later):

() On leave from Department of Mathematics, College of Mathematical Science, Peking Uni-
versity, Beijing
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The just-stated Hill's work-conjugacy notion for Lagrangean strain and stress
measures has found applications in constitutive modeling and proved to be fru-
itful (e.g., see HILL |21 - 23|, RICE [42], HUTCHINSON and NEALE [27], NEMAT-
NASSER [36], PALGEN and DRUCKER [39], OGDEN [38], et al.). However, such
notion in general does not apply to Eulerian stress and strain measures, as pro-
ved by OGDEN [37 - 38| and HOGER [26], et al. Moreover, even within the scope
of Lagrangean strain and stress measures, the aforementioned work-conjugacy
notion excludes the possibility of associating certain significant stress measures
with strain measures. Indeed, it is known that the rotated Kirchhoff stress measu-
re RToR, which is a Lagrangean stress measure useful in formulation of elastic
and elastoplastic constitutive relations (e.g., see GREEN and NAGHDI [9], RiCcE
(42], StMO and MARSDEN [49]), can not be related to any strain measure via
(1.1), as noted by HiLL [21 - 23], RICE [42], PALGEN and DRUCKER [39], and
OGDEN (38|, et al.

The main objective of this article is to investigate the work-conjugacy notion
in both the Lagrangean and Eulerian strain and stress measures in a broader sen-
se and in a unified manner. It is shown that by virtue of the objective corotational
rates and the related corotating frames, a unified work-conjugacy relation can be
established for both the Eulerian and Lagrangean strain and stress measures.
This unified work-conjugacy relation may be visualized as a natural extension
of Hill's work-conjugacy notion in the sense that there exists a certain class of
corotating frames relative to each of which the stress power @ can be expressed
as the inner product of a stress measure and the time rate of a strain measure.
It turns out that Hill’'s work-conjugacy relation is the particular case when a
corotating frame with the well-known spin 28 = RRT is concerned, where R is
the rotation tensor defined by the polar decomposition of the deformation gra-
dient (see (2.1) given later). By applying a general expression for the spin tensors
defining objective corotational rates derived in X1A0, BRUHNS and MEYERS [60],
the conjugate stress measure of an arbitrary Hill's generalized strain measure
(either Eulerian or Lagrangean) with regard to any kind of objective corotational
rate is determined in the sense of the introduced unified work-conjugacy relation.
The results are presented in both the principal component form and the explicit
basis-free form. In particular, the intrinsic, unique relationship between Hencky’s
logarithmic strain measures InV and In U and the fundamental mechanical qu-
antities, i.e. the Bulerian and Lagrangean stretching tensors D and R”DR. and
Eulerian and Lagrangean Kirchhoff stress measures o and R” 0R, are disclosed.
It is shown that there exist objective corotational rates of In'V and In U that are
identical with the Eulerian and Lagrangean stretching tensors D and R"DR,
respectively, and furthermore that only InV and In U enjoy the just-stated fa-
vourable properties. As a result, the two pairs (In V, ¢) and (In U, R” 0R) form
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QBJECTIVE COROTATIONAL RATES AND UNIFIED WORK-CONJUGACY RELATION 1017

a work-conjugate Eulerian strain-stress pair and a work-conjugate Lagrangean
strain-stress pair respectively, where o is the Kirchhoff stress measure. The fact
concerning the Eulerian logarithmic strain measure In'V has been established
recently by various authors independently of their different points of view (see
X1A0, BRUHNS and MEYERS [57 - 60]; see also LEHMANN, GUO and LIANG [29],
REINHARDT and DUBEY [40 — 41], DuBEY and REINHARDT [7]). However, the
fact concerning the Lagrangean logarithmic strain measure InU has been unk-
nown until very recently (see X1A0, BRUHNS and MEYERS [61]), since for a long
time it has been believed that the rotated stretching tensor R DR is not a direct
flux of a strain measure (see HiLL [21 — 23|, RICE [42], PALGEN and DRUCKER
[39], OGDEN (38|, et al.). Finally, application of the unified work-conjugacy notion
in formulating rate-type constitutive relations is indicated.

It should be pointed out that other extended work-conjugacy notions are
possible and useful. For example, we refer to ZIEGLER and MACVEAN [64] and
MACVEAN [32] for a discussion of work-conjugacy relation from a general point of
view, and to HAUPT and TSAKMAKIS [18 — 19] and SVENDSEN and TSAKMAKIS
[51] for a comprehensive account of associating strain and stress measures via
the concept of dual variables, etc. In this article, we shall confine ourselves to the
objective mentioned before.

2. Preliminaries in kinematics

To facilitate the succeeding account, in this section we recapitulate some rela-
ted facts and results in kinematics of finite deformations of continua. For details,
refer to TRUESDELL and ToUPIN [52], WANG and TRUESDELL [53], GURTIN [16],
MARSDEN and HUGHES [34], and OGDEN (37 - 38|, et al.

In this article, vector and tensor mean vectors and tensors over a three-
dimensional Euclidean space.

2.1. Some fundamental kinematical quantities

Consider a material body experiencing finite deformation over a time interval
I C R. A typical particle of this body is identified with a position vector X relative
to a fixed reference state. The motion of the body is described by the current
position vector x = x(X,1), t € I. The velocity vector of the particle X is given
by v = x.

The state of the local rotation and deformation in a neighbourhood of a
particle X at any instant ¢ € I is characterized by the deformation gradient

ax

(2.1) = X
while the rate-of-change of state of the rotation and deformation in a neighbour-
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hood of a particle X at any instant { € I is described by the velocity gradient

(22) L= & — FF_I g _;EX i . J == = (5% .’_ _ 2 FF

For the former, the following unique left and right polar decompositions hold:

F = VR=RU,
V2 = B=FF7,

(2.3) :
U2 = C=FTF,

RRT =1 RTR-=1,
?«“’e 7 ve/
where the two tensors V and B and the two tensors B and C are known as the left
and right stretch tensors and the left and right Cauchy-Green tensors respectively,
each of which is symmetric, positive definite; the proper orthogonal tensor R is
the rotation tensor. Throughout, I and I are used to represent the metric tensors
in the current configuration and the fixed reference configuration, respectively.
On the other hand, the following unique additive decomposition holds:

L

Il

D+ W,

(2.4) D = %(L+LT),
_ e s

where the tensor D, the symmetric part of the velocity gradient L, is known as
the stretching tensor, and the tensor W, the antisymmetric part of the velocity
gradient L, as the vorticity tensor.

In addition to those given above, there are other basic tensor quantities, some
of which will be given in the next subsection.

2.2. Eulerian and Lagrangean tensors and their rotated correspondence

In a deforming material body, several types of tensor quantities are involved
due to the different ways by which a fixed reference configuration and a current
configuration are related, refer to, e.g., OGDEN [37 — 38| for details. There are
three types of second order tensors: Eulerian, Lagrangean and mized-type, for
which the current configuration only, the reference configuration only, and both
the reference and current configurations are related, respectively (see OGDEN [37
— 38]). In the tensor quantities mentioned before, the deformation gradient F,
the rotation tensor R and its transpose R’ are mixed-type, the right stretch
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OBJECTIVE COROTATIONAL RATES AND UNIFIED WORK-CONJUGACY RELATION 1019

tensor U and the right Cauchy-Green tensor C are Lagrangean, and the others,
including the left stretch tensor V, the left Cauchy-Green tensor B, the velocity
gradient L, the vorticity tensor W and the stretching tensor D etc., are Eulerian.
In this article, we are mainly concerned with Eulerian and Lagrangean second
order tensors. Henceforth, tensor means second order tensor, if not otherwise
indicated.

It is known that the transformation between the reference configuration and
the current configuration can be effectuated by virtue of the rotation tensor R.
As a result, a natural correspondence between Eulerian and Lagrangean tensors
can be established via the rotation tensor R. Let G be an Eulerian tensor. Then
the Lagrangean counterpart of G, denoted by G, is defined as

(25) RG{C vl é — RTGR . Ao al

Conversely, we call G the Eulerian counterpart of the Lagrangean tensor G and
we have

(2.6) G =RGRT”.

The above correspondence is called the rotated correspondence between Eulerian
and Lagrangean tensors. It is evident that any two Eulerian and Lagrangean
tensors G and G associated by the rotated correspondence represent the same
tensor quantity.

From (2.3) it follows

(2.7) U=V=RTVR,= P
(2.8) C = B=R7BR,
(2.9) V = RURT,

(2.10) B = RCR”.

Moreover, the Lagrangean counterparts of the stretching tensor D and the Kirch-
hoff stress tensor O, called the Lagrangean stretching tensor and the Lagrangean
Kirchhoff stress (or the rotated Kirchhoff stress tensor according to SIMO and
MARSDEN [49]) respectively, are given by

(2.11) D - R"DR,
(2.12) 6 = RToR.

The following Eqs. represent two standard formulas for the stress power w per
unit reference stale volume

(2.14) Ww=606:D.
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2.3. Rotating frames and objectivity

Let Q* be an Eulerian time-dependent proper orthogonal tensor. Then a
rotating frame * relative to a fixed background frame is defined as follows(?):

(2.15) x* (X, t) = Q*%(X, 1) + xo(t) .

It is evident that the rotating frame * is defined by the proper orthogonal tensor
Q*. On the other hand, given the spin * of the frame #, the latter is in turn
determined by the first order tensorial differential equation

(216) QtTQ* = _'_’Q‘TQt =)

up to a constant initial rotation. Thus, a rotating frame * can also be defined by
its spin. The latter definition serves our purpose and will be adopted. Let £2* be
a spin, i.e. an Eulerian time-dependent skewsymmetric tensor. Henceforth, by an
*-frame we mean a rotating frame defined by (2.15) — (2.16).

Let G and H be, respectively, an Eulerian and a Lagrangean tensors defined in
a deforming material body. Following OGDEN [37 — 38|, we say that the Eulerian
tensor G and the Lagrangean tensor H are objective, respectively, if they obey
the following transformation rules with respect to any change of frame indicated
by (2.15):

(2'17) G‘ — Q‘GQ*T’ E:.-'-.. etVia 8_7 _1-_/
(218) - -} ﬂ‘ = ﬁ, ;M;{Vf\hq(ﬁ‘« (’.f,- f_l_f " ’
r_-zz.Frj;f-l(,(‘__-.._,;j“-r)'pi F»‘__av‘r‘.'{F,ﬁ}T:F"&h}i‘c:){“d)z__ Bl ™ < od;-ccf.i,c

where the superscript * indicates the association with a rotating frame defined by
any continuously time-dependent rotation tensor Q* = Q*(t), i.e. an 2*-frame,
where 2* = Q*TQ".

The left stretch tensor V, the left Cauchy-Green tensor B and the stretching
tensor D are objective Eulerian tensors. The right stretch tensor U and the
right Cauchy-Green tensor C are objective Lagrangean tensors. The velocity
gradient L and the vorticity tensor W and their Lagrangean counterparts L and
W provide, respectively, two examples of Eulerian and Lagrangean tensors which
are not objective. For detail, refer to OGDEN [37 — 38].

2.4. Hill’s generalized strain measures and their alternative expressions

A general class of Eulerian and Lagrangean strain measures, called Hill’s
generalized strain measures, was introduced by HILL [21 — 23] (see also WANG

() Generally, there is a time difference between the two frames, i.e. t* = ¢ + to, which is
irrelevant to our purpose. Here we assume fy = 0 for the sake of simplicity.
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and TRUESDELL [53] and OGDEN [38]). Let A, A2 and A3 be the three principal
stretches, i.e. the three eigenvalues (possibly repeated) of the stretch tensor V or
U. A set of three orthonormal eigenvectors of V (resp. U) is called an Eulerian
triad (resp. a Lagrangean triad), denoted by {n;} (resp. {N;}). Hill's generalized
strain measures are of the forms

3
(2.19) e=f(V)=) f)m®n,

i=1

3
f(U) = Z S(A)N; @ N; .

i=1

(2.20) E

In the above, the function f: Rt — I? is a smooth monotonic increasing function
with the property f(1) = f’(1)—1 = 0, which defines the strain measures e and E
and is called the scale function. Since the tensor functions f(V) and f(U) are
isotropic and the left and right stretch tensors V and U are objective, both the
strain measures e and E defined through the scale function f(\), which are Eu-
lerian and Lagrangean respectively, are objective. Moreover, they can be related
to each other via the rotated correspondence indicated by (2.5) and (2.6), i.e.

(2.21) e — RER”,
(2.22) E = &é=R"eR.

It is known (see DOYLE and ERICKSEN (5], TRUESDELL and TOUPIN [52],

SETH [48], HILL [21 - 23|, OGDEN 38|, et al.) that by choosing the scale function
J(A) in the particular form

1
(2.23) f(A) = =(A"-1)

m
and assigning several integers to the number m, Hill’s generalized strain measures,
ie.

1

(2.24) em = —(yw_7),
T

(2.25) E(m) — i(Um =1
m

supply all commonly-known objective Eulerian and Lagrangean strain measures.
In particular, the limiting process m — 0 or the logarithmic scale function f(\) =
In A results in Hencky’s logarithmic strain measures (see HENCKY [20])

3
(2.26) NV =3 (ln\)n; @n;,
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3
(2.27) InU = > (InX)N; ® N,
i=1

which have received much attention (e.g., see TRUESDELL and ToUPIN [52], HILL
[21 - 23], RICE [42], FITZGERALD (8], GURTIN and SPEAR [17], HOGER [25 — 26],
and LEHMANN and LIANG [30], et al.) and will be discussed in Sec. 6 of this
article.

Since each principal stretch ); is always positive, we can give an alternative
definition of Hill’s strain measures e and E in terms of the left and right Cauchy-
Green tensors B and C. Let g: R' — R be a new scale function defined by

(2.28) g(x) = f(Vx) (Vx>0).

Moreover, let xi,--+,x, be the distinct eigenvalues of the left Cauchy—Green
tensor B or, equivalently, the right Cauchy—Green tensor C, and B, and C, be
the corresponding subordinate eigenprojections of B and C respectively, where
o =1,---,r. Then we have

(229) 8= g(B) = Zg(XU)BUJ
o=1

(2.30) E =g(C) =) 9(xs)Co-
o=1

Henceforth we shall adopt the latter definition. In so doing, the main results that
will be derived in Sec. b can be expressed in terms of the Cauchy—-Green tensors
B and C instead of the stretch tensors V and U. Here we would mention the fact
that once the deformation gradient F is known, it is much easier to calculate the
Cauchy-Green tensors B — FTF and C = FF” than to calculate the stretch
tensors V and U, the latter being the complicated square roots VF'F and
VFFT | respectively. Moreover, the use of eigenprojections instead of eigenvectors
will prove to be crucial. The use of eigenprojections has certain advantages over
the use of eigenvectors. Here we mention the following three aspects only.

1. The eigenprojections B, and C, are unique and this applies to all the
cases for eigenvalues of B and C. In fact, the following Sylvester’s formulas hold

T o TV,
(231) Co = élrI S5 H 4 3
o Xo — X~

(2.32) B,

Il
o
bl
-
+
=
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2. The explicit basis-free form of the main results for strain rates and conju-
gate stresses can easily be derived with the aid of Sylvester’s formulas (2.31) -
(2.32); and

3. All the procedure can be fulfilled merely by means of the following simple
manipulation properties concerning the eigenprojections B, and C,

(2.33) CiC =8:Cs;

(2.34) Yy =1,
o=1

and

(2.35) B,B; = 04:B;,

(2.36) Yy B,=1I,
o=1

with no summation over repeated indices. Here, d,, is used to denote the Kro-
necker delta.

The advantage of using the Cauchy-Green tensors and the eigenprojections
was known by HOGER and CARLSON [24], CARLSON and HOGER [1], SCHEIDLER
[46] and X1AO [56] et al., and was further exploited by these authors (see X1A0,
BrRUHNS and MEYERS [57 — 63], esp. [65]).

Finally, it should be pointed out that once the deformation gradient F is given
in a coordinate system other than the particular ones formed by the principal
bases, usually it is not easy to calculate the generalized strain measures e and E
for any nonpolynomial scale function g(x), especially for any transcendental scale

1
function g(x) such as the logarithmic function g(x) = 5 In x etc. This difficulty

may be circumvented by using the formula (5.24) — (5.25) given later and by the
explicit basis-free formulas derived from (2.29) - (2.32).

3. Material spins, corotating material frames and objective
corotational rates

3.1. Corotational rates of Eulerian and Lagrangean tensors

Let £2* be an Eulerian spin relative to a fixed background frame, i.e. a conti-
nuous time-dependent skewsymmetric Eulerian tensor, and let G be an objective
Eulerian tensor. The Eulerian tensor defined by

(3.1) @*=G+en-a'e
http://rcin.org.pl



1024 H. Xi1a0, O. T. BRUENS AND A. MEYERS

is called the corotational rate of the tensor G defined by the Eulerian spin £2*.
To see what the term corotational rate means, let us consider an *-frame =*
(see Sec. 2.3) and let Q* be a continuously differentiable time-dependent proper
orthogonal tensor determined by the spin §2* (cf. (2.16)). In such an £2*-frame *,
the Eulerian tensor G is of the form Q*GQ*T. We have

@6Q7) = Q'GQ7 +Q'GQT + Q'GQT
(3.2)

= Qt é *QtT.

Note that the latter is the counterpart of & * in the 2*-frame. Thus, the co-
rotational rate of an objective Eulerian tensor defined by an Eulerian spin §2°
(cf. (3.1)) is a material time derivative in an S2*-frame. It should be noted that
this interpretation can be made only when the tensor G is an objective Eulerian
tensor. 2

The Lagrangean counterpart of the corotational rate G * provided by the

tensor RT (‘,)';. R. From (2.5) we derive
G = (RGRT) = RGR” + RGR” + RGR” = R(G - GOR 1 ORG)RT

where G and 27 = RTR are the Lagrangean counterparts of the Eulerian tensors
G and 27 = RRT respectively. Applying the result just derived and the identity

Q(H;H,)Q" = (QH,Q")(QH,Q")

for any two tensors H; and Hj and for any orthogonal tensor Q, we arrive at
the following formula

(3.3) RT &R =G + GO - OF) — (f* - ARG,
where

G = RTGR,
(3.4) Q2 = RTQ'R,

Qf - RTQRR -~ R"R - R'R,
are the Lagrangean counterparts of the Eulerian tensors G and * and QF
respectively.

0
The Lagrangean counterpart of each corotational rate G * of an Eulerian
tensor G provides a rate measure of the Lagrangean counterpart G of this tensor.
Since the right-hand side of the formula (3.3) is of the same structure as that of

http://rcin.org.pl



OBJECTIVE COROTATIONAL RATES AND UNIFIED WORK-CONJUGACY RELATION 1025

(3.1), we call the rate measure R” é 'R, i.e. the right-hand side of (3.3), the
corotational rate of the Lagrangean tensor G defined by the spin Q2*, denoted by
o

G *. Thus, we have

0 .
(3.5) G*=RT G*'R =G+ G@ -H8 - (1 -G,

Note the difference between the two definitions (3.1) and (3.5): the latter is using
the additional spin 2% — RTR, while the former is not concerned with any
other spin except the spin £2*. This difference arises from the fact that there is a
relative rotation between the Eulerian triad and the Lagrangean triad, which is
just given by the rotation tensor R.

Let 2* = 27 ie. ©* = 97 and introduce the polar rate of a symmetric
Eulerian tensor G (see GREEN and NAGHDI (9], DIENES [3 - 4] and SCHEIDLER
[45], et al.)

(3.6) GR=G+Gcak-afa.
Then the formula (3.5) yields

(3.7) G-RTGFR, G&R-RGR".

It turns out that the Lagrangean counterpart of the polar rate of an objective
Eulerian tensor is just the material time rate of the Lagrangean counterpart of
this tensor and vice versa, i.e. the Eulerian counterpart of the material time rate
of an objective Lagrangean tensor is the polar rate of the Eulerian counterpart
of this tensor. This fact indicates that the material time rate of an objective
Lagrangean tensor is merely a particular kind of corotational rate of this tensor,
which is defined by the spin 2% = RTR.

We would emphasize that the formula (3.5) and hence the above fact apply
to objective Eulerian and Lagrangean tensors only.

3.2. Material spins and objective corotational rates

More essentially, it is required that corotational rates of objective Eulerian
and Lagrangean tensors be objective rate measures so that any superimposed rigid
rotation motion has no effect on it. Moreover, to establish the extended work-
conjugacy relation, this requirement is just what is needed, as will be shown in the
next section. It can be readily proved that if an Eulerian tensor is objective, then
its Lagrangean counterpart via the rotated correspondence (2.5) is also objective.
The opposite is true, i.e. if a Lagrangean tensor is objective, then its Eulerian
counterpart via the rotated correspondence (2.6) is also objective. In view of
this fact and the rotated correspondence relationship between the Eulerian and
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1026 H. X140, O. T. BRuHNS AND A. MEYERS

Lagrangean corotational rates as indicated in the last subsection, it suffices to
consider objective corotational rates of objective Eulerian tensors.

Let G be an objective Eulerian tensor. Not every corotational rate CO; 8
objective. For instance, let * = ¢W with ¢ - any given constant and W being the
vorticity tensor (cf. (2.4)3). Then, (3.1) defines infinitely many corotational rates
of the Eulerian tensor G, when the constant ¢ runs over all the reals. However,
only the one with ¢ = 1, i.e. the Zaremba-Jaumann rate G + GW — WG,

is objective. Generally, whether the corotational rate é * is objective or not
depends on its defining spin 2*. To arrive at objective corotational rates, the
defining spin 2% should be associated with the deformation and motion of the
deforming material body under consideration in an appropriate manner, as has
been shown for several well-known examples: 2* = W (Zaremba—Jaumann rate),
2* = RRT (the polar rate or Green-Naghdi-Dienes rate), * = Q‘r’ etc. Here
the latter is the twirl tensor of the Eulerian triad {n;}, i.e. n; = 2%n,.

Since the deformation gradient F and the velocity gradient L characterize the
local deformation state and the rate-of-change of the local deformation state at a
generic material particle, the most general form of the spin tensor £2* associated
with the deformation and rotation of a deforming body may be assumed as

(3.8) Q' = Y(F,L)

with Y (F, L) being an antisymmetric tensor-valued function of the deformation
gradient F and the stretching D. Of course, such a general form is of little use. To
make the corotational rate defined by the above spin a reasonable objective rate
measure, the spin £2* must fulfill certain necessary requirements. The latter place
restrictions on the form of the tensor function Y (F, L). Recently, these authors
(see X1A0, BRUHNS and MEYERS [60]) have introduced the following necessary
requirements for £2*:

(1) any superimposed constant rigid rotation has no effect on £2*, and, mo-
reover, any superimposed constant uniform dilational deformation has also no
effect on 2%;

(ii) the corotational rate of an Eulerian tensor defined by the spin £2* depends
linearly on the change of time scale,

(iii) the corotational rate of each time-differentiable objective Eulerian tensor
field defined by the spin ©2* is objective, and

(iv) the tensor function Y(F, L) is continuously differentiable at L = O.

From these requirements, a general form of spin 2" has been derived (see
X1A0, BRUHNS and MEYERS [60]):

(3.9) W+Zf"——BDBT,

a,17=1
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where
(3.10) I =trB = trC = trFFT .

In the above, the function h(z,y): Y x Rt — R, which defines the spin tensor
" and is hence called the spin function, is antisymmetric, i.e.

h’(‘r! y) = _h‘(y: .I').

Each spin given by (3.9), which is the same kind of kinematical quantity as
the vorticity tensor W, is called a material strain in X1A0, BRUHNS and MEYERS
[60]. In particular, a subclass of the above material spins is as follows

WI—Zh( X2) B,DB,

o,7=1

(3.11)
h(z™') = —h(z) (Vz>0).

It has been shown (see Xi1A0, BRUHNS and MEYERS [60]) that all commonly-
known spins, including the vorticity tensor 2/ = W, the polar spin 2 = RR”,
the twirl tensors 2% and 2 of the Eulerian and Lagrangean triads (for these
spins, refer to, e.g., HILL [23], OGDEN [38] and MEHRABADI and NEMAT-NASSER
[35], for detail) and the newly discovered logarithmic spin 21 (see X1A0, BRUHNS
and MEYERS [57 - 60]; see also LEHMANN, GUO and LIANG [29] and REINHARDT
and DUBEY (40 — 41]), are incorporated into the above subclass by taking the
simplified spin function i(z) in the particular forms

(3.12) h(z) = h'(z) =0,
(3.13) Bia) = BPm)= i:‘/\/:
(3.14) i.r(z] = I-:.E(z) — i__}'z,
(3.15) h(z) = hl(z) = 2vz ,
1—2
(3.16) h(z) = ReE gy s S

1—-2 Inz
respectively.

Henceforth, the objective corotational rates of the objective Eulerian tensor
G and the objective Lagrangean tensor G defined by the above five material
spins and their Lagrangean counterparts, respectively, are denoted by

(3.17) GM-_G+GaM-qMG, Me{J,R,E,L,log},
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o i 4 2 =
(3.18) GM_RT G MR =G+ G@M - AR — (M — OR)G,
M € {J,R,E, L,log}.

Note that for any material spin 2* (cf. )) the Lagrangean spin £2* — Qf

(3.
appearing in (3.5) and in particular in (3.18), i

= ¥ (w(Z2,%) -Fa-’*(fincaﬁcr,

a,7=1

is independent of the vorticity tensor W. In the above, the spin function h*(z)
is given by (3.13)s.
In particular, from (3.7) it follows

-

4]
(3.19) CR=@

for any objective Lagrangean tensor G.

Rates of various strain measures (mainly the material time rate) and the
material spins W, Q% QF QF and 2'° have been studied by many authors
and many results are available, refer to, e.g., HILL [21 - 23|, DIENES [3 - 4],
FITZGERALD (8], GURTIN and SPEAR [17], OGDEN [38], Guo and DUBEY [12],
Guo [11], HOGER and CARLSON [24], CARLSON and HOGER (1], HOGER [25],
MEHRABADI and NEMAT-NASSER [35], DUBEY [6], STICKFORTH and WEGENER
[50], WHEELER [55], GUO, LEHMANN and LIANG [13], SCHEIDLER [44 — 47|,
WANG and DuAN [54], Guo, LEHMANN, LIANG and MAN [14], MACMILLAN (31],
CHEN and WHEELER [2], MAN and GUO [33], X1AO [56], REINHARDT and DUBEY
[40], and X1A0, BRUHNS and MEYERS [57 - 58, 60 — 61, 65], et al.

A unified study of time derivatives of tensor fields via Lie derivatives, which
incorporates corotational rates as particular cases, was given earlier by Guo [10]
and later by MARSDEN and HUGHES [34].

3.3. Material corotating frames

Each material spin §2* of the form (3.9), which defines a kind of objective
corotational rates of objective tensors, is associated with the rotation and defor-
mation of a deforming material body in a suitable manner. Thus, an *-frame
is a rotating frame that is embedded in a deforming material body in a suitable
manner, and hence it traces the rotation and deformation of the deforming mate-
rial body in an intrinsic way. In view of this, we call a rotating frame defined by a
material spin through (2.15) — (2.16) a corotating material frame. Evidently, the
Eulerian and Lagrangean triads are two corotating material frames when they
are well-defined. Another two important examples are provided by the rotating
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frames defined by the vorticity tensor £2/ = W and the polar spin Q2 = RRT,
respectively.

A significant fact for corotating material frames is as follows:
The timne rate of an objective Eulerian tensor in a corotating material frame is an
objective corotational rate and vice versa, i.e. an objective corotational rate of an
objective Eulerian tensor is the time rate of this tensor in a corotating material
Jframe.

This fact is essential for the subsequent considerations, as will be seen in the
next section.

4. Unified work-conjugacy relation between Eulerian
and Lagrangean strain and stress measures

Let (e, t) be a pair of objective Eulerian strain and stress measures, both being
symimnetric, and let £2* be an Eulerian spin. In an Q*-frame (cf. (2.15) - (2.16))
relative to a fixed background frame, this pair becomes (Q*eQ*”, Q*tQ*”). Then
an observer in the just-mentioned §2*-frame forms the inner product

(Q'tQ') : (Q*eQ'T),

just as an observer in a fixed background frame does for a Lagrangean strain-
stress pair. Following the same argument as that used in Hill’s work-conjugacy
notion (cf. (1.1)), which is concerned with a fixed background frame, the observer
in the 2*-frame judges that the pair (t,e) is an 2*-work-conjugate pair if the
just-mentioned inner product furnishes the stress power w, i.e.

(4.1) w=(Q'tQ7T): (Q*e QT),
or, equivalently,
(4.2) w=t:e*,

where € * is the corotational rate of the strain measure e defined by the spin Q*,
i.e.

(4.3) e*=¢é+efl* —Ne.

As has been shown, the above work-conjugacy relation is defined in a rotating
frame. However, the definition itself does not mean that such relation is well-
defined for every rotating frame, i.e. for every kind of corotational rates. Now
we are in a position to find out in what rotating frames the aforementioned
work-conjugacy relation can be defined. Since both 1 and t are objective and
both t and e are symmetric, from (4.2) we conclude that the relation (4.1), i.e.

(4.2), may be defined only if the corotational rate é* of the strain measure e is
objective.
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The above fact justifies the introduction of objective corotational rates in Sec. 3.2.
Furthermore, let the spin £2* be associated with the rotation and deformation of
the deforming material body at issue in a manner indicated by (3.8). Then, by
applying the general result proved in X1A0, BRUHNS and MEYERS [60] we infer
that the spin £2* must be of the form given by (3.9), i.e., the spin £2* must be a
material spin. Accordingly, the work-conjugacy relation (4.1), i.e. (4.2), may be
defined only in a corotating material frame.

However, we still can not say that the work-conjugacy relation (4.1), i.e. (4.2),
can be defined in all possible corotating material frames. In fact, each objective
corotational strain rate & * defined by a material spin £2* is of the form (see (5.1)
given in Sec. 5)

e* =L[D],
where £ = £(B) is a fourth order tensor depending on the left Cauchy-Green

tensor B, i.e. a linear transformation between second order tensors, with the
index symmetry properties

Lijkr = Ljirt = Lijik = L
Hence, (4.2) may be recast in
w =t : (L[D)).
From the latter and the formula (2.13) we deduce that the equality
t:(LID]) =0:D

must hold for each D and each ¢. Since £ is a symmetric linear transformation,
we derive

(4.4) Lt =o.

Thus, if the stress 0 is not allowed to be restricted in any manner, as it should be,
the fourth order tensor £ — £(B) must be a nonsingular linear transformation
between symmetric second order tensors, and therefore the objective corotational
strain rate & * must be a complete strain rate measure. By the latter we mean that
the strain rate € * and the stretching tensor D constitutes a one-to-one corre-
spondence for any given left Cauchy—Green tensor B. By applying the expression
for the strain rate € * in terms of B and D (cf. (5.1)), from (4.4) we can derive
the £2*-work-conjugate stress measure t of the strain measure e in terms of B
and D. We postpone the further discussion in this aspect to the next section.

Now we consider objective Lagrangean strain and stress measures. By virtue
of the rotated correspondence (2.5), we can convert (4.2) to

(4.5) w=t:(RTe*R),
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where the identity
H, : H; = (QH;Q") : (QH,QT)

for any two tensors H, and H; and for any orthogonal tensor Q, is used. Applying
the formula (3.5);, we further arrive at

a
(4.6) w=T:E*,

where T' = t and E = & are the Lagrangean counterparts of the Eulerian stress
o
and strain measures t and e through the rotated correspondence (2.5), and E *

is the objective corotational rate of the objective Lagrangean strain measure E
defined by the Lagrangean spin 2 = RT”Q*R (cf. (3.5)), i.e.

(4.7) E* =B E - Q%) — (@ - QRE.

Observing that (4.6) has the same structure as that of (4.2), we say that a pair
of Lagrangean strain and stress measures, (T, E), is an §2*-work-conjugate pair
if (4.6) holds.

Let (£2*,Q*), (t,%) and (e, &) be, respectively, the Eulerian-Lagrangean spin
pair, stress pair and strain pair related by the rotated correspondence (2.5) and
(2.6). Then, it is evident that

(e,t) is an Q*-work-conjugate pair <= (&, t) is an fl‘-work-conjugate pair.

Thus, via (4.2) and (4.6) we have established a unified work-conjugacy rela-
tion between Eulerian and Lagrangean strain and stress measures. The just-
stated fact indicates that in the sense of this unified work-conjugacy relation,
the rotated correspondence relationship via the rotation tensor R remains true
for work-conjugate Eulerian strain-stress pairs and work-conjugate Lagrangean
strain-stress pairs.

The introduced unified work-conjugacy relation is much broader than the
Hill's work-conjugacy relation, even within the scope of objective Lagrangean
strain and stress measures. In fact, via various kinds of corotating material frames,
or, equivalently, via various kinds of objective corotational rates, a given strain
measure may be related to different stress measures in the sense of the introduced
work-conjugacy relation. It turns out that the introduced unified work-conjugacy
relation incorporates the Hill’s work-conjugacy relation into a particular case
when an 22 frame is concerned. In fact, by utilizing (3.19) we have

-ti:-—-T:E—_T:l%R:t:gR

where t = RTR” and e = RER” are the Eulerian counterparts of the objective
Lagrangean stress and strain measures T and E, and, moreover, ﬁ R and e 1t
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are the polar rates of E and e (cf. (3.17) and (3.18) with M = I?), respectively.
Thus,

(E,T) is a work-conjugate Lagrangean strain-stress pair
(4.8) in Hill’s sense,

<= (e, t) is an 2" — work-conjugate Eulerian strain-stress pair.

In the above, the two strain-stress pairs are related to each other by the rotated
correspondence (2.5) and (2.6).

ZIEGLER and MACVEAN [64] introduced a more general work-conjugacy no-
tion. MACVEAN [32] studied work-conjugacy relation between certain commonly-
known Eulerian and Lagrangean strain and stress measures. The general work-
conjugacy notion was also adopted in HAUPT and TSAKMAKIS [19]. These studies
allow for general objective rate measures including objective corotational rates.
Moreover, the definition (4.2) was used by LEHMANN [28] in a thermodynamical
setting and later used in some particular cases by LEHMANN, GUO and LIANG
[29] and LEHMANN and L1ANG [30]. It seems that the interpretation (cf. (4.1)) of
this notion in terms of corotating material frames, and hence the fact that the in-
troduced work-conjugacy relation is a natural extension of Hill's work-conjugacy
relation, are disclosed first by these authors in X140, BRUHNS and MEYERS [57
— 58|. Moreover, it seems that the unified work-conjugacy relation for both Eule-
rian and Lagrangean strain and stress measures in a general sense is established
here for the first time.

5. Work-conjugate stresses of generalized Eulerian
and Lagrangean strain measures

Let e = g(B) be any given Hill’s Eulerian strain measure defined by the scale
function g(x) (cf. (2.28)-(2.29)) and moreover, let £2* be any given Eulerian
material spin characterized by the spin function i(z,y) (cf. (3.9)). According to
the formulas (31a) and (30) given in X1A0 [56], we have

é= i gorBaBB'r)

o,1=1

where
Gop = 9(Xo) — 9(x~)
Xo— X+
with the limiting process lim, .- g, = ¢'(xo) understood when o = 7 in the
summation. On the other hand, by using (2.3); and (2.2) and (2.4); we infer

B = FF" + FF” = (DB + BD) + (WB — BW).
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Then, utilizing the above results and the equalities
BBy = ByB = x¢By: eBy = Bye = g(xs)By,

for the material spin £2* given by (3.9) we derive
: ( Z gﬂ'TBUBBT) +e ( Z h (XTas KII‘) BaDBT)
a,7=1 a,7=1
" (,,Z h (XT" %) B,,DB,) e

=1

Mo
I

r

b ((Xa + Xr)gor + (9(Xo) — 9(xz))h (x" )"T)) B,DB, .

a,r=1 [ [

Hence, the objective corotational strain rate e * defined by the material spin §2*
is given by

0

"
(5.1) e*=L(B)D|= Y p(Xs)Xs)B,DB;,

o, 7=1
where
(5:2) pa) = (@ +9) + (@ - n (3, 4)) 22 =20)

I d T—y

for any z,y > 0, where the invariant / is given by (3.10). In (5.1), x1,---, X, are
the distinct eigenvalues of B and By, ---, B, are the corresponding subordinate

eigenprojections of B, and the fourth order tensor £(B) is defined by (5.1);. In
order to obtain the conjugate stress t from (4.4), it is required to judge whether or
not the strain rate & * isa complete one, i.e. whether or not the fourth order tensor
L(B) as a linear transformation between second order tensors is nonsingular for
all B, and, moreover, to work out the inverse of £(B). At first sight, it seems not
easy to solve the just-mentioned two problems, since we have to deal with a fourth
order tensor depending on a second order tensor. Fortunately, utilizing (2.35) -
(2.36), from (5.1) we can derive a spectral representation of the fourth order tensor
L£(B) and hence the aforementioned tough problems become tractable.

Let H; and H; be two given second order tensors. We introduce the Kronecker
product Hy x Hy of the tensors H, and Hy by

(5.3) (H, * Hp)[X] = H1XH;

for any second order tensor X. It is evident that the Kronecker product Hy * Hy
defined above is a linear transformation between second order tensors, i.e. a fourth
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order tensor. With the help of the Kronecker product introduced, from (5.1) we
derive .
(5-4) -C_(B] = Z p(Xm XT)BO *B,.

o,7=1

The crucial point is that the above expression is exactly a spectral representation
of the fourth order tensor L(B) as a linear transformation between second order
tensors, in which each p(x,,x:) is an eigenvalue. In fact, let £, o Lo designate
the composition of the two fourth order tensors £; and £; as two tranformations.
Then, by utilizing (2.35) and (2.36) and the definition (5.3), we deduce

((Ba*Bg) o (Bs xB;))[X] = (Ba*Bg)|(Bs * B,)[X]|
= (Bq * Bg)[B,XB,/]
= B,B,XB,Bg
{ (B, «B)IX]  a=af=7,

O otherwise,

for any 1 < a,f3,0,7 < r and for any second order tensor X, and, moreover, we
have .
Y. Bi»B; =1l

o,r=1

The former yields

B;+B; i a=a8=71,

(Ba*Bg)o (B, *B;) =
ki Ep) A O®0 otherwise,

for any 1 < a,3,0,7 < r, where O® O is the fourth order null tensor. Moreover,
the tensor I = I gives the identity transformation between second order tensors,
since

(IxTX] =X

for any second order tensor X. Thus, from the above facts and a well-known fact
from the linear transformations we conclude that (5.4) is a spectral representation
of £(B) and hence each p(x,, x-) is an eigenvalue.

From the fact just proved, we can derive the desired results immediately.
First, we assert that £(B) is nonsingular if and only if each eigenvalue of it is
nonzero, i.€. p(Xo, Xr) # 0. The latter produces

(5.5) (z+y)+ (@ —yh(z,y) #0, Vz,y>0, z#y.

In deriving the above, the condition (g(z) — g(y))/(z — y) # 0 is used. For the
latter, we would mention that the scale function g(z) is a monotonic increasing
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function. Then, combining the condition (5.5) and the related result derived in
Sec. 4, we conclude that

the Q*-work-conjugacy relation (4.1), i.e. (4.2) can be defined if and only if the
spin S2* is a material spin (cf. (3.9)) fulfilling the condition (5.5).

Next, for any given material spin 2* (cf. (3.9)) fulfilling the condition (5.5), from
(4.4) we derive the £2*-work-conjugate stress measure t of an arbitrary Hill's
Eulerian strain measure e as follows

(5.6) t = (L(B)) ol = Y plXorxr) *BsOB-,

or=1

where the symmetric function p(z,y) is given by (5.4).

The formula (5.6), which provides the 2*-work-conjugate stress of the Eule-
rian strain measure e in terms of the related basic quantities, i.e. the left Cauchy-
Green tensor B and the Kirchhoff stress measure 0, is valid for any given Eulerian
material spin 2* (cf. (3.9)) fulfilling the condition (5.5) and for any given Eulerian
strain measure e (cf. (2.19) or (2.29)). Moreover, by means of the rotated corre-
spondence relationship as indicated by (4.8), we obtain the 2*-work-conjugate
stress measure of any given Lagrangean strain measure E (cf. (2.20) or (2.30))
as follows: p
(57) T = Z :O(Xﬂ! XT)_ICO'&CT .

o,7=1
We would point out that in the formulas (5.6) — (5.7), the limiting process
lim  9(e) — 9(xr)
Xa—Xr Xﬂ — XT

Substituting the four spin functions h(r,y) = hM ( ) for M € {J,R, L 105}13)

given by (3.12) - (3.13) and (3.15) — (3.16) into (5.6)'{ax1d (5.7) respectively, one
can obtain the work-conjugate stress measures of any given Eulerian and Lagran-
gean strain measures e and E with regard to the material spins 2% and QM
for M € {J, R, L,log}, respectively. In particular, substituting the spin function

h(z,y) = hR G) (cf. (3.13)) defining the spin 2% = RR” into the formula

(5.7), we derive the work-conjugate stress measure of any given Lagrangean stra-
in measure E (cf. (2.20) or (2.30)) in Hill’s work-conjugacy sense (cf. (1.1)), i.e.
the £2%-work- -conjugate stress measure of the Lagrangean strain measure E, as
follows:

(5.8) TR — Z 2vVXaxr) ————-"—Lucc,ac,.

P ol 9(xo) — 9(x+)

= g’(XO') iS mEa.nt, When o=T.

(3)The spin function given by (3.14) is excluded, since it fails to meet the condition (5.5), i.e.,
the strain rate &  for any e is not a complete strain rate measure.
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The above result is presented in terms of the right Cauchy—Green tensor C and
the Lagrangean Kirchhoff stress measure or the rotated Kirchhoff stress, 6 =
RT oR. Other forms of expressions for T# can be found in HILL (21 - 23], WANG
and TRUESDELL [53], OGDEN [38], WANG and DUAN [54], and X1A0 [56], et al.;
see also HOGER [26], LEHMANN and LiANG [30], Guo and MAN [15], et al., for
some particular cases.

The formulas (5.6) — (5.7) are expressed in terms of the eigenprojections of
the Cauchy—-Green tensors B and C, respectively. Applying Sylvester’s formulas
(2.31) and (2.32), from (5.6) and (5.7) one can derive explicit basis-free expres-
sions for the conjugate stresses t and T'. In fact, we have

r—1

(5.9) t= 3 &B'oB,
i,j=0
r—1

(5.10) T =) a6,

3,j=0

where each coefficient p;; = 0;; is a symmetric function of the distinct eigenvalues
X1, -, Xr of B or C, i.e. an invariant of the latter. The expressions for the
coefficients p;; are given as follows.

r=1: xi=xe=x3=x
(5.11) 200 = (2xg'(x)) "

(ii) r =2: x1# x2 = xa-
The eigenprojections are of the forms

B; = RC;RT = (x1 — x2) " 1(B — x2I),

(512) T -1
B; =RC1R" = (x2—x1)7 (B - x1]I).

The coefficients g;;, i,j = 0, 1, are given by
1 . o = =
(5:13)  eo0 = 5(x3(x191) ™" + xi(xag2) " — Draxzpiz )1 — x2) 2,

1 ~ ok
(6.14) o1 = 010 = —5()(2()(191) Y+ xi(xagh) g

—2(x1 + x2)P12 )(x1 — x2) 2,

1 = = =! _
(5:15) e = 5((x191) ™" + (x202) " = 4p13) 01 — x2) 2.

(iii) » = 3: x1 # X2 # X3 # x1-
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The eigenprojections are of the forms

(5.16)

B, = RC,RT = X2 = X8 — xaT)(B — xs1),

B, — RC,RT — %(B — xaI)(B — x1I),

By=RC;RT =X ;’“(B - xaI)(B - x21),

A = (xa—x2)(x2 —x1)0a — x3) -

The coefficients g;;, i,j = 0, 1,2, are given by

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

200

o011

o1

002

212

1 . )
5477 2 (06"x) = xix")* Oaagl) ™
(i7k)

—AITT(x; — xK) (x5 — XK)XKP35)

5073 (i = X (xkdk) ™ = 406% — xi2) 0% ~ kDo)
(ijk)

—A 23 (i 2 (xkgh) " — 40xi — xk) (X5 — xk)Pi;') 5
(ijk)

[ =
=387 3 (06 = X3)* 06 + xix®) Oewgi) ™
(i)

—2(IIT + Ixi) (xi — Xk) (X5 — Xk)Pij) »

é‘A 3L Z Xth XJ)2 ngk} .
(ijk)

=2(xi + x5) (% — xk) (X — XK)XKP3;') »

5872 Y (0 x3) (6 — X 0ngh) ™
(i7k) :

=20 +x1) 06 = XK) (x5 = x6)P3z)

where the notation Z means the summation for (ijk) = (123),(231), (312). In

(ijk)

the above, we denote

(5.23)

g =9 0k)y  pij = p(Xir Xj) -
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Moreover, I, II and I1I are the three principal invariants of B or C, i.e. for
G =B, C,

I = x1+x2+x3 =trG,

1

. 1
2 1. ~2
2(trlG) 2!‘.1'(';} :

(5.24) IT = xi1x2 + x2x3 + X3x1 =

1
III = det G = x1x2X3 = é(trG)s = E(trG)(trG}Q + E1;rG~‘.

The three eigenvalues (possibly repeated) of B or C are determined by the for-
mula (see SAWYERS [43])

Xi = %(H2\/12-311(:05%(9—2«:’)), i=1,2,3,

(5.25)

213 —9I - IT 427111
cost) = (12— 3012 0<o< .

In the above results, the formulas (5.6) and (5.7) in a principal component
form are simple, but to apply them actually, one needs to calculate the eigenvalues
and eigenvectors of B at each material particle. However, in a deforming material
body, the Eulerian and Lagrangean triads may vary with the time and the spacial
position of material particle during the course of deformation in a rather compli-
cated manner. Thus, the just-mentioned eigenvalue/eigenvector calculation may
become cumbersome, or even intractable. The explicit basis-free formulas, which
have rather complicated forms, are just what are needed to avoid this unsatisfac-
tory situation. They are valid for all coordinate system and hence independent of
any particular coordinate system. Once the deformation gradient F is known un-
der any coordinate system, by means of the explicit basis-free formulas given, one
can directly calculate the desired results for conjugate stresses without recourse
to the complicated eigenvalue/eigenvector calculation.

6. On Hencky’s logarithmic strain measures

The logarithmic strain measures In V and In U (cf. (2.26) and (2.27)), intro-
duced by HENCKY [20], have long been popular and enjoyed favoured treatment
in solid mechanics, metallurgy and materials science, etc. In constitutive mode-
ling, these measures and their rates are often chosen as basic strain measures
and basic strain rate measures and have been shown to possess certain intrinsic
advantages (e.g., see HILL [21 - 23], RICE [42], HUTCHINSON and NEALE [27],
and OGDEN [38], et al.). Earlier, the usefulness of them was confined to some
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particular cases due to their complicated transcendental form, as pointed out by
TRUESDELL and TOUPIN [52]. This situation was later improved by FITZGERALD
(8], GURTIN and SPEAR [17], HOGER [25 - 26|, and SCHEIDLER [44 - 46|, et al.

The main objective of this section is to disclose intrinsic, unique relationship
between the logarithmic strain measures and the fundamental mechanical quan-
tities, i.e., the stretching tensors D and D and the Kirchhoff stress measures o
and &. {2.14] (Z.42)

It has been known for a long time that neither of the Eulerian and Lagrangean
stretching tensors D and D can be written in a direct flux of a strain measure (cf.
HiLL [23]), although they are frequently referred to as the rate of deformation
tensor, the Eulerian strain rate, etc. As a result, neither of the Eulerian and
Lagrangean Kirchhoff stress tensors 0 and @ is conjugate to any strain measure.
Recently, these authors have proved (see X1A0, BRUHNS and MEYERS [57 — 60])
that an objective corotational rate of the Hencky’s Eulerian logarithmic strain
measure InV can be identical with the Eulerian stretching tensor D, i.e., in
a corotating material frame the latter is a true time rate of the former, and
furthmore that in all strain measures only In V enjoys this property. Specifically,
we have

(6.1) e*=ét+e—Ne=Dese=InV&O =NE

where 198 is the logarithmic spin (cf. (3.11) and (3.16)). As a result, from (2.13)
and (4.2) and

(6.2) D =(In'V) 8

it follows that the pair (In'V, o) is an Q'%-work-conjugate Eulerian strain-stress
pair. A particular case of the above fact was known first by LEHMANN, Guo
and LIANG [29] and later by REINHARDT and DUBEY [40 — 41] and DUBEY and
REINHARDT [7], where only e = In'V, i.e.

(6.3) e=IV&N =Q%-=8*=e+e* —N'e=D

was considered, and hence the aforementioned unique property of In'V was not
realized. The aforementioned intrinsic, unique property of the Hencky’s Eulerian
strain measure InV has proved to be far-reaching and found applications in
constitutive modeling (see REINHARDT and DUBEY [41], DUBEY and REINHARDT
[7], BRUHNS, X1A0 and MEYERS [62], X1A0, BRUHNS and MEYERS [58 — 59, 63]).

On the other hand, the corresponding question concerning the Lagrangean
stretching tensor D and the Lagrangean Kirchhoff stress measure ¢ have been
discussed recently by these authors (see X1A0, BRUHNS and MEYERS [61]). Here
we supply a short alternative proof for the main results in the latter.

In fact, from the notion of objective corotational rate and the formula (3.5),
the following fact follows immediately:
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64 E*=E+EQ -OR)—(P-QR)E=D<<E
=InU & * = QI8

Namely, an objective corotational rate of the Hencky’s Lagrangean logarithmic
strain measure In U is identical with the Lagrangean stretching tensor D, and
furthermore that in all strain measures only In U enjoys this property. Thus, from
(2.14) and (4.6) and

(6.5) D —(In U) '8

it follows that the pair (InU, &) is an fl'°3-work-conjugate Lagrangean strain-
stress pair.

7. On Eulerian and Lagrangean formulations of rate-type
constitutive relations

Let E be any given Lagrangean strain measure, defined by a scale function
g(x) (see (2.30)). The conjugate stress T of E in Hill's work-conjugacy sen-
se (see (1.1) and (2.14)) is given by (5.8). Suppose the response of a material
to incremental loading is rate-independent, i.e., either linear or piecewise line-
ar. Following HILL (23], relative to a reference configuration we write down the
Lagrangean rate-type constitutive relation

(7'1) TR _ J\;‘IR[E] 2

The fourth-order tensor of moduli, M#, may depend on the stress and the defor-
mation state, but not on E. In particular, MR depends on the choice of reference
configuration and of measure, i.e., scale function g(x). In HiLL [23], certain signi-
ficant properties of rate-type constitutive relation (7.1) are exploited by means of
the class of generalized strain measures characterized by the scale function g(x)
as well as the work-conjugacy notion (1.1), such as the dependence of the moduli
M" on the change of scale function g(x), constitutive inequalities in terms of
the scale function g(x), the measure invariance, etc.

The unified work-conjugacy notion introduced enables us to broaden the sco-
pe of the foregoing study. Indeed, let 2* # Q% be a material spin of the form
(3.9), and e - any given Eulerian strain measure with the scale function g(y).
Then, the £2*-work-conjugate stress t of e is given by (5.6); and (5.2). We pro-
pose the following Eulerian rate-type constitutive relation for a rate-independent
elastoplastic material:

(7.2) t*=M[e"],

where g * and @ * are the objective corotational stress and strain rates given by
(3.1) with G = e, t and (3.11). The corresponding Lagrangean formulation of
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the above relation can be obtained by using the rotated correspondence relation
(2.5)—(2.6). We have

2 % T ] e
(7.3) T*=M'E"*,
where the Lagrangean strain-stress pair (E, T) is the counterpart of the Eulerian
strain-stress pair (e, t) via the rotated correspondence relation (see (2.5)—(2.6));

the objective corotational rates 'i‘ * and }% * are the Lagrangean counterparts of
% * and ,gg (see (3.5)); and finally

(7.4) M* =RxM*; (Rx M) = RipRjRi Ry M;,

pqrs *

The Eulerian and Lagrangean fourth order tensors of moduli, M* and M?,
may depend on the stress and the deformation state, as well as certain inter-
nal variables (4]cha.racterizing the internal state of material, etc. In particular,
either of them depends on both the choice of strain measure and the choice of
spin tensor, i.e. both the choice of scale function g(x) and the choice of spin
function h(x,y). It should be pointed out that the just-mentioned double cho-
ices are arbitrary and independent of each other. Thus, the proposed Eulerian
and Lagrangean formulations of rate-type constitutive models broaden the usual
Lagrangean formulation with the material time rate and Eulerian formulations
with several known objective corotational rates. The former allow for the do-
uble choices of scale function g(x) and spin function h(z,y), while the latter are
concerned merely with the choice of scale function g(x). In fact, the usual La-
grangean formulation (7.1) is incorporated into a particular case of the proposed,
more general Lagrangean formulation (7.3) when h(z,y) = hf(y/z) (see (3.14)),
ie 0 =R

Since the stretching D is a simple, natural measure for the rate-of-change of
deformation state, it is hopeful that the strain rate measure e*is replaced by D,
as is most often done. This results in the noticeable fact (see X1A0, BRUHNS and
MEYERS (58] or last section): the strain measure e must be the logarithmic strain
measure In 'V, the stress t must be the Kirchhoff stress o and the spin 2* must
be the logarithmic spin €2'%. Such uniqueness yields the following formulations
based on the logarithmic rate:

0

(7.5) o ' — M98[D],

(7.6) 6 18 = M98[D).

For hypoelasticity and finit deformation elastoplasticity etc., further study shows
(see X1A0, BRUHNS and MEYERS [58 — 59, 63] and BRUHNS, X1A0 and MEYERS
[62]) that the above formulations possess certain unique, far-reaching properties.

(*)For the sake of simplicity, the evolution equations of internal variables are not discussed
here.
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In general, by virtue of objective corotational stress rates and the unified
work-conjugacy notion introduced, the structure and property of rate-type con-
stitutive relations may be further exploited, such as the dependence of the moduli
on both the scale function g(y) and the spin function A(z,y), constitutive inequ-
alities in terms of both the scale function g(x) and the spin function h(z,y), the
broader invariance relative to both strain measure and strain rate measure, etc.
This line of investigation will be pursued elsewhere.
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