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Power evaluation of the influence of roughness on the value
of contact stress for interaction of rough cylinders

A.S. KRAVCHUK (MINSK)

Tue paper deals with mathematical modelling of contact interaction of rough cylin-
drical bodies, what significantly reduces the complexity of investigation of contact
stress in practice. The contact problem for a rough elastic disk and isotropic plate
with a rough cylindrical hole has been considered. The explicit approximate solu-
tion of the integral equation is presented in this paper. It allows us to determine the
influence of the rough layer characteristics on the distribution of contact stresses.
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normal contact pressure

components of displacements

for the plate with a hole (1 = 1), for an elastic disk (m = 2)
displacement of disk center

area of contact in non-Hertz theory of interior interaction of cylinders
normal contact stress in non-Hertz theory

of interior interaction of cylinders

Lamé’s coefficient

Kolosov-Mushelishvili complex potentials

complex variable in frame X0Y connected with the center of hole
complex variable in a frame X'0Y’ connected

with a center of disk and belonging to its exterior area

coefficients of the integral equation

contact half-angle
maximum contact pressure

For the state of plane deformation:
Gim = (1 —124), Gom = (1 + Um); km = (3 — dum)

For the state of plane stress:

Gim = Gam = 1; &m = (3 — vm) /(1 + vm).
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1. Introduction

THE CONTACT STRESS is one of the major factors leading to the wear of working
surfaces and determining limit loads of machine parts [1]. However, roughness
of real bodies has an essential influence on the distribution of the contact stress
[1 - 6]. It considerably reduces the pressure which becomes much smaller than
for smooth bodies in the case of small loads. In addition, the area of contact
considerably increases |4 — 6]. Therefore the principal attention is directed to
the determination of elastic interaction of rough bodies. Many authors studied
this problem, which is connected with solving both the applied and fundamental
problems (2, 3|.

It is necessary to point out that the mechanics of rough surfaces contains
several peculiarities. They are due to the fact that the roughness, formed after
technological processing, has various heights distribution [3, 6]. The irregularity
of roughness leads to the necessity of application of the probability methods for
the determination of rigidity of the element of a rough surface (3, 6, 7] where
the pressure is constant. Just the similarity of dimensions of the element and
contact a ea explains methodical complexities of solving contact problems for
real bodies.

The posed problem was solved in several investigations under the assump-
tion, that distribution of pressure becomes parabolic, while the deformations
of elastic half-space in comparison with the deformations of a rough layer can
be neglected [6]. This approach leads to essential increasing of the complexity
of integral equations and enables us to perform only the numerical analysis of
the influence of roughness on the stress [4]. But the curvature of loaded surfa-
ces is transformed and decreases at the expense of deformations of microirregu-
larities. It essentially enables us to simplify the derivation of analytical solutions
in the case of interaction on the elliptic area of the contact of elastic bodies.
It is possible to carry out this research by estimating the influence of energy of
elastic deformation of a rough layer on the displacement in the area of contact.
This approach is explained in this paper for the case of contact of two rough
cylinders.

2. Power evaluation of the influence of roughness on the deformed surface
of interaction of two semi-infinite bodies

Let us consider an analog of the Hertz problem for a case of contact interaction
of two elastic plane semi-infinite bodies S} and Sy (Fig. 1). The frame XOY is
selected so, that the line of contact L is a segment [-a, a] of the real axis OX.
Average Steklov’s values of deformation and stress [8] are
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Fic. 1. Contact interaction of two elastic plane semi-infinite bodies.
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where 2b(a > b) is the base length of a measurement of characteristics of micro-
deviations, [—a, a] is the segment of contact, *,£* — microstress and microdefor-
mation for a rough layer (o*,e* - integrable functions), and [3]

(2.3) ey (t) = (Coop (1),
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where Cy, x are real and rational constants defined by parameters of microdevia-
tions. Some authors [3| did not use (2.3) in their research work but applied the
relation between stress and deformation

£(t) = (Coo(t))*.

It is incorrect in view of the probability of distribution of the material in a rough
layer and since a and b are of the same order of smallness. It is important to note
the functions (2.1), (2.2) are the expected distributions of the contact stress and
deformation in the contact problem for rough bodies.

Then the energy of elastic deformation of a rough layer U will be expressed
in the following way ([9], (2.3)):

a

e X g 0 / X+ g,
24) U 0T X}CU.Z?:./E,,(S) ds T X).Zh, oy (s)X" ds
0 0
2
(1 + X 22 J\'& ’

1
where V = 2ah, h is the thickness of the rough layer, and 6} — — [ o} (s)ds
' R b

a
On the other hand, from (1.3) we obtain

(2.5) £y =~ (Coayp )X (l FO( I)X/(%(S = ) ds));

@

1
here &, = (—l/ez(s)ds.

0
Since the bodies are in the elastic equilibrium, then

ep(t) = ep(t), o (t) = o(t),

where &,(t), o3(t) are the average Steklov values of deformation £(¢) and stress
o(t) within the limits of the base length for smooth bodies. Therefore equalities
(2.4) and (2.5) hold for these functions too.

Functions are continuous on [—a, a] and differentiable on |—a, a[. Then taking
into account (2.4) - (2.5), we can obtain the following approximate equality:

~ XC§
)
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2.7) £~ (Cof)X(1 + O(Ha)),
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Thus the energy U of deformation of a rough layer in the case of contact inte-
raction of rough bodies within Hy and & within H; are fixed if the value of & is
fixed.

3. Generalization of the Hertz theory to the case of contact
of rough cylinders

Let us assume that there is no friction in the area of contact L of bodies S
and Sy (Fig. 1). The stresses and rotations are equal to zero at infinity [10].
The equations of the boundaries of bodies before the deformation are [10]
@ i

?Ilz—ms 3}2:%,

and after the deformation we have

v — Uy = t2 ii + =
L A VT T R :

A o
e b
v 2(& Ty

where v* is the displacement of the rough layer, A is a constant determined by
the parameters of the rough layer. Then from (2.7) we obtain

3 P\X
A~ —h|Co— ) .
a? I( 020)
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Taking into account all the conditions we obtain, after some transformations,
the following solution in case when the contact pressure p(t) (p(l) = —o(t)) is
equal to zero at points -a and a :

p0) = (=) @ -,

- K1+ 1 Ko 4+ 1
i +

A g
where K,, = (3—4u,) for the state of plane deformation; k,,, = (3=t )/(1+ vm)
for the state of plane stress and a is the solution of nonlinear equation

. Rrh ( P )x  2PrRK
“r+R) ~7(r+R)’

Ll

3.1 a% — Jo—
(3.) vy
here P is the intensity of the load; R, r are radii of the curvature of the interacting
bodies.

The results of numerical analysis of (3.1) show that the roughness has an
essential role only for small operating loads, and with their growtk the influence

of roughness decreases (Fig. 2). It is necessary to point out that relative errors
H, and H, from (2.6), (2.7) do not exceed 9% and 15% of the examined values.

ax 10F3,m 1
s 2 T
e
0.5 _-/,
Px10*,N
0

I I

4 9

F1G. 2. Relation between a and P: 1 - for smooth cylinders; 2 — for rough cylinders
(Co =3.812-10~" m?/N, K = 7.289- 10~ m?/N, R/r = 10, x = 2/9).
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4. Interior contact of rough elastic disk and plate with
cylindrical hole

Consider an elastic isotropic plate with a cylindrical hole of radius /. An
elastic isotropic disk of radius r is inserted into the hole. It will be assumed that
e2 £/R (¢ = R—r > 0) are small values. Force P acts along the y — axis (Fig. 3).
Due to the fact that displacements in the area of contact L are negligible in
comparison with the dimensions of the bodies, one obtains:

y

r €+ 90

sl
D

F1G. 3. Scheme of bodies location

(4.1) (1 +ut*)? + (1 +v1*)? = (2 +u3°)% + (32 +v3* — 6)?,
where

x1 = Reos((), y1 = Hsin((),

T3 = rcos((), y2 = rsin(() — ¢,

¥ e

m, Up (= 1,2) are components of the displacements of the plate with the hole
(m = 1), for the elastic disk (m = 2); J is the displacement of the disk center. It
is easy to see that equation (4.1) reduces to

uw

€ +ui* cos(() + v sin(¢) = u3* cos(() + (v3* — & — &) sin(().
Let

N % ** %
Uy, = Uy + Uy, Vi = Uy 4 Vs
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-

where u,,, vy, u;,,v;, are displacements of the basic material and the surface
rough layer, respectively.

We shall assume, that the elastic radial displacement in the area of contact
being determined by the deformation of a micro-irregularity, is given by the fol-
lowing expression [11]:

v = uf cos(¢) + vi sin(C) — uh cos(¢) — v3 sin(¢) = A(cos(€) — cos(ag)).

We obtain, similarly to Sec. 1, that

kg P X
A h|C
sin(ag) — ag cos(ag) ' ( 02Rsin(ag)) ;
where aq is the contact half-angle. After transformation we obtain

2
(42) (¢ —Acos(ag)) — 286—Csm(() 2%”—(: cos(¢) + (%—C? cos(¢)

2

%CUI Sln(C)) %%_— n(¢) + 20 cos(C) + (6;0 cos(()

62
()C2 bm(C))

But on the contour of the hole we have [12]

1 {Ovem §¢ 9l 3

(43) 1“ ( 3?) S 'Um) = a(c‘lmaﬁm = V‘ni(’?mJ‘r}:

where R,, = R(m = 1) and R,, = r(m = 2); v,,,(m = 1,2) is Poisson’s ratio;
By, (m = 1,2) is Young’s modulus; Gy, = (1 — 1), Gom = (1 + vy,) for the
state of plane deformation; iy,, = Gg,, = 1 for the state of plane stress; o¢,,, o,
are normal components of stress. Then, using (4.2), (4.3) we obtain:

17} (811.1

R
(44) e—Acos(ao) + =-(Guog —nGanoy) + ac \ ac cos(() + % Sin(C))

Ey
r d [ou
= E;;(Glgﬂcz — 1yGaoy) + ac (3—C cos(() o sm(C))
It is known that [10]
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Here w = z(m = 1), w = s(m = 2); i = vV=1; @m(W), ¥m(W) are Kolosov-
Maushelishvili complex potentials; ji,,,, (m = 1,2) is Lamé’s coefficient; !, (W) =
(W), Y (W) = U (W).

From (4.4), (4.5) we obtain

(46) (€ — Acos(ag)) %(20“@1(:.) + ®1(t)] — (G11 + 1G21)oy)

d (?’-‘.1 + l) F - T 5 —
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—(G12 +v2G22)or) + T% ((&z;])iltbg(h) - cbg(h.)]) .

1/h=r/(rt), t = Rh/r — ie.
Then using the Eqgs. (4.6), (4.7) [10, 13]
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we arrive at the integral equation:
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. Gl
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The results of the investigations [10, 14] show that the approximate solution

of (4.8) can be reduced to the following form:

(4.9) o,(0) = P

Q[ 2, N
R ’mﬂ' ag — cos(ag) sin(ag)

] \/cos(()) — cos(ag)

cos(0/2) + 2 [P (35 it 1 cos(ao) ) + yab

7 R{og — cos(ag) sin(ag))

V' 1+ cos(0) — v/cos(@) — (iL)S(G’{))] ]

+ v5(e — Acos(ag))] x In [
1 -+ cos(aq)

here

(& 0] [{2 @n
P= —2R/a,(0) cos(0)dd, b= —— [ o:(0)do.
0

0

It is necessary to emphasize that for elastic constants of isotropic materials,
which are widely used in machines, the error of approximation (4.9) of the solution
of the equation (4.8) with respect to o"** is less than 41%.

It has been established that the obtained dependence of the half-angle of
contact on the non-dimensional parameter, introduced by 1.Y. Staerman, is ana-
logous to the dependences established by M. I. TEPLY for the state of plane de-
formation [13]. This confirms a high accuracy of the approximate solution (4.9).

The obtained solutions for smooth bodies can be used as a zero approximation
in the analysis of the influence of roughness on the distribution of normal radial
stresses. The obtained results show that in the case of interaction of rough bodies,
the contact half-angle increases in comparison with the contact half-angle for
smooth machine parts, and the greatest contact stress decreases (Figs. 4, 5). It
is necessary to note that in this case, the relative errors /1, and H, from (2.6),
(2.7) do not exceed 10% and 11% of the investigated values.
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Fi1G. 4. The relation between ap and parameter P/¢E : 1 — for a smooth hole; 2 —
for a rough hole.
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F1G. 5. The relation between g and parameter pmax/2/(€E1)(Pmax = —0™2*): 1 - for a

smooth hole; 2 ~ for a rough hole.
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5. Conclusions

The problems of elastic contact interaction of rough cylindrical bodies is
solved by taking into account not only their geometry and relative location, but
also the geometric characteristics of their surfaces. It allows us to determine the
influence of basic parameters of the problem on the contact stress. It considerably
reduces the complexity of investigating contact stresses in practice.

The comparison of the data of the stress analysis in the area of contact
for various combinations of elastic characteristics of interacting bodies with the
results of paper [13| confirms high effectiveness of the approach proposed here.

The suppositions made here and the conclusions drawn from the experimental
research enable us to take into account the geometric peculiarities of the surfaces
of interacting bodies.
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