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A unified theory of representations for scalar-, vector-
and second order tensor-valued anisotropic functions
of vectors and second order tensors

H. XIAO (BOCHUM and BEIJING)

A SUBSTANTIAL generalization of Lokhin-Sedov-Boehler-Liu's isotropic extension
method for representations of anisotropic tensor functions is suggested. It is shown
that every scalar-, vector- and second order tensor-valued anisotropic tensor function
with vector and second order tensor variables can be extended as an isotropic tensor
function merely with augmented vector and second order tensor variables through
some simple polynomial vector-valued and second order tensor-valued invariant ten-
sor functions characterizing the anisotropy group. This result circumvents the diffi-
culty involved in the usual direct generalization of the aforementioned LSBL method
due to the introduction of structural tensor variables of order higher than two, and
enables us to derive complete representations for various types of anisotropic tensor
functions of vectors and second order tensors directly from the well-known results for
isotropic tensor functions of vectors and second order tensors. All anisotropy groups
describing symmetries of solid materials, including the thirty-two erystal classes and
all infinitely many noncrystal classes, are considered.

Notations

Ty — the space of kth-order tensors. In particular, Ty = R (the reals), Ty =V,
Orth - the full orthogonal group, being a subset of T3,

Skw, Sym - the skewsymmetric and symmetric subspaces of T3,

D = V*® x Skw® x Sym®; E = V" x Skw* x Sym®,

X=(va;We;A0) = (v1,-. -, Va; Wi,... , Wpi Aq,...,A:) € D,

(Q* Disocin, =i Quuts Loy sy (QEOHE T ET), Qee=g, &R,
I'(T)={Q €O0rth | Q% T =T},

Q+*X=(Q*ve; Q+Wy;Qx*A,),

G(D,M)={F:D— MCTi|F(Q*X)=Qx(F(X)),¥YX€D,QeG} (GC Orth),
(Q*8)(X)=Q+*(S(QT+X)), VX e D (Qe€Orth, S: D — E),
SN(Q+8)={Xo€ D|(Q=8)(Xo) =S(Xo)},

BK=K i 9K:® - ®@Km, Ki=--=Kn=K€Tk,

(G @Z)iy..q, = Cir..tygs.iiglin iy (B €Ty € Ty,

Gov=Gv,veV; GOB=G:B, BeT,,

D(u)={zu|z € R}* x {zBu |z € R}’ x {zl +yu®u|z,y € R}* (0#ueV),
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e, n two orthonormal vectors,

I, E the second order identity tensor; the third order Eddington tensor,
RY  the right-handed rotation through the angle # about an axis represented

by0#a€eV,

S\T the set of all elements that belong to the set S but not to the set T,

u-v the scalar product of the vectors u,v e V,
< z,e > the angle between the vectors z and e,
q(A) a vector associated with the symmetry tensor A € Sym, refer to (2.9),

v?  the perpendicular projection of the vector v on the n-plane, refer to (2.21).

1. Introduction

SCALAR-, VECTOR- AND SECOND ORDER TENSOR-VALUED FUNCTIONS of vectors
and second order tensors provide mathematical models for macroscopic physical
behaviour of materials. The principle of material frame-indifference and materi-
al symmetry require that such tensor functions modelling material behaviours,
i.e. constitutive relations of materials, possess a combined invariance under the
material symmetry group. The central problem of theory of representations for
tensor functions is to determine general reduced forms of tensor functions that
are invariant under various given material symmetry groups and hence, it con-
stitutes a rational basis for a consistent mathematical modelling of complex ma-
terial behaviours (see RIVLIN [21], TRUESDELL and NOLL [43], MURAKAMI and
SAwczZUK (18], TELEGA [42], BOEHLER [7, 8], ERINGEN and MAUGIN [10], KI-
RAL and ERINGEN [14], BETTEN [3], SMITH [34], and ZHENG [61], et al., for some
applications of tensor function representation theory in formulating constitutive
equations of materials). In the past decades, representations for isotropic and
anisotropic functions of vectors and second order tensors have been extensively
studied and many significant results for polynomial and nonpolynomial represen-
tations have been obtained (see TRUESDELL and NOLL [43] and SPENCER [38] for
the results on polynomial representations up to their respective concerned years;
see BOEHLER (7, 8], KIRAL and ERINGEN [14], SMITH [34] and ZHENG [61] for the
subsequent development; see RYCHLEWSKI and ZHANG [25] for a comprehensive
review and comments). However, most of the established results were confined to
integrity bases for polynomial scalar-valued functions (see PIPKIN and RIVLIN
[20], ADKINS [1, 2], SPENCER and RIVLIN [39, 40, 41], SPENCER [37], SMITH
and RIVLIN [36], SMITH [30, 33], SMITH and KIRAL [31], and KIRAL and SMITH
(12, 13], et al., for some general results of this aspect; see also SPENCER [38],
KIRAL and ERINGEN [14], and SMITH [34] for details). General aspects of repre-
sentation problems for most types of anisotropic functions remain open, except
for isotropic, transversely isotropic and orthotropic functions and for some other
particular cases, etc. (see WANG [45], SMITH [32], BOEHLER (5], PENNISI and
TROVATO [19], ZHENG [59, 60], JEMIOLO and TELEGA [11], et al.).
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The main method in current use for deriving representations of anisotropic
functions is the Lokhin- Sedov— Boehler- Liu isotropic extension method(!) (see
LoxHIN and SEDOV [17], BOEHLER (6, 8] and L1u [16]). It was through Boehler’s
and Liu's works that this method became known. According to Boehler and Liu,
through some vectors and second order tensors characterizing the anisotropy
group, an anisotropic function can be extended as an isotropic function with aug-
mented tensor variables and hence, the representation problem for the former can
be reduced to that for the latter. For such simple anisotropy groups as transverse
isotropy groups and triclinic, monoclinic and rhombic crystal classes, isotropic
extension functions merely with vector and second order tensor variables can be
established using the above method, as has been shown by BOEHLER [7, 8] and
Liu [16]. Therefore, the well-known results for representations for isotropic func-
tions of vectors and second order tensors (see WANG [45], SMITH [32], BOEHLER
[5], and PENNISI and TROVATO [19], et al) can be used to derive the desired
results for representations for anisotropic functions of vectors and second order
tensors relative to the foregoing anisotropy groups. However, it is known that
any set of vectors and second order tensors is not enough to characterize any
anisotropy group except those mentioned above, since the symmetry group of
any vector or second order tensor involves only two-fold and/or co-fold symme-
try. In view of this, a direct generalization of the aforementioned LSBL method
has been suggested (see ZHANG and RYCHLEWSKI [57] and ZHENG and SPENCER
[58]; see the monograph by RYCHLEWSKI [22] for a comprehensive and coherent
account of this aspect), which realizes isotropic extension of anisotropic func-
tions by means of additional tensor variables of higher order characterizing the
anisotropy group. The latter were introduced earlier as anisotropic tensors or
structural tensors by various authors (see SMITH and RIVLIN 35, 36], SIROTIN
(28, 29], SEDOV and LOKHIN [26], et al.), and shown to be valid for all anisotropy
groups. However, for each anisotropy group other than those mentioned before,
such direct generalization of LSBL method results in isotropic extension func-
tions whose variables include tensors of order higher than two, and representation
problems for them are difficult (see the comments by ZHANG and RYCHLEWSKI
[57] and RYCHLEWSKI and ZHANG [25]). In reality, even for the simplest case
of this aspect, i.e. the isotropic scalar-valued function of a single fourth-order
tensor, such as the elasticity tensor, a complete functional basis has not been ob-
tained until the recent work by this author (see X140 [52]; see also RYCHLEWSKI
(23], BETTEN and HELISCH [4], and BOEHLER, KIRILLOV and ONAT [9], et al,
for some other results; see also the comments by RYCHLEWSKI and ZHANG [25],
§5 and RYCHLEWSKI [24], §2).

Recently, this author (see X1A0 and GUO [46] and XIAO [49]) has made a
substantial extension of the above-mentioned LSBL method. It has been shown

(') It seems that the expression isotropic extension was first introduced by RYCHLEWSK! and
ZHANG in [25], which was followed in [49)].
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that through some vector-valued and second order tensor-valued invariant tensor
functions, an anisotropic function of vector and second order tensor variables can
be extended as an isotropic function whose variables consist merely of vectors and
second order tensors, and hence the aforesaid difficulty involved in the aforemen-
tioned direct generalization is circumvented. In this paper, basing upon a fun-
damental isotropic extension theorem for anisotropic functions (see XI1AO and
Guo [46] and X1A0 [49] and below), we shall systematically construct isotropic
extension functions merely with augmented vector and second order tensor vari-
ables for scalar-, vector- and second order tensor-valued anisotropic functions
of vector and second order tensor variables relative to all the thirty-two crystal
classes and all noncrystal classes. Employing these results and the well-known
results for representations for isotropic functions of vectors and second order
tensors, one can readily derive complete or even complete irreducible represen-
tations for various types of anisotropic functions (see the recent results by this
author [47-51, 53-55]).

The early forms of most of the results given in this paper were reported
in a summary by this author (see [49]). In the latter, complete proofs for each
presented result were sought and moreover, results for the icosahedral class I and
the infinitely many noncrystal classes Dj,g and Sy, where m = 2,3,..., were
left open. In this article, we present new results for subgroups of the transverse
isotropy group Do, which simplify the corresponding results given in [49], and
moreover, we provide results for the icosahedral class I and for all noncrystal
classes Domg and Sy,,. Complete proofs for all these results will be given.

It should be pointed out that the commonly-considered material symmetric
groups in solid mechanics are the five classes of transverse isotropy groups, the
thirty-two crystal classes and the full orthogonal group etc. (see, e.g., TRUESDELL
and NoLL [43] and SPENCER [38]), since for a long time it has been believed
that the just-mentioned orthogonal subgroups seem to exhaust symmetries of all
known solids. As a result, one may doubt the reality of any noncrystallographic
point group other than those just mentioned in describing symmetry of any
real solid. For this, we would call attention to the recent advances in modern
crystallography, especially the discovery of quasi-crystals (see, e.g., VAINSHTEIN
[44] and SENECHAL [27] and the references therein).

2. The fundamental isotropic extension theorem and others

Throughout this paper, vector and tensor mean a three-dimensional vector
and tensor. The Schoenflies symbol will be used to denote the orthogonal sub-
group classes (see SPENCER [38] and VAINSHTEIN [44] for an account of crystal
classes and noncrystal classes). Moreover, M will be used to represent any of the
sets R, V, Skw and Sym, unless otherwise indicated.
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2.1. The fundamental isotropic extension theorem

The succeeding account will be mainly based on the following fact.

THEOREM A. (ISOTROPIC EXTENSION THEOREM) Let G C Orth be
an anisotropy group, i.e. an orthogonal subgroup other than the full and proper
orthogonal groups. Let M C T} be a subspace that is invariant under the group
G. Moreover, let

(2.1) S:D=V°xSkw® x Sym® — E = V" x Skw® x Sym"

be a set of vector-valued and second order tensor-valued functions that are in-
variant under the group G and satisfy the following condition

(2.2) F(QT xXq) = QT * (F(Xo))
(VF e G(D,M), QeOrth, XoeSN(Qx*8S)).

Then a tensor function ¥ : D — M C Ty is invariant under the group G iff
there is an sotropic extension function W€ € Orth(D x E, M) such that ¥ 1s the
restriction of ¥¢ on the surface or the graph Graph(S) = {(X,S(X)) C D x E |
X € D}, i.e.

(2.3) ¥(X) = ¥¢(X, X) [xe=g(x)= L(X,8(X)) (VX €eD).

In the above theorem, the conditions for the set S of invariant tensor functions
are weaker than those given in Xiao and Guo [46] and Xiao [49]. In reality, the
conditions for S in the above theorem are given by (2.2) and

(2.4) QeG = QxS=S§,
while those in [46] and [49] are given by (2.2) and
(2.5) Qel@ = Q*xS=85.

The former merely requires that the set S of tensor functions be invariant under
the group G, while the latter requires that the symmetry group of S be identical
with the group G.

Theorem A can be proved by means of the procedure given in [49] with little
change. For a set S of tensor functions of interest, it is easier to prove whether
S fulfills the invariance condition (2.4) or not, whereas it is not easy to judge
whether S obeys the stronger invariance condition (2.5) or not, since it is not
easy to determine the symmetry group of the set S of tensor functions.

A set S of tensor functions from D to E (cf. (2.1)) determines a surface in a
Euclidean space R", where n = 3(a + b+ r + s) + 6(c + t), refer to §3.1 in [49]
for detail. This fact allows a geometrical interpretation of the above extension
theorem. The latter indicates that for every anisotropic tensor function ¥ relative
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to the anisotropy group G C Orth with a set of variables pertaining to the space
D = V® x Skw” x Sym®, one can find a surface $ : D — E = V" x Skw* x Sym' in
an augmented space D x E such that ¥ can be visualized as the restriction of an
isotropic tensor function ¥* with a set of variables pertaining to the augmented
space D x E on this surface, i.e. (2.3) holds. Such a surface S will be referred
to as an isotropic extension surface for the anisotropic functions in G(D, M)
or as an IES for G(D, M) for brevity. Necessary and sufficient that a surface
S: D — E is an IES for G(D, M) is the condition that this surface fulfils both
the invariance condition (2.4) and the consistency condition (2.2).

From the above theorem it follows that representations for the anisotropic
function ¥ € G(D, M) can be obtained from those for the isotropic function
¥¢ € Orth(D x E, M) merely by replacing the variables X¢ € E of the latter
with S(X). In this sense, the above isotropic extension theorem, together with
the well-known representation theorems for isotropic functions of vectors and
second order tensors, constitutes a unified basis for the theory of representations
for anisotropic functions of vectors and second order tensors. In the succeeding
sections, for a domain D = V@ x Skw® x Sym® for any given positive integers
a, b and ¢, for each image set M € {R,V,Skw,Sym} and for each crystal and
noncrystal class G, we shall provide a simple IES for G(D, M).

2.2. A lemma

For each surface S that will be given, it is required to prove that the conditions
(2.2) and (2.4) can be satisfied. The main difficulty arises from the consistency
condition (2.2), for even for a given nontrival surface § it is not easy to determine
the intersecting surface SN (Q«S), let alone the fact that we must find a suitable
surface S such that the conditions (2.2) and (2.4) can be satisfied.

We shall attack the above problem by choosing surfaces S in such a manner
that all nontrivial intersecting surfaces S N (Q * §) C D are exactly certain
prescribed particular subsets of D, which are provided by D(u) or union of such
subsets, where u is a unit vector in the direction of a symmetry axis of the related
anisotropy group, since the following fact holds.

LEMMA A. Let G € {Cmuv, Cin, S2ms Dmhy Dma}, where m > 3, and let the
unit vector n be in the direction of the principal axis of the group G. Moreover,
define the group D(G) by

Coovu G = Cmvs
(2.6) D(G)=1{ Cony G = Crmn,S2m,
Doop, G = Dpmpy Ding -

Then we have
F(Q" « Xo) = QT * (F(Xo))
for any Q € D(G), Xp € D(n), F € G(D, M) and for each M € {R,V,Skw, Sym}.
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P roof For each group G in question, there is Ry = ﬁ”m € (. For such

Ry, we have
Ro * (F(Xo)) = F(Rg * Xg) = F(Xo)

for each Xy = (agn, bgEn,c,I + d,n®n) € D(n) and each F € G(D, M). From
this we derive

a(Xo)n, M=V,
(2.7) F(Xo) = { b(Xo)En, M = Skw,
¢(Xo)I +d(Xo)n®n, M =Sym,

where for M = Sym the condition m > 3 is used. From the latter and the fact
that for each Q € D(G) there is Qo € G such that

(2.8) Qn=Qon, Q= (En)=Qp*(En),
we conclude that the lemma holds. Q.E.D.

2.3. The vector q(A) and the angle < q(A),e >

Symbols n and e are used to represent two given orthonormal vectors. For
any symmetric tensor A € Sym, we introduce the vector g(A) by

1
(2.9) q(A) = ;(e-Ae - e Ae')e 4 (e-Ae')e’ .
Here and hereafter
(2.10) d=nxe

Hence, (n,e,e’) constitutes an orthonormal system.

The norm of any vector v is denoted by |v|. Let z be a vector on the n-plane.
We define the angle < z,e > formed by the two vectors z and e on the n-plane
as follows:

(2.11) cos < z,e > = z-e/|z|, sin < z,e > =1z-¢'/|g|,

for |z| # 0 and < z,e > =0 for |z| = 0. When |z| # 0, it is evident that the angle
< z,e > is determined by (2.11) within 2k7.

For the vector q(A) on the n-plane introduced before, when |q(A)| # 0 we
have

1
cos < q(A),e > = i(e-Ae— e'-Ae')/|q(A)],

.58 67
o (e-A€)/|a(A)].

sin < q(A),e >
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Let a be a unit vector on the n-plane. Then, applying the equalities

2.13) Rle = ecosd + €'sinf,
' Re' = —esinf + e cosf;

Rle = ecos2 < a,e> +e€'sin2<a,e>,

2.14
(2.14) i

esin2 < a,e> —e' cos2 <a,e >,

we derive the transformation formulas (cf. X1a0 [54])

20+ < q(A),e >, Q=0Ro

2; * =
(2.15) Al yales {4<a,e>~<q(A).e>, Q =4Rg,

for |q(A)| # 0 and

(2.16) lq(Q * A)| = |q(A)|, VQE Deon,

where D is the maximal transverse isotropy group with the principal axis n
(cf. (3.1) given later). Moreover, the following formulas hold:

(1—8)7/2 + 6+ < v°,e >, Q = 6R?

2.17 <(Qv)°e>=
B e {(1+6)1r/2+2<a,e>—<"°,9>1 Q =dRg,

(2.18) 1(Qv)°| = |v°|, YQ € Deon,
for any vector v € V and any Q € Dy, and

6+ < (Bn)°,e >, Q=05
T+2<ae>-—<(Bn)°e> Q=04R],

(219) < ((Q*B)mn)°e>= {

(2.20) ((Q *B)n)°| = [(Bn)®|, VYQ € Doon,

for any second order tensor B and any Q € Do In the above, 62 = 1. Through-
out, v° is used to designate the perpendicular projection of the vector v on the
n-plane, i.e.

(2.21) v’ =v—(v.n)n.
For each antisymmetric tensor W € Skw, the vector Wn lies on the n-plane, i.e.
(2.22) (Wn)® = Wn,

since the latter is normal to n.
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Henceforth, for any two vectors p,q € V, pV q € Sym is used to signify the
symmetric second order tensor defined by

(2.23)
Moreover, we denote

(2.24)

Di=e®e—-¢eQ¢,

PVq=pRq+q®p.

D, =eVe'.

For any Q € Dy, by using (2.13)-(2.14), we derive the following formulas.

RY « D,
(2.25) 3

Rn * Dg

RT D
(2.26) g

R: * DQ

D cos 26 + Dy sin 26,
—D; sin 20 + D4 cos 26 ;

Djcos4 < a,e > +Djysind < a,e >,
D;sind < a,e> —Dscosd <a,e> .

3. Improper subgroups of the transverse isotropy group D..;

Prior to the succeeding account, we would point out the following fact: Ac-
cording to Theorems 2.1 and 2.2 given in [49], representations for anisotropic
functions relative to a rotation subgroup G C Orth can be obtained from those
for anisotropic functions relative to the centrosymmetric group

G={+Q|QeG}.

As a result, henceforth we need only to take the improper subgroups of Orth into
account.

3.1. Transverse isotropy groups

(3.1) Do = {£RY, £R” |a=Rl, 0 ¢ R},
(3.2) Coov = {R%,—R7 | a=RY, 6 € R},
(3.3) Cooh = {xR% |0 € R}.

According to BOEHLER [6] and L1u [16], the following offer an IES for G(D, M)
for each G € {Dgoh, Coovs Cooh}-

(3.4) D : S(X) = (n®n),
(35) Coov : S(X) = (n)a
(3.6) Coon * S$(X) = (En)
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In reality, the following equalities hold (cf. Liu [16]).
(3.7) I'n®n)=Der, I'(n)=Cxs, I'(En)=Cun.

Hence, trivially, each surface S(X) given above satisfies the conditions (2.2)
and (2.5).

Only for the anisotropic functions relative to such simple anisotropy groups
as the transverse isotropy groups as well as triclinic, monoclinic and rhombic
groups, trivial IESes such as those shown above (for the results concerning the
latter groups, refer to BOEHLER [6, 8] and Liu [16]), which consist merely of
some constant vectors and second order tensors, i.e. trivial vector- and second
order tensor-valued tensor functions, can be found. For anisotropic functions
concerning any other anisotropy group, nontrivial IESes have to be constructed,
as will be done in the succeeding sections.

3.2. Classes Doy q14y Coms1o and Syppio for m > 1

[38)  Daiaa—(ERImAML g [ = RAANL, £—0,1,2,...,2m},

(3-9) C2m+lu = Com- n D2m+1d§ S4m+'.! = Cooh N JD2m+1d -

The above classes include the trigonal crystal classes Djg, C3, and Sg as the
particular case when m = 1.
Henceforth, we denote

n, G =Cy,
(3.10) D(G) = { En, G = CitySor s
n®@n, G=Dy,Dpy,
for each r > 2.
THEOREM 1. Let G € {Domi1d, Com+1vy Sam+2}- Then the surface
(3.11)  S(X) = (D(G); ENgpn (va): ENgpn (Won); Enyy, ((Aon)°), Emyy (a(As)))
i1s an IES for G(D, M), where D(G) is given by (3.10) and
(3.12) N,(z) = |z|"(ecosr < z,e > —€'sinr < z,e >)
for any vector z on the n-plane and for each integer r > 1.

P r oo f First, we prove that the given surface S(X) obeys the invariance
requirement (2.4). Applying the formulas (2.13) and (2.17); and (2.18), for Q =
+RY we infer

QT * (Emy,,, ((Qv)°)) = |v°[*™QT * (E(e cos(2mb + ) — €' sin(2mé + z)))
= |v°|*"E(ecos((2m + 1)8 + z) — €' sin((2m + 1)6 + z))
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where z = 2m < v°,e >. Hence, we have
QT * (BN ((QV)°)) = By (v0), Q= £RZ7/2™HL,
Moreover, applying (2.17), (2.18), and (2.14) for a = e, we deduce
R] * (En,, ((RIV)?)) = R] = (E(ecos(2mm — ) — €' sin(2mn — z))) = Enp,,, (v°).

From the above facts we derive that the tensor function Em,,,(v°) is invariant

under the group Ds,p, 414, since the three orthogonal tensors :tR?,”zm+1 and R

can generate the group Day, +14. Similarly, by applying the formulas (2.13)-(2.16)
and (2.19)-(2.20) we can prove that each of the other tensor functions in the given
surface S(X) is also invariant under the group Ds,,14. Thus, the given surface
S(X) obeys (2.4).

Next, we prove that the surface S(X) satisfies the condition (2.2). We have

D oRed,
0, Q € Orth\I'(D(G)),

for each Q € Orth\(I'(D(G))\G), where the symmetry groups I'(D(G)) are given
by (3.10) and (3.7), and moreover 0 is used to denote the empty set. Trivially,
the condition (2.2) is satisfied for each Q € Orth\(I'(D(G))\G).

Moreover, for each Q € I'(D(G)) \ G C Dy \ G, the intersecting point
Xy = (va, Wa, Ay) € SN(Q#S) is determined by the system of tensor equations of
the forms (A.1)-(A.4), where the variables are: v=vy,...,vq; W =W, ... , Wy;
A = Ay, ...,A.. By Theorem A.1 we know that SN (Q * S) = D(n) for each
Q € I'(D(G)) \ G. Then, from this fact and Lemma A we deduce that the
condition (2.2) is also satisfied for each Q € I'(D(G))\G. Q.E.D.

Sm(Q*S)z{

3.3. Classes Dapii2n, Comi2o and Cappqop for m > 1

(3.13)  Dapion = {£REFMHL LRE |1, = RA/INH2e, §=0,1,2,...,2m+1},

(3.14) Com+2v = Coov M Daman , Cam+2n = Cooh N D2mt2h -

The above classes include the tetragonal and hexagonal crystal classes Dyp, Dgp,
Cyv, Cou, Caqpp and Clyy, as the particular cases when m = 1, 2.

THEOREM 2. Let G € {Damian, Com+2v, Comian}- Then the surface
(3.15) S(X) = (D(G); ®2m(va); B2am(Wen); 2, ((Aon)®), 8m(q(As)))
is an IES for G(D, M), where the tensor D(G) is given by (3.10) and
(3.16) ®,.(z) = |z|"(Dycosr < z,e > —Dasinr < z,e >)

for any vector z on the n-plane and any integer r > 1, and the tensors Dy and
D3 are given by (2.24).
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P r oo f The proof concerning the condition (2.2) is the same as that of
Theorem 1, except for the fact that Eqs. (A.7)-(A.10) and Theorem A.2 is used
instead of Egs.(A.1)-(A.4) and Theorem A.l. Hence, in the following we need
only to prove that the given surface S(X) obeys the invariance condition (2.4).
In reality, applying the formulas (2.25) and (2.17); and (2.18), for Q = +R% we
deduce

QT % (2,((Qv)°)) = [v°|*™QT * (D; cos(2m8 + z) — Dy sin(2mé + z))
= [v°|*™(D; cos((2m + 2)0 + z) — Dy sin((2m + 2)8 + z)),

where £ = 2m < v°,e > . Hence, we have
Q" * (®2m((Qv)°) = B2m(v®), Q= +RY/™.
Moreover, applying (2.17)2, (2.18), and (2.26) for a = e, we infer
R7 %(®orm ((RIV)°)) = [v°[*™RZ %(D; cos(2mm—z)— Dy sin(2mr—z)) = B (v°).

From the above facts we derive that the tensor function ®4,,(v°) is invariant un-

der the group Day, 4o, since the three orthogonal tensors + T/m+l and R can
generate the group Do yos. Similarly, by applying the formulas (2.15)-(2.16),
(2.19)—(2.20) and (2.25)-(2.26) we can prove that each of the other tensor func-
tions in the given surface S(X) is also invariant under the group Dop, 25 Thus,
we conclude that the given surface S(X) obeys (2.4). Q.E.D.

3.4. Classes Djpyiyp and Cypypqp for m > 1

(3.17)  Damyas = {(—1)*REM/ImHL (—1)*RE |1y = RET/A™He,
k=0,1,2,...,4m+1},
(318} C?m-i—lh = Cooh n D2m+1h y

The above classes include the hexagonal crystal classes D3, and Cyp as the
particular case when m = 1. Note that e = 1y is a two-fold rotation azis of

DZm-l-lh-
THEOREM 3. Let G € {Damsi1n, Com+1n}- Then the surface

(3.19) S(X) = (D(G); Mo (va); Mom (Wen); Moy ((Agn)°), Myn (q(Ag)))

is an IES for G(D, M), where D(G) is given by (3.10) and the vector-valued
function m.(z) is given by (3.12) for any vector z on the n-plane and each integer
e

P roof The proof concerning the condition (2.2) is the same as that of
Theorem 1, except for the fact that Eqs. (A.11)—(A.14) and Theorem A.3 are
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used instead of Eqgs. (A.1)-(A.4) and Theorem A.1. In the following, we prove
that the given surface obeys the invariance condition (2.4).

Applying the formulas (2.13) and (2.17); and (2.18), for Q = éRY, 6% =1, we
deduce

QT (My,, ((QV)°)) = [v°*" QT (e cos(2mb + z) — €' sin(2mb + z))
= [v°[*™§(e cos((2m + 1)8 + z) — €' sin((2m + 1) + z)),

where z = 2m < v°, e >. Hence, we have
Q" (Mm((QV)°) = Mym(v), Q= —R7/ ™.
Moreover, applying (2.17)3, (2.18), and (2.14) for a = e, we infer
R (Mo (RZY)%)) = RI(ecos(2mr — z) — € sin(2mm — ) = My (v°).

From the above facts we derive that the tensor function my,,(v®) is invariant

under the group Djp,41h, since the two orthogonal tensors — 2”2”‘“ and R
can generate the group Doy, 14. Similarly, by applying the formulas (2.13)-(2.16)
and (2.19)-(2.20) we can prove that each of the other tensor functions in the given
surface S(X) is also invariant under the group Dy 414. Thus, we conclude that
the given surface S(X) obeys (2.4). Q.E.D.

3.5. Classes Dy,,q for m > 2
(3.20)  Doma = {(=1)*R¥"/2™ (—1)¥R] |1, = RE™/4™e,
ki=0,1,2,...;4m =1}
Note that e = ly is a two-fold rotation azis of Dypy.
THEOREM 4. The surface

(3.21) S(X) = (m@m;nV Ny, 1(va); Mam—1(Wen); Nam—1((Agn)°), fm(As)n,
q’2m—1(Q{Aa))} (n'va)q’m—i(q(Aa)); (e‘wﬂe‘)gm(Aa’)n)

is an IES for Damq(D, M), where the tensor-valued function ®.(z) and the
vector-valued function m,.(z) are given by (3.16) and (3.12) for any vector z on
the n-plane and each integer r > 1, respectively, and moreover

fm(Aq) = |a(Ao)|™ sinm < q(Ag), e >,

3.22
e gm(As) = |q(A;)[™ cosm < q(As),e > .
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P r oo f First, we prove that the given surface S(X) obeys the invariance
condition (2.4). Applying the formulas (2.13) and (2.17); and (2.18), for Q =
6RY, 6% = 1, we deduce

Q7 « (u v ny((@)°)) = [v1¥QT + (v (ecos (<5 2n + NO + )
_e'sin(];6w+Nl9+x)))
= |"°|NIIV (ecoa ( = S, 2m9+1‘)

1-4
—e’sin( s 1r+2m8+:n)),
where N =2m — 1 and z = (2m — 1) < v°,e > . Hence, we have

QT+ (VM1 (QV)°) =0V Mg (v°), Q= —RY/*™
Moreover, by applying (2.17)2, (2.18), and (2.14) for a = e we infer

Re * (nVny((Rev)?))
= |v°|VRZ % (nV (ecos(Nm — z) — &' sin(N7 — z))) = nV ny(v°).

From the above facts we conclude that the tensor function nV m,,,_;(v°) is in-

: : 2
variant under the group Dj,,q, since the two orthogonal tensors —RE" ™ and

R can generate the group Dapq. Similarly, by using the formulas (2.13)-(2.16),
(2.19)-(2.20) and (2.25)—(2.26) we can prove that each of the other tensor func-
tions in the given surface S(X) is also invariant under the group Dang. Thus, we
conclude that the given surface obeys (2.4).

Next, we prove that the given surface S(X) satisfies the condition (2.2). It
can be readily verified that the condition (2.2) is satisfied for each Q € Orth \
(Doon \ Dama) by using (3.7);. Thus, the rest is to prove that the condition (2.2)
is satisfied for each Q € Dyp \ Dama. To this end, consider two cases. First, for
each Q € Dy \ Damn, the intersection point Xg = (v, Wy, A,) €5N(Q +§)
is determined by the system of tensor equations of the forms (A.15)-(A.17) and
(A.10), in the latter m being replaced by 2m — 1, and moreover

fm(QT’* A)Qn = f,(A)n,
(0-(Q™v))Q * (®rm-1(q(Q" * A))) = (n-v)®,n_1(q(A)),
(e-(QT * W)e')gm(Q™ * A)Qn = (e-We')gm(A)n,
where the variables are: v = v1,...,Vq; W = Wy,..., Wy A = Ay,... A,

From Theorem A.4 and the proof of Theorem A.2 (cf. (A.6)4) we derive that
SN (Q#*8S) = D(n), and furthermore the point Xy € D(n) satisfies the above
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three equations. Then, by noticing 2m > 4 and applying Lemma A we conclude
that the condition (2.2) is satisfied for each Q in question.
Moreover, for each Q € Dynp \ Dama, by using the fact

(323) Q & Dd.mh \ D2md = _Q = D2md

we infer that the intersection point Xg = (vo, Wg, As) € SN (Q x S) is deter-
mined by
n2m—1(z) =0, fm(Aa') =0,
(Vva-n)@,,_1(A,) = 0, (e-Wye')gm(As) =0,
where z = v, Wyn, (A,n)°. The first two equations yield

Vo = Qam, Wy = bgEn,

(3.24)
A, =c,l+d,n®@n+ hy(e; Re; —e; @ ey),

where e; and ey are two orthonormal vectors in the n-plane and will be given
later. Substituting the above results into the last two equations given before, we
derive
aaho- == O, bﬂh-g — 0;

Thus, for each Q € Dymn\Dama the point Xg € SN(Q*8S) is given by X € D(n)
or
(3 25) Vo=0. Wa=0. 1A, :cal+d,n®n+hg(e1®e1 —92®eg),

‘ el=lgk, egznxelzlgHgm, k:0,1‘2,...,m—1‘

For the point Xy € D(n), by noting 2m > 4 and using Lemma A we deduce that
the condition (2.2) can be satisfied. For the point Xg given by (3.25), from the
facts
Ro xXo = Xo, Ro € {R{,Rg,, R1} C Dopg
= VF € Dypna(D, M) : F(Xo) = F(Rp * Xo) = Rg x (F(Xo)),
we derive
0, M=V,
F(Xp) =4 O, M = Skw,
cr1e; ®e; +coey ®ey +c3n®®n, M = Sym,
where ¢; = ¢;(Xy). Hence, by means of the above fact and (3.23) we infer
F(Q" +Xo) = F(Q" *Xo) (Qo=-Q)
= Q" * (F(Xo)) = Q" * (F(Xo))

for any Q € Dymn\D3mg and any F € Dapq(D, M), ie. the condition (2.2) is
fulfilled for each Q € Dymn \ Doma. @Q-E.D.
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If the tensor functions of the form (e-We')g,(A)n are removed from the
surface S(X) given by (3.21), then from the above proof we know that the condi-
tion (2.2) is still satisfied for each Q € Doop \ Damp. On the other hand, for each
Q € Dyyp \ Dasng, the intersection point Xy € SN (Q*8) is given by X € D(n) or
by (3.25)2 and (3.24) with each a, = 0. For the latter, with the aid of (3.23), one
may readily verify that the condition (2.2) is fulfilled for scalar-valued and second
order tensor-valued functions, i.e. for each image set M € {R,Skw, Sym}. This
shows that the tensor functions mentioned before is needed only for vector-valued
functions, i.e. only for the image set M = V. Thus, we arrive at the following
simplified result.

COROLLARY. The surface

(3‘26) S(X) = (11 @nmnV M2m-—1 (Vg:); M2m—1 (Wgn); N2m-1 ((Aan)o)!
fm(Aa}n) §2m—l(‘1(Arf})} (n'va)ém—l(q(ﬁ-a)))
is an IES for Dy,,4(D, M) for each M € {R, Skw, Sym}.

3.6. Classes Sy, for m > 2

(3.27) Sim = Coot N Damg = {(-1)*RE*2™ | k = 0,1,2,...,4m — 1}.
THEOREM 5. Let e be any given unit vector on the n-plane. Then the surface

(328) S(X) = (Ell; nV 1]2171-1{"00); “Srrz—l(wﬁnh MN2m—1 ((Aan)o]a
fm(Ag)n, gm(Ag)n),

is an IES for Syn(D, M), where m,.(z) is given by (3.12) for any vector z on the
n-plane and each integer v > 1, and moreover fm(As) and gm(Ags) are given
by (3.22).

Proof. It can easily be verified that the tensor functions f,(A)n and g,,(A)n
are invariant under the group Ss;, by using the formula (2.15);. Moreover, it
is known that each of the tensor functions My, ;(z), z = v°, Wn, (An)° is
invariant under the group Dzmd(D Sim) (cf. the former part of the proof for
Theorem 4). Thus, we conclude that the given surface S(X) obeys the invariance
condition (2.4).

Now consider the condition (2.2). It is readily verified that the latter can
be satisfied for each Q € Orth \ (Ceon \ Sam) by using (3.7)3. Moreover, for
each Q € Caon \ S4m, the intersection point Xo = (vq, Wg, Ay;) € SN(Q % 8) is
determined by the system of tensor equations of the forms (A.15)-(A.17) and

fm(QT *A)Qn = fr(A),  gm(Q" +A)Qn = gm(A)n,

where the variables are: v = v1,...,Va; W = Wyp,...,Wp; A = Ay,..., A,
From the latter and Theorems A.4 we infer that SN (Q * 8) = D(n) for each
Q € Cxp \ Sym. Then, by this fact and Lemma A we infer that the condition
(2.2) is satisfied for each Q € Cxop \ Sam and each m > 2. Q.E.D.
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3.7. The tetragonal crystal class Dy

(3.29) Day={(~1)*RE"/2, (-1)*R[ L =R}/e, £=0/1,2,3}.

Note that the orthonormal vectors 1y = e and 1; = €' represent the two two-fold
rotation axes of Dyy.

THEOREM 6. The surface

(3.30)  S(X)=(m@n; nVn(v°) + (v-n)Dy; n;(Wgn); n;((An)°) + f1(A)n,
®,(q(A;)); (e-Wge')g1(Ay)n)

15 an IES for Dyg(D, M), where the tensor functions m,(z), ®1(z), f1(A) and
g1(A) are obtained by taking m =1 in (3.12), (3.16) and (3.22), respectively.

P r oo f First, we prove that the given surface S(X) meets the invariance
condition (2.4). To this end, it suffices to prove that the tensor function (v-n)D;
is invariant under the group Dy, since each other tensor function in the surface
S(X) given here is included in the IES given by Theorem 4, where m = 1, and
is invariant under the group Dsg. By using (2.25) we infer ((QTv)-n)Q * Dy =
8(v-n)(Dj cos 26 + Dy sin 26) for Q = RY, 42 = 1. Hence, we have

((Q"v)-n)Q*D; = (v-n)D;, VQE€ S;.

Moreover, we have

((RZv)-n)R; *Dy = (v-n)D;.
Thus, (v-n)D; is invariant under the group D4, since Sy and R} generate the
latter.

Next, we prove that the given surface obeys the condition (2.2). It can be
readily verified that for each Q € Orth\ (D \ D24) the condition (2.2) can be
satisfied by using (3.7);.

Moreover, for each Q € Doop\ Dy, the intersection point Xo = (vq, Wp, Ay ) €
SN (Q #8) is determined by (A.10) (for m = 1), (A.15)-(A.17) (for m = 1) and

((Q"v)'n)Q«D; = (v-n)Dy,
£(QT +A)Qn = fi(A)n,
(e-(QTW)e')g1(QT % A)Qn = (e-We')g; (A)n,
where the variables are: v =vy,...,vog; W=Wy,... , W,; A=A,,...,A.. From
the first equation above and Theorems A.4 and the proof of Theorem A.2 (cf.
(A.6)4) we derive

(3.31) ¥ =0 Wy = bgEn, A, =c,l+d,n®n
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for each Q € Dyop \ Dap, and moreover the point Xg given above satisfies the
last two equations given before. Evidently,

Q*Xo=Xo, Qo=-Rj°€Dy
for any point Xy € SN (Q # S). Then we have
Qo * (F(Xo)) = F(Qo * Xo) = F(Xo)
for any F € Dog(D, M), Xo € SN (Q *8S) and Q € Doy \ Dyy. Thus, we deduce
(2.7) with a(Xg) = 0. Applying the latter fact and the fact that
VQ € Doy, 3Q € Dag: Q+(En) =Q' x (En), Q* (n®n) = Q' * (n®n),

we deduce that the condition (2.2) is satisfied for each Q € D \ Dyp-
Finally, for each Q € Dyp, \ D24, by means of (3.23), where m = 1, we infer
that the intersection point Xy = (vo, Wy, A,) € SN (Q * S) is of the form

Vo =0, Wy = byEn, A; =c;1+den®@n+ hsD

with bghy =0 for 8 =1,...,band ¢ = 1,...,c. Hence, for each Q € Dy, \ Dyy,
the point Xg is given by (3.31) or by (3.25) with e; = e and e; = €’. From the
argument given above for the corresponding case, we know that the condition
(2.2) is satisfied for the point Xy given by (3.31). On the other hand, from the
latter part of the proof for Theorem 4, we know that the condition (2.2) is also
satisfied for the point Xy given by (3.25). Thus, we conclude that the given
surface S(X) also fulfils the condition (2.2) for each Q € Dy \ D2g. Q.E.D.

By virtue of the same argument as that used to derive the corollary of The-
orem 4, we arrive at the following simplified result.

COROLLARY. The surface

(3.32) S(X)=(n®n; nVn(v°) + (v-n)Dy; 7 (Wpn);
M, ((An)°) + f1(A)n, @1(q(As)))

is an IES for Dyy(D, M) for each M € {R, Skw, Sym}.

3.8. The tetragonal crystal class Sy

(3.33) Ss = Dpa N Coop = {(-1)*RE*/? | k=0,1,2,3}.

THEOREM 7. Let e and €' be any two orthonormal vectors on the n-plane.
Then the surface

(3.34)  S(X) = (En; nVny(v°) + (v-n)Dy; m, (Wyn);
M ((An)°) + f1(A)n, 91(Aq)n)

is an IES for S4(D, M), where each tensor function is given in Theorem 6.
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Proof From the former part of the proof for Theorem 5 we know that
each tensor function except (v-n)D; is invariant under the group S4. Moreover,
it is known that the tensor function just indicated is invariant under the group
Dy4(D Sy) (cf. the former part of the proof for Theorem 6). Thus, we conclude
that the given surface S(X) meets the invariance condition (2.4).

In what follows we prove that the given surface S(X) obeys the condition (2.2).
It can be easily verified by using (3.7)3 that for each Q € Orth \ (Cuon \ S4) the
condition (2.2) can be satisfied. Moreover, for each Q € Coop\ Sy, the intersection
point Xo = (vq, Wy, Ay;) € SN (Q % S) is determined by (A.15)-(A.17) (for
m = 1) and

((QTV)'I})Q *D; = (v-n)Dy,
A(QY +A)Qn = fi(A)n, 91(Q" * A)Qn = gy (A)n,

where the variablesare: v=vy,... , v,; W=W,,... Wy, A=A,;,... A, From
Theorem A.4 we derive

Va = Qqll, W, = byEn, A; =c I +dsn®n+ p,Dy + g,Ds .

From the last three equations given before we further derive aq, = py = g = 0
and hence the intersection point Xy is given by (3.31). Thus, from the corre-
sponding case in the proof of Theorem 6 we conclude that the condition (2.2)
can be satisfied for each Q € C oy \Ss. Q.E.D.

3.9. Remark

In each IES given in this section, each vector and each second order tensor,
except the constant tensor D(G), is a homogeneous polynomial function of some
components of the vector variable and/or the second order tensor variable con-
cerned. In reality, the trigonometric functions cosr# and sinrf for each integer
r > 1 are associated with the following two kinds of Tschebysheff polynomials.

i 1)6
(335} Hr{(',OSE) — COSTG, Tr(sin9) = Sl’:"('r‘ o ] .
cos
Let C;(z) € {H,(z),T,(x)}. Then we have
n
Z copa?t it =20,

(3.36) Cifz) =3 "
Zc-zk_lirzk_l if 7‘2271—1,
k=l

where each ¢y is a constant. Hence, with the aid of the above formulas and (2.11),
we infer that for any vector z on the n-plane, the functions |z|" cosr < z,e >
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and |z|" sinr < z,e > for each r > 1, which are used to construct each presented
IES, are homogeneous polynomials of degree r in the components z-e and z-€’,
where z = v°, Wn, (An)°, q(A).

The results given in this section simplify the corresponding ones given in [49].
In reality, in each IES given here, each tensor function is presented in concise
and clear forms, while in each IES given in [49], each tensor function is given in
a somewhat implicit and complicated summation form.

Other remarks will be given in Sec. 6.

4. Cubic crystal classes Oy, T, and T},

3
(4.1) Op = ( U (Can(nx) U Con(pr) U Can(as ))) U (U 36(&)) ;

e

(4.2) Ta = ( | (Sa(ng) U Cia(pr) U Cra(as ))) U (U Cs(re)) .
i

(4.3) Th U &

(Gewm)o ()

where ny, ny and n3 are three orthonormal vectors and

(44) \/§P1=Bs+ﬂ21 \/§p2=n1+n3, \/§p3=n2+n1,
‘ V’Em:ns—ﬂzs \/iqz=ﬂl—ﬂar \/5(13:!12—111;
\/§r1=n1—n2—n3, \/‘§r2=ng—n3fn1,
(4.5)
V3r3 = ng —n; — ng, V3ry =mn; +n2 +n3.

Each ny, is called a four-fold axis of either of the groups Oy and T or a two-fold
axis of the group T}, and each r; is called a three-fold axis of each of the groups
Oh and Td and Th.

Here and hereafter, for any unit vector u and each integer m > 2, Sp,,(u) and
Comn(u) are used to denote the groups obtained by the replacement of n with u
in (3.8) and (3.9)2, (3.13) and (3.14),, and (3.27), respectively. Moreover, C3(u)
is used to denote the rotation subgroup of Sﬁ(u). Finally,

Cin(u) = {I,— Cop(u) = {£I,+R7 }.
4.1. The class Oy,
The following fourth-order tensor is invariant under the group Op:

Bl
(4.6) On=) (®n).

k=1
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In this section and the next section, each presented surface §(X) is formed by
tensor functions of the form

Go(®12),

where the tensor G is invariant under the anisotropy group G concerned, and Z is
one of the vector variables and the second order tensor variables. Evidently, each
such tensor function is invariant under the group G concerned and therefore the
given surface S(X) meets the invariance condition (2.4). As a result, henceforth
only the invariance of the tensor G is indicated and the invariance condition (2.4)
1s no longer mentioned.

THEOREM 8. The surface

(47)  S(X)=(Oh: (®va); On : (® (E: Wg)); Op : Ay, Oy : A2)

is an IES for On(D, M).

Proof Itisevident that the condition (2.2) can be satisfied for each
Q € Op. On the other hand, for each Q € Orth\Ojy, by Theorem A.5 we know
that the point Xg = (vq, Wp, A,) € SN (Q # 8) is given by the following cases.

CASE 1. If there exist u, v € {n;,ny,n3} or u, v € {ry,...,r4} such that
2 2
® (QTu) = ® v, then Xg € D(u);
2 )
CAsE 2. If ® (QTu) # ® v for any u,v € {n;,nz,n3} and any u,v €
LBy, -« ;Ta}, then ¥y =0, W =0, A, = ¢, L
For Case 1, for each F € O,(D, M) we have

Ro * (F(Xp)) = F(Rp * Xp) = F(Xo),

where
/2, ueE{n;,np,n3t,
Ro=RleO; O= / n J
2r/3, we€{ry,...,rq}.

From these we deduce

a(Xo)u, N =,
(4.8) F(Xo) = { b(Xo)Eu, M = Skw,
c(Xp)I+d(Xp)u®u, M =Sym.

Then, by using the latter and the fact that for each Q in question, there exists
Qo € Oy, such that

Q'u=Q"u and QT « (Eu) = Qo' * (Eu),
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we infer
F(QT + Xo) = F(Qo” * Xo) = Q" * (F(Xo)) = QT * (F(Xy))

for any F € Op(D, M) and therefore the condition (2.2) is satisfied.
Moreover, for Case 2, we have

Ro * (F(Xo)) = F(Ro * Xo) = F(Xo)
for any F € Oy(D, M) and any Rg € Oy,. From this we derive

0, M=V,
F(Xp) =4 O, M = Skw,
¢(Xo)I, M =Sym,

and hence for any Q € Orth,
F(QT  Xo) = F(Xo) = QT x (F(Xo)),
i.e. the condition (2.2) is fulfilled. Q.E.D.

4.2. The class T

The following third-order tensor is invariant under the group Ty:

3 3
(4.9) Ty=) w®ng=) n®uw,
where
(4.10) w; =13 Vng, wy =nzVn, w3=mn;Vny.

THEOREM 9. The surface

(411)  S(X) = (Tava, O : (& va);Ta: (& (E : We)),

2

0y : (é (E:Wa)); Tails, On: Ag; Ta: (Woks))

s an IES for Ty(D, M).

Proof Itis evident that for each Q € T, the condition (2.2) can be
satisfied. In what follows we prove that the condition (2.2) can also be satisfied
for each Q € Orth \ Ty. First, for each Q € Orth \ Oy, by using Theorem A.6 we
know that the point Xg = (va, Wg, A,) € SN (Q % S) is given by the following

cases.
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CASEl. vo =0, W, =bgEBu, A, = c, ]l +d,u®@uif

Ju,v € {n;,nz,n3}: é Q") =é i ¢
Case 2. Xy € D(u) if
(4.12) Ju, v € {ry,ro,r3,r4}: Qfu=v;
CASE 3. vo =0, Wy =0, A, =c,], if Q obeys
(4.13) Yu, v € {r),r,r3,r4} : QTu#v
and Vu,ve{nl,ng‘n;;}:é(QTu)#év.

It is readily verfied that the condition (2.2) can be satisfied for Case 3 and
Case 1. For Case 2, we have

Ro * (F(X0)) = F(RoxXo) = F(Xo), Ro=RZ¥PeTy

for each F € Ty(D, M). From this we derive (4.8). Then by using the fact that
for each Q satisfying (4.12) there is Qg € Ty such that

QTu=Qo"u, QT+ (Eu)=Qg *(Eu),
we infer
F(QT + Xg)) = F(Q] * Xo) = Qf * (F(Xo)) = QT * (F(Xo)).

Thus the condition (2.2) is satisfied for Case 2.
Next, for each Q € Oy \ Ty, the point Xg = (vq, Wg, Ay) € SN (Q % 8) is
determined by

2
Tava =0; Ty:(®(E:Wp))=0; T4:A,=0, Tyq:(WsA,)) =0,

where @ = 1,2,...,a, 8 = 1,2,...,b, 0 = 1,2,...,c. The first three equations
yield
vﬂ — 0! W& — beEu! u e {n11 n2r 33};

A, =a,n; ®n; + byny ® ny + c,n3 @ n3;

and the last equation further produces
Vo =0, Wy = bgEu, A; =c,I+d;u®u, u € {n1, ny, n3};
or

Yo =1l Wy =0, A, =asn; ®ny + byny @ns + con3 @ng.
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For the former, we have
Ro * (F(Xo)) = F(Rg xXo) = F(Xo), Ro=-R}/*C1Ty,

for each F € Ty(D, M). From the above we derive (4.8) with a(Xy) = 0. Then
by using the latter and the fact that Qy = —Q € Ty for each Q € Oy \ Ty we
infer that the condition (2.2) is satisfied for the case at issue. For the latter case
for Xy we have

Ro * (F(Xo)) = F(Ro * Xo) = F(Xo), Ro€{R} ,R},, Ry} CTy
for each F € Ty(D, M). From this we derive
M=V,

0,
F(Xo) =4 O, M = Skw,
a,(XU)nl @n; + b(Xg)nz ®@ny + C(XD)B;; ® ng , = Sym ;

Then, using the latter and the fact that —Q € Ty for each Q € Oy \ Ty, one

may easily deduce that the condition (2.2) is also satisfied for the case in ques-
tion. Q.E.D.

4.3. The class T},

The following two fourth-order tensors are invariant under the group T:

3
(4.14) # = En; ® wg,
k=1

Tj = (N2 — N3) ® N; + (N3 — N;) ® N2 + (N7 — N2) ® N3,

(4.15)
Np= np®ng, k=1,2,3,

where wy, k = 1,2,3, are given by (4.10).
THEOREM 10. The surface
2 2 2
(4.16)  S(X) = (T4 : (® va), T} : (¥ va); Th: (& (E: Wy)),
2
50 (® (B: Wp)); TE: Ag, T : Ay )

is an IES for Tp(D, M).

Proof It is evident that the condition (2.2) can be satisfied for each
Q € T,. Moreover, for each Q € Orth\T}j, by Theorem A.7 we infer that the
point Xg € SN (Q % S) is given by the two cases
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CASE 1. Xg € D(u) if 3u,v € {r;,r2,r3,r4} : QTu= (det Q)v;

CASE 2. v, = 0, Wy = 0,A, = ¢l if Yu,v € {r;,r2,r3,r4} : QTu #
(det Q)v.

It can be easily proved that the condition (2.2) can be satisfied for Case 2.
Moreover, by means of the similar procedure used in the proof for Case 2 of
Theorem 9, it can be verified that the condition (2.2) can also be satisfied for
Case 1 shown above. Q.E.D.

5. The icosahedral group I,

The icosahedral group I, is the most complicated yet intriguing one in all sub-
groups of Orth, which characterizes the symmetry of the icosahedron. In a famous
lecture delivered in 1884, F. KLEIN [15] presented a comprehensive account of
the icosahedron and the icosahedral group. According to classical crystallogra-
phy, there exists no solid whose symmetry is described by the icosahedral group
or any other non-crystallographic point group except the transverse isotropy
groups and the full and proper orthogonal groups. However, such a traditional
viewpoint has been proved to be too narrow by the recent discovery of quasicrys-
tals (cf. Vainshtein [44] and Senechal [27] and the related literature therein). The
latter possess symmetries forbidden by the classical crystallography rule, such as
five-, eight-, and ten-fold symmetries etc. Of them, the icosahedral quasicrystal
is the one which has received much attention.

The icosahedral group I} is of the form

G 10 15
(5.1) Tye= (U Sm(ns]) U (U Ss(rg)) U (U CZh(ac)) N
s=1 t=1

c=1

where the groups Sig(u), Ss(u) and Cap(u) for any unit vector u are indicated
at the start of §4.

The unit vectors ny, Ty By, '@is i o = & -0 A0 = 1. . oydb are
used to represent the six five-fold axes, the ten three-fold axes and the fifteen
two-fold axes, respectively. Let n and e be two orthonormal vectors. Then the
six five-fold axes of Ij, are expressible in the form (cf. X1A0 [53])

ng =n,
(5.2) n; = (n+21;)/V5 = R2"/5ng
I, = R%*"/%,  k=1,...,5,
with the property
1 4 iy
(5.3) (ni-nj]2 = 54—5&}-, B I
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Moreover, each three-fold axis r; and each two-fold axis 1. can be determined by
the five-fold axes ny, refer to X1A0 [52] for detail.
The follwing three tensors are invariant under the group Ij:

6

2r+4
(5.4) ;:Z(% nk), w908

k=1

THEOREM 11. The surface
4 6 8 4
(5.5) S(X)= (1}1 O (® Va), I} © (8 va), I} @ (® va); I} @ (® (E : Wy)),
6 8 2 3 4
B (® (B: We)), 130 (& (B: Wo)) 0 (6 40). B 0 (& 4,) 110 (5 4,))

is an IES for I,(D, M).

P roof It suffices to prove that (2.2) holds for each Q € Orth \ I;. For
Xo = (Va, Wy, A;) €SN (Q*S), Q € Orth \ I, by applying Theorem A.8 we
infer that Xo € D(u) if Q satisfies (A.62) and that v, =0, Wy = 0, A, = ¢, I if
Q satisfies (A.63). By means of these facts and the procedure used in the proof
of Theorem 8, it can be proved that the condition (2.2) is satisfied. Q.E.D.

6. Examples and concluding remarks

Employing the results presented in the previous sections as well as the well-
known representation theorems for isotropic functions of vectors and second order
tensors, one can derive complete representations for any type of scalar-, vector-
and second order tensor-valued anisotropic functions of vectors and second or-
der tensors merely replacing some variables of the former with S(X) (cf. (2.3)).
It should be noted, however, that representations obtained in this manner are
generally not irreducible. To obtain complete irreducible representations, further
effort should be made. Recently, the general results given here have been used
to investigate various kinds of anisotropic functions of vectors and second order
tensors. Simple irreducible functional bases and generating sets for scalar-valued
and symmetric second order tensor-valued anisotropic functions of a single sym-
metric second order tensor have been obtained for all thirty-two crystal classes
(cf. X1A0 [47, 50, 51] and all noncrystal classes (cf. X1a0 [53, 54]). Moreover,
irreducible representations for scalar-, vector- and second order tensor-valued
anisotropic functions of any finite number of vectors and second order tensors
have been derived for all kinds of subgroups of the transverse isotropy group
Coon (cf. X140 [55]).

The extension theorems presented in the previous sections are concerned with
anisotropic functions with an arbitrary number of vector and second order tensor
variables. Recently, this author (see X1A0 [48]) has proved that representation
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problems for rth-order tensor-valued isotropic or anisotropic tensor functions
with an arbitrary number of vector and second order tensor variables can be re-
duced to those for certain rth-order tensor-valued isotropic or anisotropic tensor
functions merely with not more than three (for r > 1) or four (for r = 0) vector
and/or second order tensor variables (see [56] for further results). According to
this fact, to derive a complete representation for any given type of anisotropic
functions of vectors and second order tensors, it suffices to apply the correspond-
ing extension theorem given here to treat the related anisotropic functions of not
more than three or four vectors and/or second order tensors.

As an example, we apply Theorem 3 to derive irreducible nonpolynomial
representations for scalar-valued and vector-valued anisotropic functions of any
finite number of vectors relative to the group Ds,, 1, for each integer m > 1.

According to Theorem A and Theorem 3, anisotropic functions of the a vector
variables vq,... v, relative to the group Dy, 415 can be extended as isotropic
functions of the extended variables (v4, My, (vS), N), where N = n ® n. Thus,
applying the well-known results for representations of isotropic functions (cf.
Wang [45] and Smith [32], et al.), we obtain a functional basis and a generating set
for scalar-valued and vector-valued anisotropic functions of the vectors vy,..., v,
relative to the group Doy, .1y as follows.

Functional basis:

iv|?, u-v, v-Nv, v-N%v,u-Nv, u-N?v;

Generating set:

v, Nv, N2v,
where u,v = vq,..., V4, Mom(V])s - -, N2m (V2), u # v and my,,(v°) is given by
(3.12).
Since

Nn,, (¥v°) =0, N? =N,

either of the above two sets includes a large number of obviously redundant
elements. Removing the latter and noticing the identity

v]> = v°[* + (v-m)?,

we arrive at the following simplified results.
Functional basis:

(6.1) (u-n)(v-n),u®-v°, [u°|-[v°|>" cos(< u°, e > +2m < v°,e >).

Generating set:

(6.2) (ven)n,v°, |v°|*™(ecos2m < v°,e > —e'sin2m < v°,e >).
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In the above, u,v = vy,...,v,, the unit vector e may be any two-fold rotation
axis of Dy, 1, and €' is given by (2.10). In deriving the former, the invariants
of the form

M2 (1°) - Mg (v0) = (J0°][¥°])*™ cos 2m < u°,v° >,

which seems not obviously to be redundant, are also removed. In reality, by
virtue of (3.36); we know that the above invariant is expressible as a polynomial
of degree 2m in u®-v°® and |u|®:|v°®| with constant coefficients. It can easily be
proved that the functional basis given is irreducible, and moreover, that the
generating set given is minimal.

It is worthwhile to point out the fact that the results derived above are valid
for all infinitely many classes Dy, 1. They provide all the desired representa-
tions in a unified form, while usually each anisotropy group has to be dealt with
separately. The fact just indicated is also true for other kinds of subgroups of
D p. Thus, as far as infinitely many classes of subgroups of D, are concerned,
uniwversal representations may be derived by applying the extension theorems
given in §3, as is done in the above and in [53 - 55].

Appendix A. General solutions to some related systems of polynomial
tensor equations

In this appendix, we offer general solutions to some systems of polynomial
tensor equations associated with the isotropic extension surfaces given in the
previous sections. These results are used to determine the intersecting surface
SN (Q*8) C D for each presented IES S.

Henceforth, J is used to represent +1 or —1, i.e. §° = 1; m is used to signify
any given positive integer; and v,x € V, W € Skw and A € Sym are used to
designate vector variable, skewsymmetric tensor variable and symmetric tensor
variable, respectively.

A.1. Polynomial tensor equations: subgroups of D,

THEOREM A.1. Let m,(z) be the vector-valued function given by (3.12) for
any vector z on the n-plane and each integer r > 1. Then, for each Q € Daop \
Dsi1d, the general solution to the system of tensor equations

(A1) Q * (BN ((QT)°)) = Empyn (v°),

(A2) Q * (En,,,,((Q * W)n)) = Emy,,(Wn),
(A.3) Q * (Eny,, (((Q™ * A)n)°)) = Emy,,,((An)°),
(A4) Q * (Em,,(a(Q" x A))) = En,,(q(A)),

18 given by

(A.5) vV = I, W = yEn, A=z2I4+wn®n (Vz,y,z,w € R).

http://rcin.org.pl



A UNIFIED THEORY OF REPRESENTATIONS FOR SCALAR-, VECTOR- AND... 1023

Proof Let Q= 6R% Then, by applying the formulas (2.13), (2.15);,
(2.17); and (2.18); we convert Egs. (A.1)-(A.4) to

|z[ (ecos© — €'sin@) = [z|*™(ecos2m < z,e > — €'sin2m < z,e >),
Iq(A)|™(ecos @' — €'sin@’') = |q )|™(ecosm < q(A),e> —e'sinm <q(A),e>),
where
O =—-2m+1)6+2m <z,e>, z = v°, Wn, (An)°,
O =—-2m+1)§+m < q(A),e>.
Since Q & Dapi14, we have (2m + 1)8 # 2kw. Then we derive
(A.6) [v°] = [Wn| = |(An)°| = |q(A)| = 0.

Hence (A.5) holds for each Q = 0R? € Doy, \ Damy1d-
Next, let Q = SR]. Then, by applying the formulas (2.14), (2.15)2, (2.17)2
and (2.18); we recast Egs. (A.1)-(A.4) in the form
|2|*™ (e cos © + €' sin @) = |z|*™(ecos 2m < z,e > — €'sin2m < z,e >),
A)|™(ecos @ + €'sin@') |q A)|™(ecosm < q(A),e> —e'sinm <q(A),e>),
where
O =(@dm+2) <ae>-2m<ze>, z = v°, Wn, (An)°,
@ =(@dm+2)<ae>-m<q(A),e>.
Since Q & Dopmi1d, we have (4m + 2) < a,e ># 2kn. Then we derive (A.6).
Hence (A.5) also holds for each Q = dR] € Doop \ Dami14- Q-E.D.

THEOREM A.2. Let ®,(z) be the symmetric second order tensor-valued func-
tion given by (3.16) for any vector z on the n-plane and each integer r > 1.
Then, for each Q € Doop \ Damyan, the general solution to the system of tensor
equations

(A7) Q+ (22m((Q"V)°)) = Bom(v°),
(A.8) Q+(22m((Q" *W)n)) = ‘I’am(Wn
(A.9) Q * (22m(((Q" * A)n)°)) = B2 ((An)°),
(A.10) Q* (2(a(Q" * A))) = @m(q(A)),

1s given by (A.5).

Proof Let Q= JR% By using the formulas (2.13), (2.15);, (2.17); and
(2.18);, we convert Egs. (A.7)-(A.10) to the form

|2[>™(D; cos © — Dy sin @) = |z/*™(D; cos 2m < z,e > —Dzsin2m < z,e >),
lq(A)|™(D; cos @' — Dasin@') = |q(A)|™(Dy cosm < q(A),e >
— Dysinm < q(A),e >),
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where

@ =—(2m+2)8 +2m < z,e >, % = v°, Wn, (An)°,
@' =—-2m+2)+m<q(A),e>.

Since Q € Dy on, we have (2m+2)8 # 2kw. Then we derive (A.6) and therefore
(A.5) holds for each Q = 6RY € Duoh \ Doma2h-

Next, let Q = dR]. Then, by applying the formulas (2.14), (2.15),, (2.17)2
and (2.18); we recast Eqgs. (A.7)-(A.10) in the form

|2|*™(D; cos @ + Dy sin ©) = |z|*™(D; sin2m < z,e > —Dysin2m < z,e >),
|q(A)|™(D; cos ©' + Dysin@') = |q(A)|™(D; sinm < q(A), e >
— Dysinm < q(A),e >),

where

@ =(4m+4) <ae>-2m<ze >, z =v°, Wn, (An)°,
O = (dm+4) <ae>-m<q(A),e>.

Since Q & Dspion, we have (4m + 4) < a,e ># 2kw. Then we derive (A.6).
Hence (A.5) also holds for each Q = 0R] € Doy \ Domi2n. Q-E.D.

THEOREM A.3. Let m,.(z) be the vector-valued function given by (3.12). Then,
for each Q € Doy \ Domi1n, the general solution to the system of tensor equations

(A.11) QM2 ((Q"¥)%)) = My (v°),
(A.12) QM ((QT * W)n)) = my,,(Wn),
(A.13) QM2 (((QT * A)n)°)) = My, ((An)°),
(A.14) Q(n,,(a(Q” * A))) = m,,(q(A)),

s qrven by (A.5).
The proof of this theorem is similar to that of Theorem A.1, except for the

fact that the factor é plays no role in the latter, while it comes into play in the
former (cf. the proof for the next theorem).

THEOREM A 4. Letn,.(z) be the vector-valued function given by (3.12) for any
vector z on the n-plane and each integer r > 1. Then, for each Q € Doop \ Domd,
the general solution to the system of tensor equations

(A.15) Q* (nV My, 1((QTV)%)) = nV Mgy, (v°),
(Alﬁ) QT(HZm—l((Q * W)Il)) = ﬂzm—1(Wﬂ)s
(A.17) QT(ﬂzm-l(((Q * A)n)°)) = My, _1((An)?),
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s given by
(A.18) v=gn, W = yEn, (An)° = 0.

Proof. Let Q=46RY. Then, by using the formulas (2.13), (2.17);, (2.19);,
(2.18) and (2.20) we infer

i?m—l(

|z ecos @ — €' sin@) = [z|>™ (e cos @ — €' sin Oy),

where
1
(—)Uz(2m—-1)<z‘e>, @:@U—~2m9—§(1“~5)ﬂ,
g =¥, Wn, (An)°.

Since Q & Dypa, we have
1
2mo + 5(1 — 0)7 # 2km.

Hence, we deduce z = 0, z = v°, Wn, (An)°, i.e. (A.18) holds for each Q = §R? €

Doon \ Do
Let Q = RZ. Then, by using the formulas (2.14), (2.17)2, (2.19)2, (2.18) and
(2.20) we infer

|z)>™ (e cos © + €' sin @) = |z|*™ (e cos Op — €' sin Oy),
where
G =(2m-1) <z,e>, 9:4m<a,e>+%(1—5)?r—90,
g =¥ "Wn, (An)".
Since Q & Do, we have
4dm < a,e > +(1 — &) # 2kn.

Hence, we deduce z = 0, z = v°, Wn, (An)° ie. (A.18) also holds for each
Q = §R" € Dy \ Dia: 'QED.

A.2. Polynomial tensor equations: cubic erystal classes

THEOREM A.5. Let Oy be the tensor given by (4.6), which is invariant un-
der the group Op. Then for each Q € Orth \ Oy, the solution to the system of
polynomial tensor equations

(A.19) (Q*04): (x®x) = 04 : (x®X),
(A.20) (Q*04): (B (E: W)) = Oy : (& (B: W)),
(A.21) (Qi%0p) s & = 0h A,

(A.22) (Q*04): A2 = 05, : A2,
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are as follows:
CASE 1. If there are u,v € {ny, ngz, n3} oru, v € {ry, ra, r3, rq} such that

(A.23) & (QTu) =® v,
then
(A.24) T=au, W = bEu, A=cl+du®u (Va, b, ¢, dER).

CASE 2. If for any u, v € {my, ny, n3} and u, v € {ry, ry, r3, ry},

(A.25) & (QTu) #® v,
then
(A.26) s, WO Al

In the above, each ny and each r; are a four-fold azis and a three-fold axis of Oy,
respectively (cf. (4.1) and (4.5)).

P r o o f. First, suppose that there be u,v € {n;,ny,n3} such that (A.23)
holds. Then there are permutations o, 7 € P3, where P3 is the symmetric group
on three letters, such that

Qn(;) = n;(1)cosf +n, ) sinf,
(A.27) Qn,(3) = —n.q)sinf + n.(5) cos b,
Qn,(3) = ), r? =1
Substituting the above into the equivalent form of (A.21):
3 3
(A.28) " (ig(e)- Afig(r) ) Bor Og(hy = D (Rr) - ARr(r) ) mrr @nr(ay (= C),
k=1 k=1
where fi, ;) = Qng (), we derive
(Ar2)r(2) = Ar(1)r(1)) 8in° 260 + A, (1)7(2) sindf = 0,
(AT(QJT(Z} == A'r(l)'r(l}) sin46d — 4A,.(1}.r(2} Sil‘.‘!a2 28 = 0.

Since Q ¢ Oy, i.e. @ # kmw/2, the above system of homogeneous equations has
merely a trivial solution, i.e.

(A-28) Aryre) =0 Aryrr) = Aryr) »
where A;; = n;-An; = Aj;. Consequently, the equations (A.19) and (A.20) yield

(x-ny))(xny2) =0,  (xm)? = (x-ny(9)°,
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(Y ur) (¥ nrz) =0, (¥’ =(yn)? y=E:W,
and the equations (A.21) and (A.22) produce (A.29) and

Br1yr(2) = 0, Bryr() = Br2)r(2) » B=A”

From these and the fact stated at the end of this proof we infer that the solution
of Eqgs. (A.19)-(A.22) is provided by (A.24) for each Q € Orth \ Oy satisfying
(A.23) for u,v € {n;,nz,n3}.

Next, suppose that for any u, v € {ny, na, n3}, (A.25) holds. Since (A.21), i.e.
(A.28) offers two spectral representations of the same symmetric tensor C € Sym;
we infer that the two sets of eigenvalues, {n;-Ang} and {n;-An;}, coincide and
their subordinate eigenprojections coincide. Taking this fact and the condition

(A.30) 629 Q"u #629 v (Vu, v € {ny, nz, n3})

into account, we infer that C = @I and hence that

(A.31) (Qng)-A(Qng) = ng-Ang = ¢, k=123

Moreover, letting the symmetric tensor A € Sym take the particular forms x ® x

and y® y, y = E: W, respectively, we infer that Eqs. (A.19), (A.20) and (A.22)
yield

(A32) ( (an)]Q (X nfs)2 = &2‘ k= 12,3,
(A.33) (y-(Qm))? = (v )2 =%, k=123,
(A.34) (Qny)-A%(Qny) = ny-A’n;, = &7, k=123

From (4.5), (A.31)-(A.34) and Q ¢ Oy and the facts

p-(Qq) = (Q"p)-q;  (Qp)-B(Qq) = p-(Q" = B)q,

n.-Bny=c & ni.-B?np=d%>#0, k=1,2,3
= Ju€{r,...,r4}: B=asl+pu®u, y#0,

for any p,q € V and B € Sym, we derive (A.24) if a® +b*+d* # 0 holds, i.e. there
are u, v € {r;, ra, r3,rq} such that (A.23) holds. Moreover, we derive (A.26)
if (A.25) holds for any u, v € {n;, ny, n3} and any u, v € {ry, ra, r3, rq},
ie.da = b =d = 0 holds. In deriving the former, the following fact is used:

if an orthogonal tensor Q transforms any two given three-fold axes of Oh into
three-fold axes of Oy, then Q € 0. Q.E.D.
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THEOREM A.6. Let Ty and Oy, be the tensors given by (4.9)—(4.10) and (4.6),
which are invariant under the groups Ty C Oy and Oy, respectively. Then for
each Q € Orth \ Oy, the solution to the system of polynomial tensor equations

(A.35) (Q*TF)x = de'

(A.36) (Q*Oh) P(x®x) = (X®I)
(A.37) (Q*Ty): (® (E:W)) (

(A.38) (Q*0p): ( (E: W)) = 0p: (® (E: W));
(A.39) (Q*Ty): A =Ty:A;

(A.40) (Q*0p): A =0p:A;

are as follows:
CASE1l. x =0, W = bEn, A=cl+dn®n if 3u, v € {n,ny,n3} :

2
® (QMu) =

CASE 2. If 3u, v € {r1,...,r4} : QTu = v, then the solutions are given
by (A.24).

CASE 3. If
(A.41) Vu, ve{r,...,ra} : QTu#v
2 2
& VYu, ve{n, n, n3}: @ (QTu)#®v,

then the solution is given by (A.26).

P roof Consider two cases. First, for each Q given by (A.27), from the
proof of Theorem A.5 we know that Eqs. (A.40), (A.38) and (A.36) yield (A.29)
and

(A42) X= all.,-(3) ) W= bEn,{g) :

Moreover, for each Q given by (A.27), Eqgs. (A.35) and (A.39) further yield
(Eq. (A.37) provides no further restriction for W)

asin26 = 0, a(l —rcos26) =0
AT(2)7(3) sin 26 + AT(1)T(3J(CDS 26 — r) =,
AT(2)7(3)(COS 20 — T‘) = A,.(;),.(g,) sin26 = 0.

Thus, by using Q & Oy, i.e. @ # knw/2 we infer
a=0,  Ary() = Ar@r@) = Ari)r) =0 B F=123, 77,

where (A.29) is incorporated. Hence Case 1 holds.
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Next, for each Q satisfying (A.30), from the proof of Theorem A.5 we know
that Eqs. (A.36), (A.38) and (A.40) yield (A.31)-(A.33). Substituting (A.32) and
(A.33) into (A.35) and (A.37) respectively, we obtain

a(t Wy + FoWwy + 73w3) = a(riwy + rawz + r3ws), W = Q * wy,
1.e.
I R (e T o 2
(A.43) af(® (fiiy + fohy + f3f3)) = af(® (rimy + remy + 73n3)),
f = #1fafg, f=rirars,
and
(A.44) b*G(310 + d2R + §3h3) = bg(siny + somp + s3ng), n; = Qny,
g = 818233, g = 818283,

where wy are given by (4.10) and moreover

X-0p = arg, x-(Qng) = ary, r,f = 1"3 =] b= O3
(B: W)mp=bsg, (B:W)(Qug) =088, s£=52=1 £k=123
By using (A.43)—(A.44), (4.5) and the fact that
Qu, Qve{n,...,ry} <= QeTy
for any given u,v € {r;,...,rs} and u # v, we infer that x = au, W = bEu, if

there exist u, v € {ry, ry, rs, rq} such that QTu = v; and that x =0, W = 0,
if (A.41) holds.

On the other hand, let w; = A : w and W, = A : ;. Then Egs. (A.39) and
(A.40) may be rewritten in the forms

3
(A.45) S dphy = Y wn ie. g=q,
k=1 k=1
3 3 v
(A.46) D by =) wpwy ie. B=B.
k=1 k=1

For the latter, the identity

| 1 1
(A.47) Q*(Oh-%iZwk@uk)=0h+§Zwk®wk (VQ € Orth)
k=1 k=1
- 2 2
is used. From q-Bq = q-Bq and ® (Bq) =® (Bq) we derive

3 3
(A.48) > (Ck)i @iy = Y (Ci)’ni @ my,

k=1 k=1
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where

ll

Ci = wyws, Cy = wawy, Cs wypwsy

Cy = o3, Cp = w3ty C3 = W13 .
By (A.30) and (A.48) we infer

(A.49) (Cr)? = (C)? =, k=1,23,

and then by the latter and (A.45) we infer that A = cI + du ® u if there exist
u, v € {r}, ry, r3, r4} such that QTu = v, and that A = cI if (A.41) holds.

Finally, combining the facts derived above and the property of the group T,
stated before, we conclude that Theorem A.6 holds. Q.E.D.

THEOREM A.7. Let T§ and T} be the two tensors given by (4.14) and (4.15),
which are invariant under the group Ty,. Then for each Q € Orth\ T}, the solution
to the system of polynomial tensor equations

(A.50) (Q*T%): (x®x) = T} : (x®X),
(A.51) (Q * ’.[“= Jilxex)=T; :(x®@x);
(A.52) (Q+TS): ( (B: W) = T2 : (& (E: W)),
(A.53) @Q*T}): (@ bl (& (B: W));
(A.54) (Q*T2):A = Tg A,
(A.55) (Q+T}): A =T} : A;
are as follows:

CAsE 1. If
(A.56) Ju, v € {r, ro, r3, 4} : QTuz (det Q)v,
then the solutions are given by (A.24).

CASE 2. If
(A.57) Vu, v € {r, r, r3, rg} : Q"u # (det Q)v,

then the solutions are given by (A.26).
P roof First, for each Q given by (A.27), Eqs. (A.54)—(A.55) yield

(Ar(2)r(2) — Ar(1)r(1)) Sin 26 + 2A;(1)r(2)(cos 26 — 1) = 0,
(AT(Q)T(Q} = A r(1)r(1 ){1 = 00529) = QAT“).,( )sin29 =()}
Af(z)ftg,)(cos 20 — 1) — A, (1)r(3)8in260 = 0,
AT{Z)T{S) sin 26 + Ar{l 1.(3)((‘,08 20 — 1) = U,
(Ar2)r(2) — Ar3)r(3))(c0s 20 — 1) — 24, (1)r(3) 8in20 = 0,
(Ar3)r(3) — A,(l)r(l))(cos 20 — 1) — 2A,(1)r(2) sin26 = 0.
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By using Q & T}, i.e. 8 # km, from the above we derive

Ay = Agy = Az, A1p = A3 = A3 =0.

2
Moreover, letting the tensor A € Sym take the particular forms x® x and @ (E
W), respectively, from Eqgs. (A.50)-(A.53) we derive

- ey
2.‘1—

f§=x§ 1Ty = a3 = w32 = 0,
I SRR = =N 5
Vi =¥ = Y3, Y1y2 = Y2ys = yay1 = 0, y=E:W.

Thus, we conclude that the Case 2 holds for each Q € Orth\ T} satisfying (A.27).

Next, for each Q satisfying (A.30), since the two sides of Eq. (A.55) provide
two spectral representations of the same symmetric second order tensor, we de-
duce that either of the two involved sets of eigenvalues must be triply coalescent,
or else (A.30) will be violated. Hence, we have

A =Ap=Ap =4 =Ap=A3=c

From these and the identity (A.47) we infer that (A.46) holds. Moreover, (A.54)
can be recast in the form

3
(A.58) Z winy, = (det Q) Zm iy .

k=1

By using the same procedure as that used in deriving (A.48), from (A.46) and
(A.58) we can derive (A.48) again. Thus (A.30) and (A.48) yield (A.49). From
(A.49) and (A.58) we infer that A = ¢l + du ® u for each Q obeying (A.56)
and (A.30) or A = ¢l for each Q satisfying (A.57) and (A.30). Finally, using
the results for Eqs. (A.54)-(A.55) just derived and noticing the fact that for an
orthogonal tensor Q € Orth, if there are u,ve {ry,...,rq}, u # v, such that

quv QV € '{(dﬁ‘t Q)rl giin sy (dEt Q)rd}?

then Q € Ty, we conclude that Theorem A.7 also holds for each Q € Orth \ T}
satisfying (A.30). Q.E.D.

A.3. Polynomial tensor equations: the icosahedral group [},

THEOREM A.8. Let I}, 17 and I;, be the three tensors given by (5.4), which
are invariant under I. Then for each Q € Orth\Iy, the system of polynomial
tensor equations

(A.59) QL))o (e x)=To(8 x) r=1,2,3;
(A.60) L)o(® B:W)=Lo(s (B:W), r=123

http://rcin.org.pl



1032 H. X1a0

(A.61) Q+I)o(® A)=Lo(® A), r=123;

has the following solutions:
Casel.x=au, W=0bEu, A=cl+du®u,Va,bc,de R, if

(A.62) 3Juve{ny...,n} or wvefry,...,rig} : ®(QTu) =@ v;
CASE2.x=0,W=0,A=d, if

2 # 2
(A.63) Yu,ve{n,...,ng} and u,v € {r;,...,r10} : ® (Qru) #R V.

To prove the above theorem, some facts concerning the symmetry axes of the
icosahedral group I are needed.

LEMMA A.1. Let a,b,c,d € {ny,...,ng} be any four different five-fold axes of
the group I. Then for G € Orth and any p,¢,r € R, the conditions

Gx(a®a+pd®d) =a®a+pd®d,
Gx(b®b+gd®d) =b®b+qd®d,
Gx(c®@c+rd®d) =c®c+rd®d,

imply G € I,.

Pr oo f Consider two cases. First, let at least two of p, ¢ and », say
p = q =0, be zero. Then by means of the conditions

Gs(a®a)=a®a, G+(b®b)=b®b, ab#0

we infer
G e {£I,+R] ,} C I},

where a x b be a two-fold axis of I, (cf. Proposition 7.2 in [53]).

Next, let two of p, q and r be nonvanishing, e.g. pg # 0. Then the two tensors
a®a+pd®d and b®b + ¢gd ® d have no eigenline in common and therefore the
first two conditions in the above lemma imply G = +I € I; (see Lemma 3.1.1
given in [48]). In reality, a x d and b x d offer two eigenlines of the just-mentioned
two tensors, respectively, and the other eigenlines of the two tensors lie on the
two planes perpendicular to these two eigenlines, respectively. Hence, the in-
tersecting line of the two planes is the only possible commom eigenline of the
aforementioned two tensors. The former is just d and can not be an eigenline of
any of the aforementioned tensors. Q.E.D.

LEMMA A.2. Let n;,n; and ng be any three noncoplanar five-fold axes of the
group I;. Then the following equality holds.

(A.64) n,®n;+n;®n; +n;, ®n; =zl +yuu, y#0,
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where
(A.65) u= (nj-nk)n,- + {nk-n,;)nj + (n,--nj)nk

represents a three-fold axis of the group Ij.

Proof Interms of any three noncoplaner three-fold axes (n;, n;,ny) of I,
the second order identity tensor I is expressible as (cf. the formula (7.11) in [53])

I=f(n; ®n; +n; ®n; +n; @ny)
2
+ 9 ® ((nj-ng)n; + (ng-ni)n; + (n;-ny)ng), fg#0.

From the above equality we derive (A.64). Moreover, from Proposition 7.1 in
(53] we know that the vector u given by (A.65) represents a three-fold axis of
Iy. Q.E.D.

The proof for Theorem A.8 is as follows. By using (5.3) we deduce that
det((n;-n;)?) = 2(3)°® # 0 and hence that {n; ® n;} offers a basis of the space
Sym. In terms of this basis each A € Sym is expressible as (cf. Proposition 7.4
given in [53])

(A.66) Z ANy — §(tm)l
4=t
where
Ny =n, ®ny, A =ni-Ang, k=1,...,6.

Utilizing (A.66) we infer that the following identities hold.

6 6
XNy~ 5. QN (-,

k=1 b=

M
=
&

|
M o

£ Q * Np
k=1 k=l

for any Q € Orth, where A} = (Qn;)-A(Qng). The above two identities and the
equations (A.61) may be combined into

6

6
(A.67) Y (A)Nk =Y (4)7Q=N;, r=0,1,2,3,4.
k=1 k=1

Let

A, = the left-hand side of (A.67); A, = the right-hand side of (A.67).
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Then trA, = trA], 7 =0,1,2, 3,4, yield
6 6
YA =D (AL, r=0,1,234
k=1 k=1

Here and hereafter trB is used to represent the trace of the tensor B € Th.
Furthermore, from (5.3) and the following equalities

(trAg)(trAy) = (trAl)(trAj), tr(AsA;) = tr(ALA}),

we derive
6 6
(A.68) 3 (4x)H = 3 (A44) .
k=1 k=1

Let Ps be the symmetric group on six letters. Then (A.68) yields
(Aﬁg) A';‘:Aa-(k), k=10 oc€Ps.

Hence the five equations for A € Sym given by (A.67) can be recast in the form

6

[
Y (Agr)"Q* Ng = > (4)'Ng, r=0,1,23,4.
k=1 k=1

Since for any given o € Py there is R € I, such that

RY wN, =Ny, k=1,..:8
the above system of equations for A can be rewritten as
6 6
(A70) S ALGsNy=> ANy, G=QR, Rel, r=0,1234
k=1 k=1

Suppose that all Ay are pairwise distinct. Reformulating (A.70) in matrix
notation as follows:
VX' +Y' =VX+Y,

where V is the 5 x 5 Vandermonde matrix of A; --- As, the sth row of which
is given by (A‘i’“l A;'l}, and moreover, X,Y, X', and Y’ are the following
5 x 1 column matrices:

X=(Ny - N5)T, X'=(G*N;--- G*N;5)T,

Y = (Ng AsNg --- (46)'Ng)T, Y’ =(G*Ng AsG xNg --- (46)'G + Ng)" .
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Since the matrix V is invertible, we obtain
X4ty =xayvly,
ie.
G*(Nk-}-;rkNg) = Ny + 23 Ns, Ki=11,208,4)5;

Then by Lemma A.1 we infer that G € I, and therefore that Q = GRT € I,
which violates the condition Q ¢ I,.

Suppose that some of A,,..., Ag coincide. By means of the similar procedure
as that just used, we infer that the following facts hold.

(i) If there are i,j € {1,...,6}, i # j, such that A; # A; and A # A;, A; for
all k € {1,...,6}, k # 1,7, then

G*N,‘:Ng, G*szNJ—.

(ii) If there are i,j € {1,...,6}, i # j, such that A; = A; and Ay # A; for all
ke {l,...,6}, k#i,j, then

G*(N§+Nj}=Ni+Nj.

(i) If A; = A; = Ag # A = A, = Ay, where (4,...,n) is a permutation of
1,--+,6, then

A =T+ d(N; +Nj+ Nyg), d'#£0,
G * (N; + N; + Ni) = N; + N; + Ng,
i.e. (cf. Lemma A.2)
A=cl+du®u, d+#0,
® (Qw) =& v,

where v = Ru represents a three-fold axis of Iy, since R € I}, and u represents a
three-fold axis of Ij;

(iv) If A; # Aj = Ag = Ay = Ap = Ay, then

A = cl + dN;, dx0,
QT#:N,;:R*N,;, Rel,.

(v)If A3 =--- = Ag=c, then A =cl.
In the last two cases, the identity (A.66) for A = I has been used.
The cases (i)-(v) exhaust all the cases when Aj,...,Ag¢ are not pairwise

distinct. For the first two cases, we have

G € {1, R} ., +RE ., +R%,. }.
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Since the vectors n; + nj, n; — n; and n; x n; give three two-fold axes of I (cf.
Proposition 7.2 in [53]), we infer that G € I, and hence Q = GRT € I, for the
first two cases, which violates the condition Q ¢ Ij,. Thus, the first two cases are
excluded. On the other hand, the latter three cases yield three kinds of solutions
to the polynomial tensor equations (A.61) for A € Sym, and from them the
solutions to the polynomial tensor equations (A.59) and (A.60) for x € V and

5 2

W € Skw can be derived immediately, since both x ® x and ® (E : W) can be
visualized as two particular forms of the symmetric second order tensor A. It is
evident that the solutions thus obtained agree with those given by the two cases

in Theorem A.8. Q.E.D.
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