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Development of flow and heat transfer on a wedge 
with a magnetic field 

M. KUMARI (BA NGALORE) 

THE DEVELOPMENT of the flow and heat transfer of an incompressible laminar viscous 
electricall y conducting fluid on a stationary infinite wedge with an applied magnetic 
field has been studied when the fluid in the external stream is set into motion im-
pulsively and at the same time, the surface temperature is suddenly raised from its 
ambient temperature. T he effects of the induced magnetic field , viscous dissipation 
and Ohmic heating have been taken into account. The mathematical problem has 
been formulated in such a way that at time t = 0, it reduces to Rayleigh type of 
equation and as timet -+ oo, it tends to Falkner- Skan type of equation. The scale of 
t ime has been chosen such that the tradit ional infinite region of integration becomes 
fi nite which considerably reduces the computational t ime. The singular parabolic 
part ial differential equations governing the flow have been solved numeri cally using 
an impli cit fin ite difference scheme. There is a smooth transition from the Rayleigh 
solution at ( = 0 (t* = 0) to Falkner- Skan type of solution at ( = 1 (t* -+ oo when 
the steady state is reached). The surface shear stress and the surface heat transfer 
increase or decrease with time when t he pressure gradient parameter is greater or 
less than a certain value. However , the x component of t he induced magnetic field 
at the surface decreases as time increases. 

1. Introduction 

FLUID DYNAMIC PHENOMENA involving unsteady boundary layers are of great 
theoreti cal and practical interest . Much of the work that has been done in this 
area is related to external aerodynamics. However, there are also several appli-
cations in biofluid dynamics, hydronautics and manufacturing. Excell ent review 
papers on t he unsteady boundary layers have been contributed by STUART [1], 
RILEY [2], T ELIO NIS [3] and MCCROSKEY [4]. 

When the external stream is impulsively set into motion at time t = 0 with 
uniform veloci ty along the plane of symmetry of the stationary infinit e wedge, 
the inviscid flow over the wedge is developed instantaneously. But the viscous 
flow within the boundary layer develops slowly and it reaches a steady flow 
only after a certain period of time. The development of the boundary layer 
with time takes place in two stages. For small time, the flow is dominated by 
the viscous and pressure gradient forces and the unsteady acceleration. The 
convective acceleration plays only a minor role in the fl ow development. On 
the other hand, for large time the fl ow is dominated by the viscous forces, the 
pressure gradient and the convective acceleration. During this phase the unsteady 
acceleration plays only a minor role in the flow development. For t = 0, the flow 
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is governed by the Rayleigh equation and for t 4 oo it is governed by the 
Falkner - Skan equation. This change in the character of the fl ow manifests i tself 
mathematicall y as a change in character of the equations which describe the fluid 
mot ion. 

STEWARTSON [5] fir st studied the impulsive motion over a fiat p late and 
found that for t > 1, the fl ow undergoes a transit ion fr om Rayleigh flow to 
Blasius fl ow. He [5] noted certain diffi culties in the mathematical formulation 
of the problem (i.e., the transition from the Rayleigh fl ow to Blasius fl ow is 
not smooth) and related it to the physics of the fl ow. Since then several aut hors 
[6 - 11] have studied this problem using different methods. SMIT H [12] has studied 
the analogous wedge problem and encountered the same diffi culti es which ari se 
in the case of the flat plate. In order to overcome this difficu lty, WrLLI AMS and 
RHYNE [13] have formulated the problem of impulsive motion over a wedge in 
a new set of scaled coordinates which includes both t he short time solution 
(Rayleigh solution) and long time solution (Falkner - Skan solution) and there 
is a smooth transition from Rayleigh solut ion to Falkner - Skan solution. In the 
above studies, the effect of the magnetic field was not considered. I NGEAM [14] 
has studied the effect of the magnetic fi eld on the flow past an impulsively started 
semi-infinit e plate. 

The present investigation considers the development of boundary layer fl ow 
and heat transfer with time of an electricall y conducting fluid over a stat ionary 
infinit e wedge with a magnetic fi eld when the fluid in the external stream is set 
into motion impulsively and at the same time the temperature of thE wall is 
suddenly raised from that of the surrounding fluid. The effects of the induced 
magnetic field , viscous d issipation and Ohmic heating have been included in the 
analysis. The mathematical problem has been formulated in such a way that for 
time t = 0, it reduces to Rayleigh type of equations and for t 4 oo it reduces 
to Falkner - Skan type of equation . T he scale of time has been selected such 
that t he traditional infinit e region of integration becomes fi ni te which cm.sider-
ably reduces the computational time. T he singular paraboli c part ial difienential 
equations governing the fl ow have been solved numericall y using an implicit fin ite 
difference scheme. The particular cases of the present results have been ccmjpared 
with those of HAL L [6], DENNIS [7], WATK INS [9], I NGHAM [10, 14], T ADR.O Sand 
KIR KHOPE [11], WILL IAMS and RHYNE [13], N AT II [16] and WATANABE [17]. 

2. Problem formulation 

We assume that for t < 0, an infin i te wedge li es in the (x, y) plane vit h the 
leading edge at x = y = 0 in the ambient fluid. The wall Tw is assumed to have 
the same temperature as that of the surrounding flu id (i .e., Tw = T00) \Which 
is electri call y conducting. A magnetic fi eld Ho is applied in the x directi ton at 
large distance from the surface of the wedge. At t ime t = 0, the external stream 
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FIG. 1. Coordinate system. 

away from the wedge is impulsively set into motion with velocity U0 parallel 
to the surface of the wedge (Fig. 1). At the same time t he temperature of the 
wall is raised to Tw from T. , the temperature of the surrounding fluid. The 
effects of the induced magnetic field, viscous dissipation and Ohmic heating 
have been included in the analysis but the Hall effect has been neglected. It 
is assumed that t here is no applied voltage which implies the absence of an 
electric fi eld (E = 0). The electri cal currents fl owing in the fluid give ri se to an 
induced magnetic fi eld which would exist if t he fluid were an electri cal insulator. 
It has been assumed that the normal component of the induced magnetic fi eld 
H2 vanishes a t the wall and the parall el component H1 approaches its given 
value Ho at the edge of the boundary layer [15]. The fr ee stream temperature 
is con tant. T he solution for small t ime is described by the Rayleigh's type of 
equation. For t ---+ , the steady-state equations as given by GRIBBEN [15] and 
NATH [16] are obtained. Under the above assumptions, the boundary layer and 
Maxwdl's equations governing the unsteady fl ow can be expressed as [14 - 17] 

(2.1) Ux + Vy = 0, 

(2.2) (Hl)x + (H2)y = 0, 

(2.3) Ut + UUx + VUy = - e-1 (p + P,ofl5/ 2)x + VUyy 

+(JJ-o/ e) [H1(Hl) x + H2(Hl)y ], 

(2.5) Tt + uTx + vTy = vPr- 1Tyy + Ｈ Ｑ Ｏ Ｏ ｣ｰＩｵｾ＠ + (ecpa)- 1 [(H t)yf , 

where 

(2.6) 
- e-1(p + p,oHJ/2)x = Uo(Uo)x - (p,o/ e)Ho(Ho)x , 

Pr = v/a. 
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The boundary conditions for t 2:: 0 are given by 

u(x, 0, t) = v(x, 0, t ) = H2(x, 0, t ) = 0, 

(2.7) 8H1(x, 0, t )j8y = 0, T (x, 0, t ) = Tw, 

u(x, oo, to) = Uo(x), H1 (x, oo, t) = Ho(x), T(x, oo, t ) = T00 . 

The initial conditions at t = to ( < 0) are expressed in the form 

(2.8) u(x, y , to) = 0, H 1 ( x, y , to) = Ho , T(x, y, to) = Too . 

Here x and y are the distances along and perpendicular to the surface, re-
spectively ; u and v are the velocity components along the x and y directions, 
respectively ; H 1 and H2 are the components of the induced magnetic fi eld along 
the x and y directions, respectively ; U0 and H0 are the velocity and the applied 
magneti c fi eld in the x direction, respectively ; pis the pressure; Pr is the Prandtl 
number; T is the temperature; Q and v are the density and kinematic viscosity, 
respect ively ; J.Lo is the magneti c permeability ; a and a 1 are, respectively, the ther-
mal diffusivity and magnetic diffusivity; U and H are the velocity and magnetic 
fi eld in the free stream, respectively; m is the index in the power-law variation 
of velocity, wall temperature and applied magnetic fi eld; the subscripts t , x and 
y denote derivatives with respect to t , x and y, respectively; and the subscripts 
w and oo denote conditions at the wall and in the free stream, respectively. 

In order to reduce the number of independent variables from three to two in 
Eqs. (2.1)- (2.5) and to reduce these equations to dimensionless form, we apply 
the following transformations: 

7J = (Uj v)1f2 x(m- 1)/ 2 C1/ 2 y ' ｾ＠ = 1 - exp( - Uot f x), 

t* = Uotf x , u = '1/Jy, v = -'1/Jx, H1 = <Py, H2 = - <Px, 
'lj;(x, y, t ) = (Uv)112x(m+l)/2 e 12 ｦ ＨｾＬ＠ ry ), Ec = U2 /[ep(Two- Too)], 

(2.9) <P(x, y, t) = (H2v/ U )1/ 2 x(m+l)/2 ･ Ｑ Ｒ ｧ ＨｾＬ＠ ry ), 

T(x, y, t ) = Too+ (Tw - ｔ ＰＰ ＩＨＩＨｾ Ｌ＠ ry ), S = J.LoH2 /(QU2
), 

Tw - T00 = (Two - T00)x2
m, >. = vj a1, a1 = (J.Locr)- 1, 

u = ｕｸｭｦＧＨｾ Ｌ ｲｹ ＩＬ＠ H1 = ｈ ｸｭｧ ＧＨｾ Ｌ ｲｹ ＩＬ＠

{3 = 2m/ (m + 1), m > - 1, 

to Eqs. (2.1) - (2.5) and we find that Eqs. (2.1) and (2.2) are identically satisfied 
and Eqs. (2.3) - (2.5) reduce to 

(2.10) !"' + T 1 [(m+ Ｑ Ｉｾ＠ + (1 - m)(1 -0 ln (1 - ()] f !" 
+ ｭｾＨＱＭ /'

2
) + T 1ry (1 - Of" + (1 - ｭＩｾＨ Ｑ Ｍ 0 ln(1-0 /" (8! /80 

- ｾｭｓ Ｈ Ｑ Ｍ g'2 ) - 2- 1 [(m + Ｑ Ｉｾ＠ + (1 - m)(1 - () ln(1 - ()] Sgg" 

ｾＨＱ Ｍ 0 [1 + (1 - m) ln(1 - ｾＩＡＧ｝＠ (8!' /80 
+ S(1 - ｭＩｾＨ Ｑ Ｍ () ln(1 - ()g'(8g' / 8(), 
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(2.11) A - lg'" Ｋｔ Ｑ Ｈ ｭ Ｋ ＱＩ ｾＨｦ ｧＢ Ｍ f"g )+2- 1 (1- m)(1-0 ln(1-()(fg" - f"g ) 

+ T 1(1 - ()ryg" + (1 - ｭＩｾＨ Ｑ Ｍ 0 ln(1 - ()g" (8f / 80 

- (1 - ｭＩｾＨ Ｑ Ｍ 0 ln(1 - 0 f" (8g/ 80 

ｾ Ｈ Ｑ Ｍ 0 [1 + (1 - m ) ln(1 - Of' ] 8g' Ｏ Ｘ ｾ＠

- (1 - ｭ ＩｾＨ Ｑ Ｍ 0 ln(1 - ｾＩ ｧ Ｇ ＨＸ ｦＧ＠ / 80 , 

(2.12) Pr- 1B" + T 1 [(m + Ｑ Ｉｾ＠ + (1 - m)(1 - 0 ln (1 - 0] JB' 

- 2mSj'e + T 1 (1 - () rye' + (1 - ｭ ＩｾＨ Ｑ Ｍ 0 ln(1 - () B'(8f / 80 

+ Ec [ (!" )2 
+ (S/ A)(g" )2

] = d 1 - 0 [1 + (1 - m) ln(1 - ｾ Ｉ ＡＧ ｝＠ Ｈ Ｘｂ ｪ Ｘｾ Ｉ Ｎ＠

The boundary conditions are given by 

(2.13) 
ｦ ＨｾＬ ｏ Ｉ＠ = J'(CO) = ｧ Ｈ ｾ Ｌ ｏ Ｉ＠ = ｧＢ Ｈ ｾ Ｌ ｏ Ｉ＠ = 0, ･ Ｈ ｾ Ｌ＠ o) = 1, 

f' (C oo) = ｧＧＨｾ Ｌ＠ oo) = 1, e(c oo) = 0. 

Here ｾ＠ and 17 are the transformed and d imensionless independent variables; t * 
is the dimensionless t ime; 'ljJ and cjJ are the dimensional fl uid and magneti c stream 
functions, respecti vely; f' is the d imensionless velocity; g' is the dimensionless x 
component of the induced magnet ic fi eld; f and g are the dimensionless fl uid and 
magnetic stream functions, respectively; e is t he dimensionless temperature; s is 
t he d imensionless magnet ic parameter ; (3 is the pressure gradient parameter; Ec 
is the Eckert number ; a is the electrical conduct ivity; A is the magnetic Prandtl 
number; Two is the value of Tw at x = 0; and prime denotes derivative wit h 
respect to ry. 

Equations (2.11) - (2.13) are part ial differential equations, but ｦ ｯ ｲ ｾ＠ = 0 and 
ｾ＠ = 1 they reduce to ordinary d ifferential equations. For ｾ＠ = 0, the equations are 

(2.14) f"' + T 1ryf" = 0, 
(2.15) A - 1g"' + T 1ryg" = 0, 

(2.16) P r- 1B" + 2- 1ryB' + Ec [U")2 
+ (S/ A)(g" )2

] = o. 

For ｾ＠ = 1, the equations are given by 

(2.17) !"' + T 1 (m + 1)! !" + m(1 - f' 2
) - mS(1 - g'

2
) 

- T 1 (m + 1)Sgg" = 0, 

(2.18) A- 1g"' + T 1 (m + 1)(fg" - j" g) = 0, 

(2.19) Pr- 1B" + T 1(m + 1)JB' - 2mj'e + Ec [U") 2 
+ (S/ A)(g" )2

] = o. 

The boundary conditions for (2.14) - (2.19) are expressed as 

(2.20) 
f (O) = f '(O) = g(O) = g"(O) = 0, e(o) = 1, 

!' ( 00) = g' ( 00) = 1' B(oo)=O. 
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It may be remarked that Eq. (2.10) for S = 0 reduces to that of WILLIAM S 
and RHYNE [13]. Equations (2.10) and (2.11) for m = 0 are essent.all y the 
same as those of l NGHAM [14]. Al so, Eq. (2.10) for m = S = 0 is be same 
as that of HALL [6], DENNIS [7], WATI<I NS [9], l NGHA M [10] and TAD:WS and 
KIRKHOPE [11]. ｗｨ ･ ｮｾ ］＠ 1, the self- simil ar equations (2.17) and (2.18 are the 
same as those of NATH [16] if we apply the following transformations 

(2.21) 
"7 = (2- {3) 1/2"71 ' f (ry ) = (2- /3)1/2 !1("71), 

g(ry) = (2- f3) 112g1 (ryl) , f3 = 2m/ (m + 1). 

/3 < 2, 

Al so, forS = Ec = 0 and for constant wall temperature case (the term ｾ ｭｪＧｦｊ＠ = 
0), Eqs. (2.17) and (2.19) reduce to those of W ATANABE [17] if we a;ply the 
t ransformations 

(2.22) 
7J = [2 / (m + 1}F/2

771, j (ry ) = [2/ (m + 1)] 112 fl(ryl) , 

fJ(ry) = ()1(7JI). 

3. Analytical solution 

Equations (2.14)- (2.16) under boundary conditions (2.20) admit clo1ed-form 
solution. The solution of Eq. (2.14) under conditions (2.20) is expressed as 

(3.1) 

hence 

(3.5) j' = erf (ry / 2), 

Equation (2.15) is integrated once to yield the equation 

(3.3) 

where the constant of integration is zero by virt ue of the conditiom g(O) 
g"(O) = 0. Equation (2.22) under conditions (2.20) has the solut im of the 
form [14]: 

(3.4) g = ry 

Equation (2.16) under conditi ons (2.20) for Pr = 1 yields the followng solu-
tion: 

(3.5) () = erfc (ry/ 2) + (Ec/ 2) erf (ry/ 2) erfc (ry/ 2). 
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Hence 

(3.6) e' = - Ec (n )- 112 exp( - ry2 / 4) erf (ry/ 2) + (n )-112 (Ec - 1) exp( - ry2 / 4) , 

(3.7) 8'(0) = (T 1Ec - 1)(n)- 112 . 

Also, Eq. (2.16) under conditi ons (2.20) for Ec = 0 has the solution of the 
form (3.7) 

(3. ) e = erfc (P r112ry / 2). 

Hence 

(3.9) e'(O) = -(Pr/ n)112 

4. Numerical solution 

It may be noted that Eqs. (2.10) and (2.11) are coupled nonli near partial 
differential equations of paraboli c type, whereas Eq. (2.12) is an uncoupled linear 
paraboli c partial differential equation . Equations (2.10)-(2.12) under boundary 
condi t ions (2.13) and init ial conditions (2.14) - (2.16) can be solved numerically. 
Equations (2.10)- (2.12) can be rewri tten as 

a2w 1 aw1 aw2 awl aw2 
(4.1) ary2 + a1 ary + a2W1 + a3{);] + a4W2 + as= a6[jf + a7[jf , 

(4.2) 

( 4.3) 

where 

W1 = !' = a J 1 ary , w2 = g' = ag 1 ary , w3 = e , 
al = [2- 1(m + Ｑ Ｉｾ＠ + 2- 1 (1 - m)(1 - 0 ln(1 - o] f 

+T117(1 - 0 + (1 - ｭＩｾＨ Ｑ Ｍ 0 ln(1 - O(aj ［ ｡ｾＩ Ｌ＠

a2 = Ｍ ｭｾ ｪＧ Ｌ＠

a3 = - [2- 1(1 ＫｭＩｾＫ＠ T 1(1 - m)(1 - 0 ln(1 - 0] g, 

a4 = ｾｭｓｧＧ Ｌ＠ as = ｭｾＨｬ Ｍ 0 , 
(4.4) a6 = ｾＨ Ｑ Ｍ ｾ Ｉ＠ [1 + (1 - m) ln(1 - Of'], 

a7 = 5 (1 - ｭＩｾＨ Ｑ Ｍ 0 ln(1 - Og', 

a8 = - [T 1(m + Ｑ Ｉｾ＠ + T 1(1 - m)(1 - 0 ln(1 - 0] 9 

- (1 - ｭ ＩｾＨ Ｑ Ｍ 0 ln(1 - O(og;ao, 
ag = -:- (1 - ｭ ＩｾＨ Ｑ Ｍ 0 ln(1 - Og' , 

a 10 = - 2mSj', au = Ec f" , a12 = Ec(S/ >-.)g" . 
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The boundary conditi ons (2.20) can be expressed as 

(4.5) 
ｗＱＨｾ Ｌ ＰＩ＠ = ｦＨｾ Ｌ ｏ Ｉ＠ = ｗｾＨｾ Ｌ ｏＩ＠ = ｧＨｾ Ｌ ｏ Ｉ＠ = 0, 

It may be remarked that a6 which is the coefficient of 8Wd ｡ｾＬ＠ i = 1, 2, 3 
in Eqs.(4.1) - (4.3) will be positive ｷｨ ･ ｮｾ ＼＠ 1 - exp[(m - 1)- 1] as f' > 0 
(0 < f' :S 1) in (0 < 7J :S 1700). However a6 becomes negative for some 7J when 
ｾ＠ > 1- exp [( m - 1)-1 ] . When a6 is positi ve, Eqs. ( 4.1) - ( 4.3) are parabolic partial 
differentia l equations and well-posed. Equations (4.1)- (4.3) under ini t ial condi-
tions given by Eqs. (2.14) - (2.16) and boundary conditions (4.5) can be solved 
by using an implicit finite-difference scheme. When a6 < 0, the problem is no 
longer well-posed and t he forward integration method fails [13]. Such equations 
are called singular paraboli c partial differential equations [10]. Physicall y, the 
change in the sign of a6 is attributed to the change in the direction of flow of 
information as explained in [13]. 

In order to overcome the diffi culty mentioned above, in the fini te-difference 
scheme we have used either forward or backward differences in ｾ＠ direction consis-
tent with the direction of the flow of information. In the 7J direction, we have used 
the central difference scheme. This solution technique is based on the technique 
used by CARTER [18] and the detailed description of this technique is given by 
W IL LIAMS and RHYNE [13]. Hence it is not presented here. Figure 2 shows the 
computational region and the behaviour of the coeffi cient a6· 

t:l 
0 
·a 

:::1 

a < 0 o 6 (/) ..... 
0 
Q) 

ｾ＠

1 - exp[ -(1-m)- 1] 1.0 

FIG. 2. Schematic representation of computational region. 

We have also studied the effect of step sizes t:.ry and ｴＺＮ ｾ＠ and the edge of the 
boundary layer represented by 7Joo on the solution in order to optimize them. 
Consequently, the step sizes t:.ry = 0.05, ｴＺＮｾ＠ = 0.01 and 7]00 = 10 have been used 
for the computation. 
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5. Results and discussion 

In order to verify the analysis and to check the accuracy of t he present method, 
we have compared our dimension less surface shear stress parameter (f" ( ｾ Ｌ＠ 0)) 
for S = 0 (no magnetic fi eld) with that of WILLI AMS and RHYNE [13] and for 
S = m = 0 (fl at plate case without magnetic field) with that of HALL [6], DEN-
NIS [7], WATK INS [9], I NGHAM [10], TADROS and KIRI<HOPE [11] and WILLIA MS 
and RHYNE [13]. Al so, we have compared our dimensionless surface shear stress 
parameter (J"(t*, 0)) and the x-component of t he induced magnetic fi eld on the 
surface (g'(t* , O)) for m= 0 (fl at plate case) with those of I NGHAM [14]. For 
ｾ＠ = 1, we have compared the surface shear stress (f"(O)) and the x-component 
of the induced magnetic fi eld (g'(O)) with those of ATH [16]. ｆ ｯｲｾ］＠ 1, S = 0, 
Pr = 0.73 we have compared the surface shear stress (f"(O)) and the surface heat 
transfer ( -B' (O)) with those of WATANABE [17]. In all the cases the results are 
found to be in excellent agreement. Hence for t he sake of brevity, the compari-
son is not shown here. It may be noted that for direct comparison with N ATH 
[16] we have to multiply the shear stress parameter f"(O ) by (2 - {3) 112 where 
{3 = 2m/ (m + 1) and with WATANABE [17], we have to multiply f" (O) and B' (O) 
by [2/(m + 1)jl /2 . 

We have obtained the solution of (4.1)- (4.3) for the pressure gradient par-
ameter m({3) in the range m1 ｾ＠ m ｾ＠ 1 ({31 ｾ＠ {3 ｾ＠ 1) and for several values of 
the magnetic parameter S (0.125 ｾ＠ S ｾ＠ 0.75). 

The solution for m = 1 ({3 = 1) is of interest because for this case a5, which 
is the coefficient of Ｘｗ ｩＯ Ｘｾ Ｌ＠ i = 1, 2, 3, in (4.1) - (4.3), is positive for ｡ ｬｬ ｾ ＼＠ 1. 
In this case, it takes an infini te t ime for a signal from the line x = 0 to reach 
any point x downstream. The flow develops under the influence of the unsteady 
acceleration, the viscous forces and magnetic field and the imposed pressure 
gradient. This type of flow has been discussed in detail by STEWARTSON [19]. 

For m1 ｾ ｭ ＼＠ 1 (m1 < 0), a6 changes sign ｢･ｴｷ･ ･ ｮｾ ］＠ 0 ｡ｮ､ｾ ］＠ 1 (Fig. 2). 
The region where a6 < 0 represents the region where the fl ow at a given x station 
is affected by conditions at x = 0. The case m = m1 (m1 < 0) represents the 
unsteady development of the incipient separation profile [13]. m1 = - 0.0842, 
- 0.0773, - 0.0667 and - 0.0508 forS = 0.125, 0.25, 0.50 and 0.75. 

The variation of the surface shear stress ＨＡＢ ＨｾＬ＠ 0)), the x component of the 
induced magnetic fi eld at the surface Ｈ ｧＧＨｾ Ｌ＠ 0)) and the heat transfer at the sur-
face ( - {} ' ( C 0)) with the dimensionless time ｾ＠ for various values of the pressure 
gradient parameter m and the magnetic parameter S are shown in Figs. 3 - 8. 
From the results it is evident that there is a smooth transition from the Rayleigh 
solution ｡ｴｾ ］＠ 0 (i.e., at t* = 0) to the Falkner - Skan type of solution ｡ｴｾ ］＠ 1 
(i .e., as t* ---1 oo when the steady-state is reached). For the pressure gradient pa-
rameter m > m0, which depends on the magnetic parameterS, the surface shear 
stress ＨＡＢＨｾ Ｌ＠ 0)) increases when ｾ＠ increases from zero to 1, but for m < mo it 
decreases. On the other hand, the x component of the induced magneti c fi eld at 
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1.5 .-------------, 

m= 1 

1.0 
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0.0 L.._ _ _._ _ __._ __ ..._ _ _._ _ __,. 
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the wall ＨｧＧＨｾＬ＠ 0)) and the surface heat transfer ( - e' (C 0)) decrease for all values 
of m and S when ｾ＠ increases from zero to 1 except for m = 1 and S ｾ＠ 0.125 
ｷｨ･ｮ Ｍ ｻＺｽ Ｇ ＨｾＬ＠ 0) sli ghtly increases ｷｩｴｨｾﾷ＠ For m= 1, S = 0.5, Pr = 0.73 ｦＢＨｾ Ｌ＠ 0) 
increases by about 68% ｷｨ･ｮｾ＠ increases from zero to 1, but g'(C 0) and Ｍ ＸＧＨｾ Ｌ＠ 0) 
decrease by about 28% and 21%, respectively. For m = 0.3333 J"(C ), ｧＧＨｾ Ｌ＠ 0) 
and Ｍ ｻＺＩＧＨｾ Ｌ＠ 0) decrease, respectively, by about 2.3%, 41% and 40% ｡ｳｾ＠ increases 
from zero to 1. Al so for all C the shear stress, the x component of ｴｨ ｾ＠ induced 
magnetic fi eld and the heat transfer (!" ＨｾＬ＠ 0), g' ＨｾＬ＠ 0), Ｍ ＸＧＨｾ Ｌ＠ 0)) decreases as 
the magnetic parameter S increases. For example, when ｾ＠ = 0.5, m = 0.3333, 
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Pr = 0.73, f" (C O), g' (CO) and Ｍ ＸＧ Ｈ ｾ Ｌ Ｐ Ｉ＠ decrease by about 29%, 17% and 22%, 
respecti vely, as S increases from 0.125 to 0.75. For a given value ｯｦｾ＠ Ｈ ｾ＠ > 0), S 
and Pr, ＯＢ Ｈ ｾ Ｌ＠ 0), ｧＧ ＨｾＬ＠ 0) and Ｍ ｂ Ｇ Ｈｾ Ｌ＠ 0) decreases as the pressure gradient parame-
ter m decreases from 1 to - 0.0408. The percentage reduction ｩｮＯＢ Ｈ ｾ Ｌ＠ 0), g'(C 0) 
and Ｍ ｂＧＨｾ Ｌ＠ 0) for ｾ＠ = S = 0.5, Pr = 0.73 is about 54, 14 and 21, respectively, 
as m decreases from 1 to - 0.0408. Finally it may be remarked tha t the effect 
of variation of m or S on f" ( ｾ Ｌ＠ 0), g' ( ｾ Ｌ＠ 0) and - B' ( ｾ Ｌ＠ 0) is most pronounced for 
ｾ＠ = 1 (i.e., when the steady state is attained). 
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FIG. 8. Vari ation of the heat transfer parameter at the surface Ｍ ＸＧＨ ｾＬ Ｐ Ｉ＠ ｷ ｩｴｨ ｾ＠ for 
S = 0.5 and 0.75, Pr = 0.73, Ec = 0.1. -, S = 0.5; --- -, S = 0.75. 

The physical problem considered here depends on the magnetic field H , elec-
trical conductiv ity a and thermal d iffusivity a . These parameters enter the 
dimensionless equations (2.10) - (2.12) as magneti c parameter a (which is the 
square of the ratio of the Alfv en speed t o the free stream velocity), magnetic 
Prandtl number a (which is the ratio of the viscous to magnetic diffu sivit ies), 
and the fl uid Prandtl number P r (which is the ratio of the kinematic viscosity to 
the thermal diffu sivity) , respectively. Here, we quali tatively discuss the effects of 
these parameters (S, -A , Pr) on our problem. 
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At the start of the motion (i.e., at ｾ＠ = 0), the fl ow is independent of t he 
magnetic parameter S and the magnetic Prandtl number>., and the effect of these 
parameters increases ｷ ｩ ｴｨ ｾＭ For fi xed values of >. and Pr, the viscous, magnetic 
and thermal boundary layers continue to thicken and the surface shear stress 
ＨＡ Ｂ ＨｾＬＰＩＩＬ＠ x-component of the induced magnetic fi eld on the surface Ｈ ｧ ＧＨｾＬｏＩＩ＠
and the surface heat t ransfer ( Ｍ Ｘ Ｇ ＨｾＬ＠ 0)) decrease as the magnetic parameter 
S increases until at S = 1 the entire flow is plugged (i .e., j,g,e all tend to 
zero as S --t 1). T his is due to the induced current which produces a magnetic 
counter-field that annuls the ent ire fl ow field. Simil ar trend has been observed 
by G LAUERT [20], TAN and WANG [21] and DAS [22] for the fi at plate case. 

The effect of the magnetic P randtl number >. on the fl ow fi eld is signifi cant . 
For zero electri cal conductivi ty >. = 0 and the prob lem reduces to the classical 
boundary layer case. For infinit e electrical conduct ivit y, >. --t oo. For this case 
the magnetic li nes of forces are frozen into the fl uid and no interaction between 
the magnetic fi eld and fl ow field takes place. For small >. , the viscous boundary 
layer is much thinner than the magnetic boundary layer, and for large >. it is 
the other way around. The surface shear stress ＨＡＢＨｾ Ｌ＠ 0)), x-component of the 
induced magnetic fi eld (g'(CO)) at t he surface and the surface heat t ransfer 
( - e' ( ｾＬ＠ 0)) decrease with increasing magnetic Prandtl number >. . 

The flu id Prandtl number Pr affects only the thermal fi eld. For small Pr 
(P r < 1), the thermal boundary layer is thicker than the viscous boundary layer , 
and for large Pr (Pr » 1) the thermal boundary layer is much thinner than 
the viscous boundary layer , consequent ly, the surface heat transfer ( -B' (C 0)) 
increases with Pr . 

6. Conclusions 

It is evident from the results that there is a smooth t ransition fr om the 
Rayleigh solut ion at ｾ＠ = 0 (t* = 0) to the Falkner - Skan type of solution at 
ｾ＠ = 1 (t* --t oo when the steady state is reached). T he surface shear stress and 
the surface heat transfer parameters increase or decrease with time when the 
pressure gradient parameter is greater or less than a certain value. However , 
the x-component of the induced magnetic fi eld at the surface decreases as t ime 
increases whatever may be the value of the pressure gradient parameter . The 
surface shear stress, the x-component of the induced magnetic fi eld at the sur-
face and the surface heat transfer decrease as the pressure gradient parameter 
decreases or the magnetic parameter or the magnetic Prandt l number increases. 
However , t he effect is more pronounced for large t imes. 
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