Arch. Mech., 49, 5, pp. 977-990, Warszawa 1997

Development of flow and heat transfer on a wedge
with a magnetic field

M. KUMARI (BANGALORE)

THE DEVELOPMENT of the flow and heat transfer of an incompressible laminar viscous
electrically conducting fluid on a stationary infinite wedge with an applied magnetic
field has been studied when the fluid in the external stream is set into motion im-
pulsively and at the same time, the surface temperature is suddenly raised from its
ambient temperature. The effects of the induced magnetic field, viscous dissipation
and Ohmic heating have been taken into account. The mathematical problem has
been formulated in such a way that at time ¢ = 0, it reduces to Rayleigh type of
equation and as time t — oo, it tends to Falkner—Skan type of equation. The scale of
time has been chosen such that the traditional infinite region of integration becomes
finite which considerably reduces the computational time. The singular parabolic
partial differential equations governing the flow have been solved numerically using
an implicit finite difference scheme. There is a smooth transition from the Rayleigh
solution at £ = 0 (t* = 0) to Falkner—Skan type of solution at £ =1 (t° — oo when
the steady state is reached). The surface shear stress and the surface heat transfer
increase or decrease with time when the pressure gradient parameter is greater or
less than a certain value. However, the z component of the induced magnetic field
at the surface decreases as time increases.

1. Introduction

FLUID DYNAMIC PHENOMENA involving unsteady boundary layers are of great
theoretical and practical interest. Much of the work that has been done in this
area is related to external aerodynamics. However, there are also several appli-
cations in biofluid dynamics, hydronautics and manufacturing. Excellent review
papers on the unsteady boundary layers have been contributed by STUART [1],
RILEY [2], TELIONIS [3] and McCROSKEY [4].

When the external stream is impulsively set into motion at time ¢ = 0 with
uniform velocity along the plane of symmetry of the stationary infinite wedge,
the inviscid flow over the wedge is developed instantaneously. But the viscous
flow within the boundary layer develops slowly and it reaches a steady flow
only after a certain period of time. The development of the boundary layer
with time takes place in two stages. For small time, the flow is dominated by
the viscous and pressure gradient forces and the unsteady acceleration. The
convective acceleration plays only a minor role in the flow development. On
the other hand, for large time the flow is dominated by the viscous forces, the
pressure gradient and the convective acceleration. During this phase the unsteady
acceleration plays only a minor role in the flow development. For ¢ = 0, the flow
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is governed by the Rayleigh equation and for ¢t — oo it is governed by the
Falkner - Skan equation. This change in the character of the flow manifests itself
mathematically as a change in character of the equations which describe the fluid
motion.

STEWARTSON [5] first studied the impulsive motion over a flat plate and
found that for ¢ > 1, the flow undergoes a transition from Rayleigh flow to
Blasius flow. He [5] noted certain difficulties in the mathematical formulation
of the problem (i.e., the transition from the Rayleigh flow to Blasius flow is
not smooth) and related it to the physics of the flow. Since then several authors
[6 —11] have studied this problem using different methods. SMITH [12] has studied
the analogous wedge problem and encountered the same difficulties which arise
in the case of the flat plate. In order to overcome this difficulty, WiLLIAMS and
RHYNE [13] have formulated the problem of impulsive motion over a wedge in
a new set of scaled coordinates which includes both the short time solution
(Rayleigh solution) and long time solution (Falkner - Skan solution) and there
is a smooth transition from Rayleigh solution to Falkner - Skan solution. In the
above studies, the effect of the magnetic field was not considered. INGEAM [14]
has studied the effect of the magnetic field on the flow past an impulsively started
semi-infinite plate.

The present investigation considers the development of boundary layer flow
and heat transfer with time of an electrically conducting fluid over a stationary
infinite wedge with a magnetic field when the fluid in the external stream is set
into motion impulsively and at the same time the temperature of the wall is
suddenly raised from that of the surrounding fluid. The effects of the induced
magnetic field, viscous dissipation and Ohmic heating have been included in the
analysis. The mathematical problem has been formulated in such a way that for
time t = 0, it reduces to Rayleigh type of equations and for ¢ — oo it reduces
to Falkner-Skan type of equation. The scale of time has been selected such
that the traditional infinite region of integration becomes finite which consider-
ably reduces the computational time. The singular parabolic partial diferential
equations governing the flow have been solved numerically using an implicit finite
difference scheme. The particular cases of the present results have been ccmpared
with those of HALL [6], DENNIS [7], WATKINS [9], INGHAM [10, 14], TADROS and
KIRKHOPE [11], WILLIAMS and RHYNE [13], NATH [16] and WATANABE [17].

2. Problem formulation

We assume that for ¢ < 0, an infinite wedge lies in the (z,y) plane vith the
leading edge at @ = y = 0 in the ambient fluid. The wall T;, is assumed to have
the same temperature as that of the surrounding fluid (i.e., Ty, = T) which
is electrically conducting. A magnetic field Hy is applied in the z dire:tion at
large distance from the surface of the wedge. At time ¢ = 0, the external stiream
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away from the wedge is impulsively set into motion with velocity Uy parallel
to the surface of the wedge (Fig.1). At the same time the temperature of the
wall is raised to T, from T, the temperature of the surrounding fluid. The
effects of the induced magnetic field, viscous dissipation and Ohmic heating
have been included in the analysis but the Hall effect has been neglected. It
is assumed that there is no applied voltage which implies the absence of an
electric field (E = 0). The electrical currents flowing in the fluid give rise to an
induced magnetic field which would exist if the fluid were an electrical insulator.
It has been assumed that the normal component of the induced magnetic field
H, vanishes at the wall and the parallel component H; approaches its given
value Hj at the edge of the boundary layer [15]. The free stream temperature
is constant. The solution for small time is described by the Rayleigh’s type of
equation. For t — oo, the steady-state equations as given by GRIBBEN [15] and
NATH [16] are obtained. Under the above assumptions, the boundary layer and
Maxwell’s equations governing the unsteady flow can be expressed as [14 - 17]

(2.1 ug + vy = 0,
(2:2) (Hi)z + (Ha)y = 0,
(2.3) Up + Uy + vuy = —o Y p+ woHZ/2): + Viyy

+(po/0) [Hi(H1)e + Ha(Hr )y,
(24) (Hl)t + u(Hl)I =% U(Hl)y = Hlux = quy = al(Hl)yyy

(2.5) T; + uly + Ty = vPr Ty, + (u/cp)uz + (0c,0) "L [(H)y)?,
where

) —07 M (p+ poH3 /2)e = Un(Un)z — (1t0/0)Ho(Ho)z

B Up=Uz™, Hy = Hz™, Pr=pla.
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The boundary conditions for ¢ > 0 are given by

u(z; 0,4) = v(z;0,2) = Hslz,0,8) =0,
(2.7) 0H,(z,0,t)/0y = 0, T2, 0.8) = T
u(z,00,t0) = Ugle), Hilz,eo;t)=Hglz); Tiz 00l =T

The initial conditions at ¢t = ¢y (< 0) are expressed in the form
(2.8) u(r,y,to) =0,  Hi(z,y,to) = Ho,  T(z,y,t0) =T

Here z and y are the distances along and perpendicular to the surface, re-
spectively; w and v are the velocity components along the z and y directions,
respectively; H; and Hs are the components of the induced magnetic field along
the « and y directions, respectively; Uy and Hy are the velocity and the applied
magnetic field in the z direction, respectively; p is the pressure; Pr is the Prandtl
number; 7' is the temperature; p and v are the density and kinematic viscosity,
respectively; ug is the magnetic permeability; a and «a; are, respectively, the ther-
mal diffusivity and magnetic diffusivity; U and H are the velocity and magnetic
field in the free stream, respectively; m is the index in the power-law variation
of velocity, wall temperature and applied magnetic field; the subscripts ¢, z and
y denote derivatives with respect to ¢,  and y, respectively; and the subscripts
w and oo denote conditions at the wall and in the free stream, respectively.

In order to reduce the number of independent variables from three to two in
Eqgs. (2.1)-(2.5) and to reduce these equations to dimensionless form, we apply
the following transformations:

n= (U 22mD2e12y £ =1 - exp(-Unt/x),
t* = Upt/z, u=1vy, v=—%¢,, Hi=¢y, Hy=—-¢z,
Y(z,y,t) = (U)22tPD2 2 56 ), Ee = U?/lep(Tuo ~ Too)),
(29)  é(z,yt ) (H?vJU)2 02 172 ¢ ),
T(2,9,t) = Too + (Tw — Teo)0(E,m), S = poH?/(eU?),
Tw — Too = (Tywo — Teo)z?™, A=v/ay, a = (poo) ™Y,
u=Uz"f'(§n), Hi=Hz"g(n),
B =2m/(m+1), m> -1,
to Egs. (2.1) - (2.5) and we find that Eqgs. (2.1) and (2.2) are identically satisfied
and Eqgs. (2.3) - (2.5) reduce to
(210)  f"+27 [(m+ 1)+ (1 —m)(1 - €)In(1 -] ff"
+mé(L— f%) + 27 (1 = )" + (1 - m)E(1 ~ &) In(1 - €) f"(81/0¢)
—tmS(1—g%) — 27 [(m + )¢ + (1 - m)(1 - §) In(1 - )] Sgg"
= £(1—&)[1+(1-m)ln(1 - ¢&)f'] (8f'/0€)
+ S(1 - m)é(1 —€)In(1 - €)g'(3g' /9€),
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(211) A"+ N (mA1)E(fg" - f9)+27H (1 —m)(1-€) In(1-€)(fg" - f"g)
271 - €&)ng" + (1 - m)&(1 — €) In(1 - )9”(c'9f/8£)

— (1 —=m)é(1 — &) In(1 — €)f"(g/0¢)

={1-H1+( m)ln(l— )f'] dg'/9¢

— (1 —=m)é(1 - &) In(1 - €)g'(8f'/0€),

(2.12)  Prl¢" 427 [(m+ 1) + (1 —m)(1 — &) In(1 — €)] £6'
—2mSf'0+ 27 (1= )’ + (1 — m)E(1 — €) In(1 — £)6'(f /9€)
+ B [(f")? + (S/M(g")] = €0 - &) [1+ (1 - m) In(1 - £)"] (96/95).

The boundary conditions are given by

f(f,o) = fl(iv()) = 9(6’0) = 9”(610) =0, 9(6,0) =1,
Fli6oo) = gEoa) =1, 8, 00)=0

Here € and 7 are the transformed and dimensionless independent variables; t*
is the dimensionless time; ¥ and ¢ are the dimensional fluid and magnetic stream
functions, respectively; f' is the dimensionless velocity; ¢' is the dimensionless
component of the induced magnetic field; f and g are the dimensionless fluid and
magnetic stream functions, respectively; 6 is the dimensionless temperature; S is
the dimensionless magnetic parameter; (3 is the pressure gradient parameter; Ec
is the Eckert number; o is the electrical conductivity; A is the magnetic Prandtl
number; T is the value of Ty, at * = 0; and prime denotes derivative with
respect to n.

Equations (2.11) —(2.13) are partial differential equations, but for £ = 0 and
¢ = 1 they reduce to ordinary differential equations. For £ = 0, the equations are

(2.13)

(2_14) f/u 4 9= nflf e 0
(2.15) A" + 27 ng" =0,
(2.16) Pr1¢" + 2708’ + Be (/) + (S/M)(g") =0

For £ = 1, the equations are given by
(217) "+ 27 Y m+ D" +m(1l— F2) —mS(1 —g?)
— 27 m +1)Sg¢" =0,
(2.18) A_igm o 271(771 4. 1)(ng o ng) — 0,
(219)  Pr 0" 4+27'(m +1)f6' —2mf'6 + Ec [(f”)2 + (S/,\)(g")z} =0

The boundary conditions for (2.14) - (2.19) are expressed as
£(0) = £'(0) = g(0) =g"(0) =0,  6(0) =1,

(2.20)
f'(00) = g'(00) =1, 6(c0) = 0.
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It may be remarked that Eq.(2.10) for S = 0 reduces to that of WILLIAMS
and RHYNE [13]. Equations (2.10) and (2.11) for m = 0 are essentally the
same as those of INGHAM [14]. Also, Eq.(2.10) for m = S = 0 is tie same
as that of HALL [6], DENNIS [7], WATKINS [9], INGHAM [10] and TAD20S and
KIRKHOPE [11]. When ¢ = 1, the self-similar equations (2.17) and (2.18 are the
same as those of NATH [16] if we apply the following transformations

-8,  fm)=2-B" Am), B<2,

(201 7
g(n) = 2—-B8)Y2q(m), B =2m/(m+1).

Also, for S = Ec = 0 and for constant wall temperature case (the term mf'0 =
0), Egs.(2.17) and (2.19) reduce to those of WATANABE [17] if we apply the
transformations

n=12/(m+ 1),  f(n)=12/(m+ D] fi(m),

2.22
) 0(n) = 61(m).

3. Analytical solution

Equations (2.14) — (2.16) under boundary conditions (2.20) admit closed-form
solution. The solution of Eq. (2.14) under conditions (2.20) is expressed as

(3.1) f=mner (17/2) + (1) /2 [exp(~n2/4) - 1],

hence

(35)  f'=erf(n/2),  f'=(m Vexp(—n’/),  f"(0) = ()%
Equation (2.15) is integrated once to yield the equation

(3.3) X lg"+27ing' —271g =0,

where the constant of integration is zero by virtue of the conditions g(0) =
¢"(0) = 0. Equation (2.22) under conditions (2.20) has the solution of the

form [14]:

(3.4) § =i

Equation (2.16) under conditions (2.20) for Pr = 1 yields the followng solu-
tion:

(3.5) 0 = erfc (n/2) + (Ec/2) exf (n/2) erfc (n/2).

http://rcin.org.pl
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Hence
(3.6) g = —Ec(w)’l/z exp(——n2/4)erf( /2) + (m) l/2(}3c—l)exp(—nz/ﬁl),
(3.7) 6'(0) = (27'Ec - 1)(m)"V/2.

Also, Eq.(2.16) under conditions (2.20) for Ec = 0 has the solution of the
form (3.7)

(3.8) 6 = erfc (Pr'/%y/2).
Hence
(3.9) 9 = —(Pr/n)Y? exp(—Prn?/4),  6'(0) = —(Pr/m)Y/2.

4. Numerical solution

It may be noted that Egs.(2.10) and (2.11) are coupled nonlinear partial
differential equations of parabolic type, whereas Eq. (2.12) is an uncoupled linear
parabolic partial differential equation. Equations (2.10) —(2.12) under boundary
conditions (2.13) and initial conditions (2.14) - (2.16) can be solved numerically.
Equations (2.10) - (2.12) can be rewritten as

) 92w aWs W, B oW, OWy

(4.1) an? + ay an +G2W1+aaa—n+a4W2+as T + a7 —- 5
W, dWsy oW, oW, oW,

9 -1 = =
(4.2) ’)\ o7 5 4+ aj on + ag 817 ag € + ag o€ .
4, OW. oW5 oW
(4.3) pr! 31]3 + @i — (97] + a1oWs + an Wi + a1oWs = as'—é{—g,
where

Wy = f'=0af/on, W = g' = dg/dn, W3 =86,
271 m + )¢ + 2711 = m)(1 - €)In(1 - §)] f
+27 (1 = &) + (1 —m)&(L - €) In(1 — £)(f /3¢),

ay =

az = —m§f',
ag = — [27 1+ m)E + 27 (1 - m)(1 - &) (1 - §)] g,
a4 = EmSyq’, as = mé§(1 —¢§),

(44)  ag = £~ [1+ (1 —m)In(1 - )f],
a7 = §(1-m)§(1—£)In(1 - £)g',
as = — [27(m+1)¢ +27 (1 = m)(1 ~ ) In(1 - £)] ¢
(1= m)EQ — &) In(1 ~ £)(09/€),
ay = —(1 = m)§(1 ~ ) (1~ £)g’
aypp = —2mSf’, a1 = Ec f", a1z = Ec(S/\)g"
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The boundary conditions (2.20) can be expressed as

Wi(£,0) = £(£,0) = W5(£,0) = g(£,0) =0,  W3(£,0) =1,
Wi(€,00) = Wa(§,00) =1,  Wj(§,00) =0.

It may be remarked that ag which is the coefficient of dW;/9¢, i = 1,2,3
in Egs. (4.1) - (4.3) will be positive when € < 1 —exp[(m — 1)7'] as f' > 0
(0 < f<1)in (0 < < 7). However ag becomes negative for some n when
¢ > 1—exp[(m—1)"']. When ag is positive, Eqgs. (4.1) - (4.3) are parabolic partial
differential equations and well-posed. Equations (4.1) - (4.3) under initial condi-
tions given by Egs. (2.14) - (2.16) and boundary conditions (4.5) can be solved
by using an implicit finite-difference scheme. When ag < 0, the problem is no
longer well-posed and the forward integration method fails [13]. Such equations
are called singular parabolic partial differential equations [10]. Physically, the
change in the sign of ag is attributed to the change in the direction of flow of
information as explained in [13].

In order to overcome the difficulty mentioned above, in the finite-difference
scheme we have used either forward or backward differences in ¢ direction consis-
tent with the direction of the flow of information. In the n direction, we have used
the central difference scheme. This solution technique is based on the technique
used by CARTER [18] and the detailed description of this technique is given by
WiLLIAMS and RHYNE [13]. Hence it is not presented here. Figure 2 shows the
computational region and the behaviour of the coefficient ag.

M o
£
o 3
g o
=1 Y
= 5]
c
k2 a. >0 g
n | 6 5
= ag = “2
.‘:._JO j
=
& &
0 q
0 £ 1 -exp[-(1-m)-1] 1.0

F1G. 2. Schematic representation of computational region.

We have also studied the effect of step sizes Ay and A¢ and the edge of the
boundary layer represented by 1. on the solution in order to optimize them.
Consequently, the step sizes An = 0.05, A¢ = 0.01 and 7o, = 10 have been used
for the computation.
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5. Results and discussion

In order to verify the analysis and to check the accuracy of the present method,
we have compared our dimensionless surface shear stress parameter (f”(£,0))
for S = 0 (no magnetic field) with that of WILLIAMS and RHYNE [13] and for
S =m = 0 (flat plate case without magnetic field) with that of HALL [6], DEN-
NIS [7], WATKINS [9], INGHAM [10], TADROS and KIRKHOPE [11] and WILLIAMS
and RHYNE [13]. Also, we have compared our dimensionless surface shear stress
parameter (f"(t*,0)) and the z-component of the induced magnetic field on the
surface (¢'(t*,0)) for m = 0 (flat plate case) with those of INaGHAM [14]. For
¢ = 1, we have compared the surface shear stress (f"(0)) and the z-component
of the induced magnetic field (¢'(0)) with those of NATH [16]. For £ =1, S =0,
Pr = 0.73 we have compared the surface shear stress (f”(0)) and the surface heat
transfer (—6'(0)) with those of WATANABE [17]. In all the cases the results are
found to be in excellent agreement. Hence for the sake of brevity, the compari-
son 1s not shown here. It may be noted that for direct comparison with NATH
[16] we have to multiply the shear stress parameter f"(0) by (2 — 3)'/? where
B =2m/(m+ 1) and with WATANABE [17], we have to multiply f”(0) and 6'(0)
by [2/(m + 1)]*/2.

We have obtained the solution of (4.1)-(4.3) for the pressure gradient par-
ameter m(3) in the range m; < m < 1 (#; < # < 1) and for several values of
the magnetic parameter S (0.125 < S < 0.75).

The solution for m = 1 (8 = 1) is of interest because for this case ag, which
is the coefficient of dW;/9¢, i = 1,2,3, in (4.1) - (4.3), is positive for all £ < 1.
In this case, it takes an infinite time for a signal from the line z = 0 to reach
any point r downstream. The flow develops under the influence of the unsteady
acceleration, the viscous forces and magnetic field and the imposed pressure
gradient. This type of flow has been discussed in detail by STEWARTSON [19].

For m; < m < 1 (m; <0), ag changes sign between £ =0 and £ = 1 (Fig. 2).
The region where ag < 0 represents the region where the flow at a given z station
is affected by conditions at @ = 0. The case m = m; (m; < 0) represents the
unsteady development of the incipient separation profile [13]. m; = —0.0842,
—0.0773, —0.0667 and —0.0508 for S = 0.125, 0.25, 0.50 and 0.75.

The variation of the surface shear stress (f"(£,0)), the z component of the
induced magnetic field at the surface (¢'(£,0)) and the heat transfer at the sur-
face (—6'(¢,0)) with the dimensionless time ¢ for various values of the pressure
gradient parameter m and the magnetic parameter S are shown in Figs.3-8.
From the results it is evident that there is a smooth transition from the Rayleigh
solution at £ = 0 (i.e., at t* = 0) to the Falkner - Skan type of solution at { =1
(i.e., as t* — oo when the steady-state is reached). For the pressure gradient pa-
rameter m > my, which depends on the magnetic parameter S, the surface shear
stress (f”(£,0)) increases when ¢ increases from zero to 1, but for m < myg it
decreases. On the other hand, the z component of the induced magnetic field at
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F1G. 4. Variation of the surface shear stress f''(£,0) with £ for S = 0.5 ard 0.75.
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the wall (g'(£,0)) and the surface heat transfer (—8'(£,0)) decrease for all values
of m and S when ¢ increases from zero to 1 except for m = 1 and & < 0.125
when —6'(¢,0) slightly increases with €. For m =1, § = 0.5, Pr = 0.73 f"(&,0)
increases by about 68% when £ increases from zero to 1, but ¢'(§,0) and —€'(&,0)
decrease by about 28% and 21%, respectively. For m = 0.3333 f"(£,0), ¢'(£,0)
and —€'(¢,0) decrease, respectively, by about 2.3%, 41% and 40% as  increases
from zero to 1. Also for all £, the shear stress, the z component of th: induced
magnetic field and the heat transfer (f”(£,0), ¢'(£,0), —6'(£,0)) deaeases as
the magnetic parameter S increases. For example, when ¢ = 0.5, m = 0.3333,
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F1a. 5. Variation of the z-component of the induced magnetic field ¢'(£,0) with & for
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F1G. 6. Variation of the z-component of the induced magnetic field ¢'(£,0) with & for
S=05and 0.75. —, S=05, ----,5=0.75.

Pr = 0.73, f"(£,0), ¢'(£,0) and —6'(,0) decrease by about 29%, 17% and 22%,
respectively, as S increases from 0.125 to 0.75. For a given value of £ (£ > 0), S
and Pr, f"(£,0), ¢’(£,0) and —6'(£,0) decreases as the pressure gradient parame-
ter m decreases from 1 to —0.0408. The percentage reduction in f"(£,0), ¢'(&,0)
and —¢'(€,0) for ¢ = S = 0.5, Pr = 0.73 is about 54, 14 and 21, respectively,
as m decreases from 1 to —0.0408. Finally it may be remarked that the effect
of variation of m or S on f"(£,0), ¢'(¢,0) and —8'(¢,0) is most pronounced for
¢ =1 (i.e., when the steady state is attained).
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F1G. 7. Variation of the heat transfer parameter at the surface —6'(¢,0) with £ for
S =0.125 and 0.25, Pr = 0.73, Ec = 0.1. —, § =0.125; - - - -, § =0.25.
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FI1G. 8. Variation of the heat transfer parameter at the surface —'(£,0) with ¢ for
S=0.5and 0.75, Pr=0.73, Ec=01. —, §=05;, ——--, 5 =0.75.

The physical problem considered here depends on the magnetic field H, elec-
trical conductivity ¢ and thermal diffusivity a. These parameters enter the
dimensionless equations (2.10) - (2.12) as magnetic parameter a (which is the
square of the ratio of the Alfven speed to the free stream velocity), magnetic
Prandtl number o (which is the ratio of the viscous to magnetic diffusivities),
and the fluid Prandtl number Pr (which is the ratio of the kinematic viscosity to
the thermal diffusivity), respectively. Here, we qualitatively discuss the effects of
these parameters (S, A, Pr) on our problem.
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At the start of the motion (i.e., at £ = 0), the flow is independent of the
magnetic parameter S and the magnetic Prandtl number A, and the effect of these
parameters increases with £. For fixed values of A and Pr, the viscous, magnetic
and thermal boundary layers continue to thicken and the surface shear stress
(f"(€,0)), z-component of the induced magnetic field on the surface (g'(¢,0))
and the surface heat transfer (—6'(£,0)) decrease as the magnetic parameter
S increases until at S = 1 the entire flow is plugged (i.e., f,g,6 all tend to
zero as S — 1). This is due to the induced current which produces a magnetic
counter-field that annuls the entire flow field. Similar trend has been observed
by GLAUERT [20], TAN and WANG [21] and DAs [22] for the flat plate case.

The effect of the magnetic Prandtl number X\ on the flow field is significant.
For zero electrical conductivity A = 0 and the problem reduces to the classical
boundary layer case. For infinite electrical conductivity, A — oo. For this case
the magnetic lines of forces are frozen into the fluid and no interaction between
the magnetic field and flow field takes place. For small A, the viscous boundary
layer is much thinner than the magnetic boundary layer, and for large A it is
the other way around. The surface shear stress (f"(¢,0)), z-component of the
induced magnetic field (¢'(£,0)) at the surface and the surface heat transfer
(—6'(€,0)) decrease with increasing magnetic Prandtl number .

The fluid Prandtl number Pr affects only the thermal field. For small Pr
(Pr < 1), the thermal boundary layer is thicker than the viscous boundary layer,
and for large Pr (Pr > 1) the thermal boundary layer is much thinner than
the viscous boundary layer, consequently, the surface heat transfer (—6'(¢,0))
increases with Pr.

6. Conclusions

It is evident from the results that there is a smooth transition from the
Rayleigh solution at &€ = 0 (t* = 0) to the Falkner-Skan type of solution at
¢ =1 (t* = oo when the steady state is reached). The surface shear stress and
the surface heat transfer parameters increase or decrease with time when the
pressure gradient parameter is greater or less than a certain value. However,
the z-component of the induced magnetic field at the surface decreases as time
increases whatever may be the value of the pressure gradient parameter. The
surface shear stress, the z-component of the induced magnetic field at the sur-
face and the surface heat transfer decrease as the pressure gradient parameter
decreases or the magnetic parameter or the magnetic Prandtl number increases.
However, the effect is more pronounced for large times.
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