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Steady non-uniform extensional motions
as applied to kinematic description
of polymer fibre formation

S. ZAHORSKI (WARSZAWA)

IT 1s sHowN that the concept of steady non-uniform extensional motions (NUEM)
can be used for kinematic description of polymer fibre formation, taking into account
the variable geometry and shearing effects. To this end, pretty general, materially
non-uniform constitutive equations, depending on temperature distributions, struc-
ture formations, etc., are applied and the linearized perturbation procedure is de-
veloped. Especially simple expressions describing the additional velocity fields are
obtained for the first order approximation.

1. Introduction

IN OUR PREVIOUS PAPERS [1, 2], we discussed the concept of steady non-uniform
extensional motions (called briefly NUEM) of materially non-uniform (non-ho-
mogeneous) fluids and solids. We also mentioned possible applicability of the
above concept to various fibre-forming processes and certain flows realized in
extensometers. An example of application to the case of cold drawing of polymer
fibres was presented in [3].

In this paper, we use the concept of steady NUEM to describe many realis-
tic fibre-forming processes, assuming that the fundamental motions are quasi-
elongational and the shearing effects, resulting from the axial variability of fibre
geometry, are taken into account. A motivation for the present description arises
from the following requirements.

1. We want to apply relatively general constitutive equations describing vari-
ous fundamental quasi-elongational motions. An assumption of particular rhe-
ological models, frequently made for description of fibre-forming processes, is
not necessary. Such an approach to the problem enables effective application
either of experimental data or numerical results calculated for simpler models
(Newtonian, Maxwellian, etc.).

2. Material properties of fibres in the processes considered essentially depend
on temperature distributions, crystallization effects, structure orientation etc.
(cf. [4]). The concept of steady NUEM of materially non-uniform materials re-
places, in some sense, arbitrary distributions of mechanical properties varying
from position to position in media which are homogeneous in reality. Moreover,
there exists some possibility of smooth transitions from viscous to elastic mate-
rials or from fluid-like to solid-like behaviour.

http://rcin.org.pl



964 S. ZAHORSKI

3. We try to apply a consequent linearization process throught the corre-
sponding perturbation procedure. To this end, an asssumption of thin-thread
(layer) approximation, usually satisfied in fibre processing, is very useful.

The concept considered generalizes, to some extent, that of steady flows with
dominating extension (briefly called FDE) developed previously in [5] and applied
to melt-spinning processes in [6]. We must emphasize, however, that the concept
of steady FDE does not satisfy the requirement 1 and 3. The requirement 2
remains valid only for the properly defined viscosity function.

In Sec.2 the general quasi-elongational motions and the corresponding con-
stitutive equations are considered. Section 3 is entirely devoted to tae addi-
tional superposed motions describing the variability of fibre geometry and the re-
lated shearing effects. Moreover, we introduce the auxiliary concept of ttin-tread
(layer) approximation. The continuity conditions in local and global forms are
discussed in Sec. 4. Sections 5 and 6 contain the equilibrium equations and the
boundary conditions presented for the first and second order approximasions. In
Sec. 7 the corresponding solutions of the previously derived governing ejuations
are obtained for viscoelastic isotropic materials. Certain particular cases are dis-
cussed in greater detail. The main results are quoted in Sec. 8 in a forn of final
remarks.

2. Quasi-elongational motions treated as steady non-uniform extensional
motions (NUEM)

Consider the isochoric, quasi-elongational motion for which the defarmation
gradient at the current time ¢, relative to a configuration at time 0, s of the
diagonal form in cylindrical coordinates:

A2 0 0
(2.1) FX,t)]=| 0 AY2 o], detF =1,
0 0 A

where the non-uniform stretch ratio A(X,t) depends on time ¢ as well & on the
position X of a particle in the reference configuration k at time 0. We use the
following definitions:

(2.2) A=V/Vy, e=In\

where ¢ is the Hencky measure of strain; V and Vj denote the variable axial
velocity and the velocity at the exit (feeding velocity), respectively. Tle above
quasi-elongational motion is consistent with the definition of NUEM infroduced
in [2].
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On the basis of Eq. (2.1), the velocity gradient (strain rate) can be written as

=V 0 0
‘ pn-l
(2'5) [L(Xat)]—[FF }— —%V’ o
0 0 %

where V' denotes the axial component of the velocity gradient and the primes
denote derivatives with respect to the axial coordinate z.

Equations (2.1) and (2.3) lead to the following forms of the left Cauchy — Green
deformation tensor B and the first Rivlin- Ericksen kinematic tensor Ay (cf. [7]):

ooy o
AT o000 14 -
(24)  BEH=FF)=[0 xt ofl=]|0 5 0]
0 A2 V2
0 e
0 7
; .
- g U
A -V’ 0 0
(25) AX =] -2 o|=]0 v o],
A ; 0 0 2V
2_
L0 0 7

respectively. In the above expressions we have used the relations:
(2.6) A=V'A,  é=V,

where the dots denote differentiation with respect to time.

For steady NUEM the gradient L as well as the kinematic tensor A; do not
depend on time. Thus, according to our previous considerations [2], the constitu-
tive equations of materially non-uniform, simple, locally isotropic materials can
be expressed in the form:

(2.7) T(Xat) = h(A](X),B(X,t),Q(X),X),

where T is the non-uniform stress tensor, and h denotes the non-uniform isotropic
function, depending on the reference configuration k. In the case of incompress-
ible materials T should be replaced by the extra-stress tensor Tp and the de-
pendence on the scalar density g should be disregarded. The question whether
Eq. (2.7) describes a fluid or solid can be answered having known the correspond-
ing isotropy (internal symmetry) group (cf. [7]).
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For steady quasi-elongational motions, describing the majority of fibre form-
ing processes, in which material properties depend solely on the coordinate z,
there exists a unique correspondence between the material Z (in the reference
configuration k) and the spatial coordinate z. In particular, we may assume that

v

(2.8) 2= —2, z =i, Z =Tt
Vo

Thus, Eq. (2.7) can be written in the particular form:

(2.9) T(z) = k(V'(2), V(2), 0(2); 2),

where k is the tensor function of the indicated scalar arguments. If necessary,
the pars of arguments A, \ or €, € can be used instead of V', V.

For our present purposes the way of reasoning leading to the constitutive
equation (2.7) has not been presented with all details (to this end cf. [1, 2]); the
simplified Eq. (2.9) can also be taken as a constitutive postulate. Therefore, we
assume that the stress (or extra-stress) components in the motions considered
depend on the velocity gradient V', the velocity V, the density ¢ and the coor-
dinate z characterizing an explicit dependence of the material properties on the
position along the axis.

Since for axisymmetric, quasi-elongational motions only normal components
of stresses are meaningful, we can also write

Tll = T22 = Ul(V,,V, Q,Z),
T = a3(V',V, 0, 2),
P =

T8 7l = g3 -y = a(V', V5 2).

(2.10)

3. Additional motion and shearing effects

In the motions considered, the inclination of fibre surface is usually a small
quantizy, i.e. R' = 0(g), ¢ = Ro/L < 1, where R, Ry and L denote the outer
radius of the filament, the outer radius at the exit (or the orifice radius) and the
total length, respectively.

In what follows, we assume that some small additional velocity field, viz.

(3.1) w(r,z) = 0(e)

is superposed on the fundamental, quasi-elongational motion described by the
axial velocity V(z). Under the above assumption all the quantities relevant for
the motions considered undergo some small linear increments denoted by A. We

have, in particular,

(3.2) L* =L+ AL, F* =F + AF, etc.
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For the deformation gradients, velocity gradients, deformation tensors and
kinematic tensors, we obtain the following matrices:

2 vz ¥ N
0
[AF}— 0 ‘*5'[/—2?.0 VO i
I 0 O V—Ozw
(3.3)
" 0 (VO)UZ =
Ve - v) W%
0
[AB] = 0 v 0 ,
Vo 1/2 U
ki T 2
(V) o ! vz
and
du Ju ou du  Jw
o | o e et
(34) [AL]=| 0 = 0|, [aA]= o 2= 0 |,
Jw ow du Ow Jw
v e PR LEY g g
o U 5 5z o 8z

where u and w denote the radial and axial components of the additional velocity
w, respectively. In the above formulae we have used the simple relations:
w 1 ow Vo

35 A==, AN==—, A\l=-—uw.
( ) VQ V() 82’ V2

The constitutive equations (2.10), after taking into account the increments
resulting from the additional velocity field (3.1), can be presented in the following
general form, linear with respect to u and w:

T = o 4 %w+ g;lf %+%AQ+G%’
T2 = oy + %W"F g;l, g—er%Awﬁ%,
(3.6) T3 = gy + %wﬂu g;?’, g—f # ‘98—‘;3,59,
T =y (% + g—l:) + yu,
PR Rl o+ﬁw+ﬁ%+ a—aAg—aa—u

ov oV 9z o or’
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where a, 3, v and n are new, additional material functions, depending on the
same arguments as o, e.g.

(3.7) n=n(V',V,e;2).

The functions 7, @ and 3 have dimension of viscosity (Ns/m?), while v, charac-
terizing the shearing deformations of a material, has dimension of shear modulus
divided by velocity (Ns/m?).

It is worth noting that the representations of constitutive equations in the
form (3.6) can also be obtained in a different way. An application of linear per-
turbation procedure to the Rivlin- Ericksen constitutive equations (cf. [7]), in-
volving 8 material functions (a;, 7 = 1,...,8), leads to exactly the same result.

The next step in our perturbation procedure is connected with the so-called
thin-thread (layer) approximation (cf. [6]). To this end, we assume again that
€ = Ry/L is a small quantity. Introducing the following dimensionless variables
marked with overbars:

(3.8) r=TRy, 2 =7k w = Uw, u = elUu,

where the characteristic velocity U = V/(0)Ry, or U = V!

max R0, we arrive at the
following increments:

| —lw 0 EE E ]
e Vo \V
Vo__
U (70)1/2 V_
| VoAV Vo 1
i ou ow . 0u
62§ Oh 5_; + & % .
(3.10) [A.4y] = 0 £2— 0 —.
ow  om sw |
ow a2y it
o % O 25z

Since by assumption, the axial component w of the additional velocity field
is of order ¢, the radial component u under a thin-thread approximation is of
order £2. This fact is taken into account when dealing with various terms in the
corresponding governing equations (Sec. 5).

4. Continuity conditions

So far, we have not discussed any continuity conditions, assuming tacitly that
they are satisfied in a local as well as in a global sense.
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In the local form the continuity condition, valid for the fundamental, quasi-
elongational motion, viz.

(4.1) 0+ odivV =0,

implies that o = const, if divV = 0 and the motion is steady (do/dt = 0). The
same equation for quantities involving the corresponding increments (V* = V4w,
0" = o+ Ap) amounts to

(4.2) VaaAQ + odivw = 0,
and after integration to
10 ow
A == f = — | dz
(43 se=- [ £ (5 50w+ %) ds+ Ol

where C'(r) is an arbitrary function of » only.

Since for our thin-thread approximation the radial components u are of order
of magnitude less than the axial components w, we may use the approximate
formula:

(4.4) / L a—wdz +C(r).

On the other hand, in the global form the mass output W in a fundamental
motion must be constant along the filament, viz.

(4.5) W = prR?V = const.

Taking into account the corresponding mass output with small increments w and
Ap, we arrive at

R
(4.6) 27 f(V + w)(p + Apg)rdr = const,
0
what leads to
R R
(4.7) V/Agrdr+g/wrdr:0.
0 0

If the additional velocity field is such that the second integral is identically
equal to zero (cf. Sec.6), the radial distribution of the density increment Ap is
determined only by the vanishing first integral (4.7).

Another implication of the condition (4.5) are the following formulae:

R 1V’ 1d
4. — = e 1 =—=—1InV,
A48} R~ 2v an 2dz

expressing useful relations between the fibre radius and the fundamental veloc-
ity V.
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5. Equations of equilibrium

For axisymmetric deformations the inertialess equations of equilibrium, ex-
pressed in cylindrical coordinates, viz.

" b E(T*n _T22) 4 gres o8

(51) 57' T 83 i
aT*IB + IT*IB . 5T*33 .

ar P 2z

after taking into account Egs. (3.6), lead to

@ + — - (0011 + i B_w -+ c?oldpAg) 3 (na—w) + i (aﬂ_u)

ar  Or \ 9V oV’ 0z dz \' Or ar \ or
(5:2) ¥ l(a% W t:) ;z (n%) + g(vu) =0,
+%%(rng—f)+%(7;%) +gg‘g+%£(’"”)=0'

Differentiating the first Eq. (5.2) with respect to z and the second one with
respect to r, and subtracting (this procedure also eliminates the hydrostatic
pressure, if necessary), we arrive at

g L [LE(E E( B, Bl
. Tor\rar\"or) T az\" " av¥ BV 5z T 8p C
d? dw v 8 0?
*5&:2‘(775:)"‘(% [7* (,)7(ru)}——0?('y 67"02(8_)
LR ) A (2
dz ar T r Ordz \' 0z .
d (1 du a? ou
"za:(;a—z)‘@@az)‘@

The corresponding analysis of orders of magnitude determined by the powers
of € leads, after integration with respect to r, to the following governing equation:

(5.4)

d ( 8w) d ( . do ow dw BUA ) Or 73 o
— o+ —w+ — = L= = ’
Tor " ar v avi a: ot or
where only terms up to o> have been retained and C' is an integration constant.
In the above equations as well as in our further considerations the symbol d/dz
denotes the total derivative with respect to z.
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Let us assume, in agreement with Eq. (3.1), that the additional velocity field
can be written as

(5.5) w = gwy + 2w, .

Under the above assumption the governing equations resulting from Eq. (5.4)
take the following forms:

d ( aull
or dz’

Ne— lr—m— | =Cir—r—
1 ar ) 1
for the first order approximation with respect to ¢, and

d [ Ows d (0o do dw, do 0
5.7 el £l 4 T 5 e Fms ] e Al R’ Wi i ey
(57) mg; (’ B-r) Cor = (av““r v 8z T 39A9) 15, (r)

for the second order approximation containing terms of order £2.

6. Boundary conditions

The governing equations (5.6), (5.7) are the second order partial differential
equations which can be integrated with respect to r. To this end, at least two
boundary conditions for the additional motions are necessary.

Because of Eq. (4.5) and the boundary conditions satisfied at the exit (feeding
velocity) and the end of filament (take-up velocity, cf. [4]):

(6.1) V(0) =W, V(L) = Vi

respectively, it is reasonable to assume that the additional velocity field only
modifies the uniform velocity profile resulting from the fundamental motion.
This means that we assume

R
(6.2) /wr dr = 0.
0

The above assumption can be justified a postertor: by the fact that the solutions
for wy (cf. Sec. 7) are proportional to R'. Usually this latter quantity is small but
finite at the exit and tends to zero for z = L (cf. [4]).

On the free surface of the fibre all the forces acting have to be mutually
balanced. Neglecting surface-tension effects, we arrive at the following condition
(cf. [6]), earlier derived by KASE [8]:

(6.3) R (T*ss _ T*“) - T*131r:R.

r=IR
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Introducing the corresponding stresses from Eqgs. (3.6), we obtain

do do dw Jdo ow 0Ou
6.4 R’ — £ = e Ulp=R -
(6.4) o+ 6Vw+ 3V Ba 4 90 QL_R 77(37‘ + 62)r:1{+7t| R

Bearing in mind Eq. (5.5), we can write the following conditions:

dun

! — —_—
(6.5) R'o=n B

r=R

for the first order approximation, and

+ yuy |1‘:R 3
F=R

do do Ow; Oo Ows
| ] et PO W P
o) F\ov™* 57 5 T a0 } 2= T ar

for the second order approximation, respectively.

7. Solutions for isotropic viscoelastic materials

The governing equation (5.6) together with the boundary conditions (6.2)
and (6.5) leads to the solution

/ 2
(7.1} wy . BB (7‘2—R—) ,

depending on the fibre geometry (R'/R = d/dz(In R)) as well as on two material
functions o and 5.

Integrating the expression for u, resulting from the continuity condition (4.2),
we arrive at

o R
2 i f B — = — [ = ={® = R )
(7.2) 0 dz,/ . Sdz (17 R( )

where we have taken into account Eq. (7.1) and the requirement that uy|,~¢ = 0.
Moreover, we have

o<

R
d
(7.3) Utlyp = == = j Agrdr =0,
]

where Eq. (4.7) has been used.
The second order governing equation (5.7) together with the boundary con-
ditions (6.2) and (6.6) leads to the following expression, more complex than that
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for the first approximation:

) 80- - R’ 160’ d O’R, O,RIE RZ
74)  wy==RR v liz\n R PR\ T
(74)  we=g R{BVUZR+n3V’[dz(77 RH+2’7 RQ}(T 2)
1 doo R 0o d (o R 4 2.2 4
1 d Jo a (o & —8
32ndz{aVnR v’ dz(” R)}(T ot o)
na
4n

1 R do s R2
+%E3_QAQ(T *T)‘*—

The solutions (7.1) and (7.4) are valid for isotropic viscoelastic materials (flu-
ids or solids) described by the constitutive equations of the type (2.10) and (3.6)
with three material functions o, 7, v and the variable temperature-dependent
increment of the density Ap. For purely inviscid or viscous materials, we may
disregard in Eq. (7.4) all the terms containing partial derivatives with respect to
V' or V, respectively.

For the frequently applied case of viscous, generalized Newtonian fluids, for
which

do

7.5 eF — a1 _

we arrive at

3 RI 2
(7.6) w = évlﬁ (r2 — R) ,

and at

9 d R R% RE
7‘. — = ! = I_ 2 l_ 2 .
(7.7) wo SRR {dz (V R)+ VRZ}(T 2)

/
- 2, [n(% (V’E)] (r* - 2R** + 3R")

1 ! 2

T @ Ao |r? - A )
2 R 0Op 2

A realistic shape of the additional velocity profiles can easily be predicted,

assuming that the outer radius R(z) of the filament may be approximated by
the exponential function:

1
R(z) = Ry exp(—zb), b= ~I In % = const.
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In such a case: R'/R = —b, and the velocity profiles (7.1) or (7.6) are proportional
only to a/n or V', respectively. It is well known from the experiments (cf. [4])
that V' takes small values for z = 0, increases rapidly reaching a maximum for
z=0.15 <+ 0.3L, and tends to zero for z = L. It may be expected that possible
o /n profiles along the fibre axis are of the character similar to V.

8. Final remarks

The linearized perturbation procedure developed in the paper enables deter-
mination of the realistic velocity fields taking into account the variable geometry
of the elongated fibres as well as the appropriate shearing effects.

To this end some information on the material behaviour in steady quasi-elon-
gational motions is necessary either on the basis of experimental data (measured
radii, stresses, forces, etc.) or using various numerical results calculated for par-
ticular models of fluids or solids. The constitutive equations used in the paper are
sufficiently general; the corresponding material functions (normal stresses, viscos-
ity, etc.) all depend on the strain, strain rate (velocity gradient), variable density
and explicitly on the axial coordinate. The latter dependence replaces distribu-
tions of temperature, crystallization effects, structure formation, etc. There ex-
ists a possibility for simultaneous description of fluid-like or solid-like behaviour
along the same fibre-line.

The solutions corresponding to the first order approximation depend on two
material functions only: the normal stress and viscosity functions, and the radius
variable along the thread.

The additional velocity fields are simply expressed in the case of viscous,
generalized Newtonian fluids. Then, a knowledge of such kinematic quantities as
the variable radius and the velocity gradient is entirely sufficient.

An example of numerical and experimental results which could, in principle,
be used in determining the additional velocity fields and the relevant shearing
effects may be found in the paper by PAPANASTASIOU et al. [10]. They applied
the so-called PSM model and the Newtonian model to calculate the properties of
polypropylene, polystyrene and PET and to compare the results with available
experiments.
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