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Asymptotic analysis of propagation of a signal
with finite rise time in a dispersive, lossy medium

A. CIARKOWSKI (WARSZAWA)

PROPAGATION of an electromagnetic high frequency modulated signal with a finite
rise time through a dispersive medium described by the Lorentz model is considered.
Asymptotic approximations, based on uniform asymptotic methods, are found for
the Sommerfeld and Brillouin precursors, and for the steady state contribution to
the propagated field.

1. Introduction

THIS PAPER is concerned with the analysis of propagation of a plane electromag-
netic wave in a linear dispersive medium with absorption. The medium occupying
the half-space z > 0 is described by the Lorentz (single resonance) model, other-
wise it is homogeneous and isotropic. The wave propagating in the z direction
has a finite rise time on the medium interface 2 = 0. Fundamental works on an
electromagnetic signal evolution as it propagates through a dispersive medium
are due to SOMMERFELD [1] and BRILLOUIN (2, 3]. On the grounds of asymp-
totic considerations, the authors showed that the main change in the form of
an electromagnetic signal propagating in a dispersive medium takes place at the
initial stage of propagation, at higher penetration depths the pulse form being
almost unchanged. They revealed that two different precursors contribute to the
signal. The precursors took their names from the names of the aforementioned
authors. Those early results are not, however, fully satisfactory. They were ob-
tained with classical (non-uniform) asymptotics and as such, they break down
at some space-time points in the field.

Recently, significant research in this area has been done by OUGHSTUN and
SHERMAN, see [4-10], based on the use of modern (uniform) asymptotic tech-
niques. In those works the classical results have been reexamined and enriched
by removing the obstacles characteristic of non-uniform asymptotic methods,
and by providing deeper insight into the dynamics of propagation of waves of
various forms. The works by Oughstun and Sherman gave motivation for this
paper which depends strongly on basic results obtained in those works.

In the analysis of a signal evolution in dispersive media, asymptotic techniques
are particularly appealing for their ability to generate results readily interpreted
in physical terms. It is worth mentioning, however, that alternative approach
may here be used. It consists in the examination of interaction of various spec-
tral components of the incident signal with the medium, and then summing up
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the results. Such an approach was successfully used by BLASHAK and FRANZEN
in [12]. The authors studied pulse propagation in dispersive media described by
both the Lorentz and Debye models. By assuming oblique incidence of the in-
coming signal on the media interface they were able, among others, to determine
propagation directions of both precursors.

In this paper we examine, using uniform asymptotic apparatus, the propa-
gation of an electromagnetic signal with finite rise time in a dispersive lossy
medium described by the Lorentz model. The signal is zero for ¢ < 0 and is
hyperbolic tangent modulated for ¢ > 0. Here and throughout ¢ stands for time.
In [8] the hyperbolic tangent was used as the signal envelope for time ranging
from minus to plus infinity, i.e. the signal was switched on at t —+ —oco. As a
consequence, the wave studied here differs in form from that used in [8] and is
more realistic as a model for possible applications.

The problem studied here is of much interest from both the applications
and scientific point of view. The renewed interest in dispersion phenomena was
recently stimulated by investigation concerning interaction of electromagnetic
fields with organ tissue. Dispersion is also important in many instances of prop-
agation of electromagnetic high-frequency fields through dielectric media, since
all dielectrics are less or more dispersive. On the other hand, thorough inves-
tigation of the problem on asymptotic grounds requires application of modern
asymptotic techniques, which can be employed to evaluate contour integrals with
such special cases as coalescent saddle points, saddle points tending to infinity
or interacting saddle points with poles in the integrands.

2. Plane wave description in the dispersive medium

Consider the problem of an electromagnetic plane wave propagation in a
linear, homogeneous and isotropic medium whose dispersive properties are de-
scribed by the Lorentz model of resonance polarization. The complex index of
refraction in the medium is given by the following, frequency-dependent function

" 1/2
l) F— —_— -
(21) Fie) (1 w? —wi+ ‘Zi&w) '

where b> = 4wNe?/m, N, e and M standing, respectively, for the number of
electrons per unit volume, electron charge and its mass, 4 is a damping constant
and wg is a characteristic frequency. It is assumed that the medium occupies
the half-space z > 0 and that the wave propagates perpendicularly to the plane
z = 0 in the direction of increasing z. Arbitrary component of the wave itself or
of a corresponding Hertz vector can be represented in the medium by the scalar
function

(2.2) Afe, B = %/f(w)cxp [%qﬁ(w,b’*)] B,
J
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Here, the complex phase function ¢(w, 6) is given by

(2.3) pw,B) = ig [l:(w)z - wt] = iw[n(w) — 6],
where
(2.4) g2

z

is a dimensionless parameter that characterizes a space-time point (z, t) in the
field. The function f(w) is a temporal Fourier spectrum of the initial pulse f(¢) =
A(0,t) at the plane z = 0. The contour C is the line w = w'+1a, a being a constant
greater than the abscissa of absolute convergence ([13]) for f(t) and ' ranges
from negative to positive infinity.

If the incident signal is a sine wave of fixed real frequency w, with its envelope
described by a real function () that vanishes for ¢t < 0, i.e.

| L £ 0
(2.5) Ho) = { u(t)sin(wet) ¢ >0,

then (2.2) can be represented in the alternative form

(2.6) A(z,t) = % Re {i 700-&(“; — we) exp Eqﬁ(u, 9)} du} ,

ia— 00

where 4(w) is the Laplace transform of u(t).

It can be proved that if A(0,t) is zero for ¢ < 0 and if the model of the
material dispersion is casual, then the field A(z,t) vanishes for all @ = ct/z < 1,
with z > 0. Therefore, with these conditions fulfilled one can restrict the study
to the case 6 > 1.

In this paper we specify the envelope of the incident pulse to be a product of
a unit step function and a hyperbolic tangent function, i.e.

2.7) (1) = 0 t<8,
% wptl = tanh B8t ¢t >0,

where the parameter 3 > 0 determines the rapidity of the pulse growth.
In order to find its Laplace transform we take advantage of ([16])

o0
. ;
(2.8) fj——a—d;c: °B (“—’) Rep >0, ¢q>0,
1€~ 7 \q
0
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where B(-) is the beta function. The latter function is defined by the psi func-
tion as

(2.9) B(ﬂzg‘[’/’(x;l) _d’(%)]

and alternatively can be expressed in terms of the series

(2.10) B(z) = i s
' v+ k-’
k=0

It follows that the Laplace transform of u(t) is

1 w i
2.1 7 ==-B|l-——])-—
(2.11) ol ﬁs( Qﬁ) L, mw>0, 8>0
or, by (2.10),

1 1 1

2.12 u =——2 = e
Lz} Tgle)=0 =8 (w+2iﬂ ot dip ' )

One can see from this formula that in the limit as § — oo the function
tends to i/w, which is the Laplace transform of the Heaviside unit step function,
corresponding to the pulse with zero rise time.

With (2.11) used in (2.6) A(z,t) specifies to

(2.13)  A(z,t) = Q%Re {e‘f?oo[_;_,; (_i(wz—ﬁwc)) = _iwc] o 26(w0) dw} .

a—00

This integral formula describes the dynamics of propagation of the initial signal
with envelope given by (2.7), oscillating with angular frequency we.

3. Asymptotic analysis

As seen from (2.13), construction of an asymptotic approximation to A(z,t)
in the mature dispersion regime, i.e. as z — oo, is closely related to asymptotic
evaluation of the integral describing the field. In general, asymptotic behavior of
an integral depends strongly on analytic properties of its integrand [14]. There-
fore our first step is to establish all the critical points of the integral in (2.13) in
the complex w plane which contribute to the asymptotic expansion of A(z,t). The
critical points associated with the phase function ¢(w,f) are the saddle points.
The first derivative (and possibly higher derivatives) of the phase function with
respect to the variable of integration vanishes at those points. In the present case
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the phase ¢(w, ) is an analytic function in the complex w plane except along
the branch cuts ' w_ and wiw!,, where

Wl = 2(w? —8%)M2 — 8,

(3.1)
wy = t(wd - Y2 —is

are the branch points of n(w) and w? = wi + b%. The requirement ¢',(w,d) = 0

leads to the equation

(3.2) n(w) +wn'(w) —6 =0,
or

2
bPw(w + i6)
3.3 B b Mg e
(39 W e w2~w8+2idw

= 0*(w® — wi + 2idw)(w? — Wi + 2idw).

This equation determines exact locations of the relevant saddle-points. It
does not seem possible to solve (3.3) exactly. However, from numeric investiga-
tion of ¢(w,#) it follows that there are two kinds of saddle-points: the distant
and the near saddle-points. Each kind contains at most two points. The distant
saddle-points, to be denoted by SPS, are located symmetrically about the ima-
ginary axis in the lower w half-plane. As 6 varies from 1 to co they move in the
region |w| > wi, and take the limiting values +oo — 2id for # = 1 and ', for
f — oo. The near saddle-points, denoted by SPﬁ, vary in the region w < |wg|.
As 6 increases from 1 to 0y, they approach each other along the imaginary w-axis
and meet at § = 6 to produce one saddle-point of the second order. Next, as 6
varies from 6; to co, there are two first-order saddle points which detach from the
imaginary axis and tend symmetrically about this axis to w = w4 (see Fig.1).

Equation (3.3) was being solved approximately to find analytic description of
the location of the saddle-points. Apparently the best approximation obtained
so far is due to OUGHSTUN and SHERMAN (see [4]). According to their results,
the distant saddle-point locations are given by

(3.4) wept = +£(6) — id[1 + n(6)],

where

62 -1

821+ b /(6% - 1)
"0 = =)

2p2 \ /2
5m=(4—ﬁ+b9) ,
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F1a. 1. Trajectories followed by the saddle-points SPg and SPIZ\E in the complex
w-plane as # varies from 1 to oco.

The locations of near saddle-points are described by

i [£lv@) - S|, 1<0<a,

y 26
(36) “’SPfr = —’L'?’—a y 9 = 91 )
+1() — i:f;d((@), 8.6
where
- . 5 5 2, 9 \2 1/2
w(6) = | —6) o070 +2 =
92 — 93 n 3ab2/wg 82 == 9% + 3ab2/wg )
o 3(67 — 63 + 207 /wd)
3D ¢ = 27— 82 + 3ab?/u)”
= 1 52 (4w2 + bz)
@ = 3w02u)% : A
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The special values of € are

8o = n(0) = (1 +b%/wi)'/?,
2622

Bow? (3ow? — 462)

As seen from (2.12), the amplitude factor under integral sign in (2.13) is a
meromorphic function with infinite number of simple poles at

(3.9) w=—12kf + wg, k=012 .00

Adjacent poles are equally separated by the quantity i23. If 3 — oo, only the
pole at w = w, is of importance.

Having established the critical points of the integral in (2.6), one can set
about the asymptotic evaluation of A(z,t). The first step is to change the original
contour of integration to a new one, to be denoted by P(#), which is chosen such
that it passes through the saddle points along a path consisting of paths of
descent between adjacent saddle points (see Fig. 2a, b). It was shown in [4] that
such a change is possible (in the case of 1 < 8 < 8; the lower saddle point is not
included because of the branch cut wyw! that makes the contour deformation
to the contour through that point forbidden). By using this procedure, together
with the Cauchy theorem, it follows that A(z,¢) can be represented as

(3.8)
81 = 90 +

(3.10) A(z,t) = I(z,0) — Re [2irA(8)],

where

(3.11) ZRes {iuﬂ(w - wc)ec"’(“’"’)}
w=wp | 2

is the sum of the residues at the poles that were intercepted in the course of
contour deformation, and

1
(3.12) I(z,0) = gRe i f tg(w — we) exp {Cqﬁ(w 9)} dw
P(6)

The problem thus reduces to the asymptotic evaluation of the integral I(z,6) as
z tends to infinity.

Results obtained with classical asymptotic methods, often referred to as
non-uniform, fail for some special configurations of the critical points in the
complex w-plane (comp. [5]). In the present context these configurations are:
(i) the pair of the distant saddle points tend to infinity, (ii) the near simple
saddle points coalesce into one saddle point of the second order, and, (iii) the
contour P(#) crosses a pole of ig(w — w,) as § evolves. The first and the second
case occur when 6 is close, respectively, to 1 and to # = 6#,. In order to obtain
asymptotic representation of A(z,t) which remains valid for all & > 1 including
all three cases, uniform asymptotic techniques will here be used.
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FIG. 2. a. The original contour of integration ' and the deformed contour P(6) in the
case of 1 < @ < 6,. b. The original contour of integration C' and the deformed contour
P(#) in the case of 8 > 0.

[884]
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3.1. Asymptotic representation of the Sommerfeld precursor

First, consider the contribution to the asymptotic expansion of A(z,t) which
is due to the pair of the distant saddle points SPg, These points are dominant ()
over the near saddle points in the interval 1 < 8 < 8g5p < 01, where fsp is given
by (see [4])

(3.13) Pep =0 -

0% [275%2(90 - 1)2]”3

36w 46w
62b2 1/2 1/3
TN 5 S Y
N1 T 278008 - 1)@}} B

52b2 1/2 1/3
N+ -1
2780(90 ==, 1)&)0

For € close to 1 the distant saddle points tend symmetrically about the imaginary
axis to +oo and transform in the limit as # = 1 into a saddle point of infinite
order. Classical asymptotic methods fail to describe such a situation; instead,
a uniform asymptotic approach is here required. Procedure appropriate for this
case was proposed by BLEISTEIN and HANDELSMAN [14]. It was adapted by
OUGHSTUN and SHERMAN to integrals of the form of (3.12) to yield [5]

| £(0) b2 /2 1/2
(3.14)  As(z,t) ~ 2" {9 =1+ £2(6) + 6%[1 — n(9)]2}

. (1/2)b2[1 — n(6)]
- (#52 {[1 0010 -V @y rea - po)r })

«Re {exp (—igu) [(i(wspy — we (EO) + (3/2)3i[1 — n(@)])
+ (D) i(wgpo — we){€(0) — (3/2)8[1 — n(0)]})

z b?/2
i (25(9) {9 I ORRE IO })
+ exp (=T ) (iwspg - w{E®) + (3/26(1 ~n(@)]}
— (~1)"a(wgps — we{E(0) — (3/2)8il1 — n(O)]})

. b?/2
0 T (56(9){9 RV =TC R [ }ﬂ}

(') A critical point is dominant over other critical points if Re [¢(w, 8)] at this point attains
its maximum value, thus making the point least attenuated.
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as z — oo, where J, is a Bessel function of the first kind. The parameter v
determines the behavior of the amplitude function at infinity (@ behaves like
w=04Y) ag |w| = o0).

In the Bleistein and Handelsman method it is assumed that the amplitude
factor in the integrand has a convergent Laurent series expansion in some neigh-
borhood of infinity. In the case considered here this condition is not satisfied as
the function 4(w — w,) has poles along the line w = —i2k( + w,.. Those poles,
however, do not affect the procedure of asymptotic expansion construction. It
is so because the amplitude function is regular in the region which is the in-
tersection of the region |w| > R for some positive R, and a domain where all
deformed integration contours appear. Apart from the line where #(w — w,) has
pole singularities, this function behaves like

(3:15) t(w — we) ~ ~§5 + Ofw ™),

so that v = 1. As a result, the asymptotic expansion of Ag(z,t), as z — oo, for
the signal envelope given by (2.7), becomes

+ 821 -9

(1/2)b%[1 — n(8)]
X exp (—5% {[1 +n(6)](6 — 1) + g2 (Bg T 52[ 1 _n,(,(g })
x Im [(ﬁﬁ(w‘spg —we){€(0) + (3/2)6i[1 — n(6)]}
+ Gg(ws py —we){£(6) = (3/2)di[1 — n(B)]})

z b%/2
xJ;(Ef(Q){B~l+§2()+J21_n })

4 (.aﬁ(wspg — we){&(6) + (3/2)8i[1 — n(6)]}
~ (wgp —w)E(®) — (3/2)5i[1 — n(6)]})

| /2
x Ja (—6(6){9”52(9) +62[1 = n(6)? })]

AP0 o -
(3.16)  As(z,t) ~ 25° {9—”/5 2(6) (H)P}

[

o

where
(3.17) ﬂﬂ(wSP§ — we)

- 13 (j:g(t?) —we — 011 + 77(9)]) B i

) 2i3 +££(0) — we — 6i[1 +n(0)]
This expansion is uniform with respect to 8 > 1. It represents the Sommerfeld

precursor, for it is related to the pair of distant saddle points which are dominant
for small €, and hence for small t.
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3.2. Asymptotic representation of the Brillouin precursor

We now consider the contribution to the asymptotic expansion of A(z,t) due
to the near saddle points SPﬁ Their contribution is descriptive of the Brillouin
precursor and dominates over the Sommerfeld precursor as 8 > Ogg. If 8 ap-
proaches ¢, then the near saddle points coalesce and produce one saddle point
of the second order. Since classical asymptotic methods fail to describe the field
A(z,t) in this case, a uniform approach should then be used. Such an approach
was first proposed by CHESTER, FRIEDMAN and URSELL [17]. It is also derivable
by using BLEISTEIN and HANDELSMAN theory [14], and was adapted by OUGH-
STUN and SHERMAN [5] to integrals of the form of (3.12). Here, we employ the
latter result.

Since there are two different descriptions of the locations of the near saddle
points, depending on whether 1 < 6 < 8 or > 61, (comp. (3.6)), the asymptotic
procedure is to be carried out for each of these cases separately. First, consider
the case 1 < @ < 0y. Using the Oughstun and Sherman result one obtains

Z e\ /3
(318)  Ap(zt) ~ exp [an(e)] (% (—) BesifBalusr, —w)[bild)

2/3
+ aglwsp, — wolha(6) H}Ax[sm( I(Z) }

1 e\ 2/3
_W(;) Re {i[tg(wsp, — we)[h1(0)|

SN 2/8
—ig(wsp, — we)|ha(B)][} ALY [lal(em H D

as z — o0, where

o) = —3 (gcw)(@ )+ {|w(9)\2{a<(9) 1
7 3 9()(4)8
4 1
- 57O |zac0)-1]}),
2 10 - 3 ;
(3.19) ay = |¢(8)] (2 {9 8y + =—= Boost

< [Jalv(6) + ad®c*(e) - 26%(0) })m ,

— 260w4 B 3
hvl,l(g) = ({ 3Ozb2|1/,’(9)| i 2(5[1 — QC(QH} "L'(H” {5(9 - 90)

9 1/6
b* [3 2 % By gd
o [Satvior +asice) - 2o |
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and Ai is the Airy function. The plus sign in (3.19)3 corresponds to the index 1
and the minus sign corresponds to the index 2. The functions tig(wgpt —we) are
N

given by
(3.20) tg(wsp, , — We)
2
1 [£O)] - 55(6) + iwe !

8 26 £ (0)] — 260(6) + e

Since the argument of the Airy function and its derivative is real and nonnegative
for 8 < 6, the Brillouin precursor is described by nonoscillating function in this
domain.

In the case of 6 > 6, the asymptotic description of the Brillouin precursor
takes on the form

1 fe

- 1/3
321)  Anzit) ~ exp | Zan(6)] (5 (5) Redifia(wspy —wellk* @)

£% 58
+ Bplespy, —wo)b @}A [—lal(en (%) ]

1 c 2/3 B 5
i W(—) Re [d(wgpy —we)lh*(6)]

2\ 2/3
— plwgp — we) k™ (8)[) AL l_|a1(9)| (E) D

as z — 0o, where

2 b’ .
a0 (6) = ~o (gcw)wo) + o L SO @)

& g 82¢*(9) [% ag(6) — 1] }) :

b2
T

< {30¢OR - ac(O) + aww)})]m,

T 2800t 11 3. B
h(8) = Hz:aabw(a)} [‘5“”(9)] (99"  26pwd

« {35502 - ag(o)] + az/)?(e)})}w -

(3.22) aol?’= {—%iw(ﬂ) (9 — 8
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Here,
(3.23) ﬂﬁ(wspﬁ — We)

1 [Fi90) ~ 500) +iwe 1
3 23

Fi(6) — 200(6) + i

Since the argument of the Airy function and its derivative is real and nonpositive
for 6 > 6, the Brillouin precursor is oscillating in this domain.

It can be shown that the formulas (3.18) and (3.21) represent a continuous
function of 8. Moreover, these formulas provide a smooth transition in algebraic
order of z, as the argument of the Airy function and its derivative tends to zero.
Indeed, the algebraic order of z~1/3Ai[—|a; (6)|(z/c)?/?] and 2~ */3 Al [—|ay (6)]
-(z/¢)?/3] is 2 1/2 while the order of both Ai(0) and Ai)(0) is 0(1). Hence, the
resultant field is of the order of z~1/2 when the near saddle points are separated,
and of the order of z~1/3 if they coalesce into one saddle point of the second
order. This agrees with known results obtainable with non-uniform asymptotic
approach.

The Brillouin precursor is insignificant for € close to 1, but becomes of impor-
tance at # > 0gp, when it begins to dominate over the Sommerfeld precursor. In
particular, at 8 = 6 it suffers no exponential attenuation.

3.3. Interaction of pole singularity with the saddle point

As 6 increases from 1 to oo, singular points associated with the spectral func-
tion tig(wgpt — we) are intercepted while the contour P(f) evolves and their
N

contribution is represented by the function A(6), as defined by (3.11). This con-
tribution introduces a clearly discontinuous term on the rhs of (3.10), while the
lhs is a continuous function of #. Thus the problem at hand is to find asymptotic
evaluation of I(z,6) such, that the rhs of (3.10) is also continuous and equal
asymptotically to A(z,t).

A suitable tool, appropriate for this task, is that proposed by Bleistein and
Handelsman. Their method allows for asymptotic evaluation of a contour integral
with simple saddle point coalescing on an algebraic singularity of the integrand,
[14]. In case the singularity is a simple pole, their procedure is equivalent to
the VAN DER WAERDEN method, [18]. General results for this case have been
adopted to integrals considered here by OUGHSTUN and SHERMAN [5] and will
be employed in this paper.

Here, it is assumed that 3 is large enough so that only one pole, equal to
w = w,, is crossed by the contour P(6). Additionally, the carrier frequency w,
is assumed to lie above the dielectric absorption band, i.e. w, > (W} — §2YLA,
but otherwise is finite. Under these assumptions the pole at w = w, interacts
with the distant saddle point SP;}. According to the results obtained in [5],
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the asymptotic approximation to A(z,t) depends on the value of A(8), which is
defined as

142
(3.24) AB) = [d(wspy.0) — dwe.O)]

As 0 increases from 1 to oo, the saddle point .S'PE,L moves leftwards in the complex
6 plane, and the path P(6) through that point crosses the pole at 8 = 6,. With
the help of the Bleistein and Handelsman method and its Oughstun and Sherman
adaptation, the following asymptotic contribution to A(z,t) is obtained. If 1 <
6 < 6, then the distance between the origin and the intersection of P(6) with
the real w axis is larger than the distance between the origin and the pole,
Im[A(8)] > 0, and

(3.25)  Ad(z,t) ~ Qi {—m erfc [—m(a) (;l)ml exp Eqs(wp,e)]

i (5) "o [ o]

as z — oo. If 8 = 0, i.e. the path P(6) crosses the simple pole singularity at
w = we, then Im[A(0)] =0, A(f) # 0, and

(3.26) Ac(z,t) ~ A {—iyr erfc I}iA(H) (72)1/2} exp Eq&(wp,()s)]

27

K. A(195) (1;:,)1/2 -3 EM“’SPE’QS)]} + Re {i exp Eqﬁ(wp,ﬂ,.)] }

as z — oo. In the remaining case, i.e. when 6 > #, or equivalently, when the
distance between the origin and the intersection of P(f) with the real w axis is
smaller than the distance between the origin and the pole, one has Im[A(#)] < 0,
and

™

+ B% (?) o exp [z‘f’(wspgﬁ)] } + Re {i exp Eq&(u;,,@)] }

(3.27)  Ad(z,t) ~ Qi {m il [m(e) (%)W] sxp Eqs(wp,a)]

45 2 —+ 00,
Here,
a9 ¢ 2 7 2
(3.28) erfc (£) = m/exp(—y ) dy.
£
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In (3.25) through (3.27) we have taken advantage of
(3.29) lim [(w— we)i(w —we)] =1

bl
w—we

and of (3.12). The asymptotic expansion of A.(z,t), as given by (3.25)-(3.27), is
a continuous function of €, and hence yields a uniform asymptotic contribution
to A(z,t). As noted in [5], if the absolute value of the argument in erfc function
is large enough, then this function can be replaced in (3.25)-(3.27) by its asymp-
totic representation, thus leading to the non-uniform asymptotic approximation
to A.(z,t). It then follows that for the pole and the distant saddle point bounded
away and z large, (3.25) introduces asymptotically no modification to the field;
it is important only in the case of moderate values of the erfc argument. On the
other hand, if the absolute value of this argument in (3.27) is large, A.(z,t) con-
tribution to the field is, as expected, due to the residue of 4(w — w.) at w = we.
Note, that A.(z,t) is independent of 3, and is the same as in the case of unit
step envelope function [5].

To collect the results of the previous sections we note that contributions
stemming from various critical points of an integral appear in the asymptotic
expansion of the integral in the form of uncoupled components (comp. [14, 5, 19]).
Accordingly, the asymptotic approximation to A(z,t) is the sum consisting of the
Sommerfeld and the Brillouin precursors, and the steady state contribution due
to the pole singularity, i.e.

(3.30) A(z,1) ~ Ag(z,t) + Ap(z,t) + Ac(z,t)

as z — 00,

4. Conclusion

The propagation of an electromagnetic signal in a dispersive medium de-
scribed by the Lorentz model has been considered. The initial signal was chosen
to be a sine wave of high real frequency modulated with the envelope described
by the product of hyperbolic tangent and unit step function. A uniform asymp-
totic expansion of the propagating pulse in the medium in the mature regime
was obtained with the help of modern asymptotic techniques.

Although the asymptotic representation for the field A(z,t) was obtained
under the restriction that the carrier frequency lies above the medium absorption
band, a similar reasoning can be applied if this frequency occurs below that band.
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