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Symmetrization of systems of conservation equations
and the converse to the condition of Friedrichs and Lax

W. LARECKI (WARSZAWA)

THE RESULT OF FRIEDRICHS AND LAX [Proc. Nat. Acad. Sci. U.S.A., 68, 8, 1686-1688,
1971] concluding that if the system of conservation equations implies the additional
conservation equation (balance of entropy) then it can be symmetrized by premulti-
plication by the Hessian matrix of the entropy, is well known. Basic ingredients of the
proof of the converse to this result can be found in the paper by BoiLrLat [C.R. Acad.
Sci. Paris, 278 A, 909-914 1974], however this converse has not been explicitly for-
mulated there and, as a consequence, it seems to be overlooked. Therefore, an explicit
formulation and the detailed proof of the converse to the condition of Friedrichs and
Lax is given in this paper. Due to this result, the restrictions imposed on the system
of conservation equations by consistency with the additional conservation equations
can be alternatively derived from requirement that it admits Hessian matrix as a
symmetrizer while the corresponding entropies can be determined by direct integra-
tion of the admissible Hessian symmetrizers. As an illustrative example, the system of
conservation equations given in [DoMANsKI, JABLONSKI and KoSINSKI, Arch. Mech.,
48, 541-550, 1996] is analysed. It is shown that this system can be brought into
equivalent symmetric hyperbolic form without appealing to the existence of the ad-
ditional conservation equation and the whole family of symmetric symmetrizers is
determined. Then, the condition that the system admits the additional conservation
equation reduces to the requirement that the family of symmetric symmetrizers con-
tains at least one Hessian matrix. This requirement is, in turn, equivalent to the
integrability condition for the overdetermined system of second order partial differ-
ential equations for the scalar entropy function. Finally, the family of entropies is
obtained as a result of integration of this system.

1. Introduction

IN (1], FRIEDRICHS AND LAX have shown that if the system of N conservation
equations implies the additional conservation equation (usually called balance of
“entropy”), then premultiplication (left multiplication) of this system by Hes-
sian matrix of “entropy” (matrix of second-order partial derivatives) makes it
symmetric.

In the paper [2] by DOMANSKI, JABLONSKI and KOSINSKI, this result has
been explicitly quoted as a means for symmetrization of considered particular
system of conservation equations, but the employed procedure of symmetrization
and interpretation of the results should be rather referred to the converse to the
result of FRIEDRICHS and LAX [1]. Clearly, in [2], it has been required from the
system of conservation equations to be symmetrizable (by premultiplication) by
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prescribed Hessian matrix. As a result of this requirement, the algebraic relation
between the entries of the prescribed Hessian matrix and the entries of the ma-
trices corresponding to the considered system of conservation equations (written
in a matrix form) has been obtained. This relation has been called “symmetriz-
ability condition” for the considered system of conservation equations. Since the
system of conservation equations treated in [2] implies the additional conserva-
tion (balance of entropy) and prescribed Hessian matrix corresponds precisely to
one of the entropies admitted by this system, the “symmetrizability condition”,
of course, corresponds to “the model compatibility condition which, on the other
hand, can be obtained from the second law of thermodynamics”, as it has been
concluded in [2].

Apparently, the procedure performed in [2] in nothing else but checking that
the converse to the well known result of FRIEDRICHS and LAX [1] is true for the
particular system of conservation equations. Unfortunately, this aspect of the
performed calculations has not been noticed in [2].

The converse to the result of FRIEDRICHS and LAX [1], of course, holds for
the general case of the system of conservation equations and its proof can be
easily deduced from the paper by BOILLAT [3]. Since this result has not been
explicitly formulated in [3] as a separate “theorem”, contrary to the condition of
Friedrichs and Lax, it seems to be overlooked (for example, [2, 6]).

The objective of this note is to formulate explicitly this converse and to
demonstrate its complete detailed proof, mostly for pedagogical reasons, as well
as to show how this result can be directly applied in practice for derivation of the
condition that the system of conservation equations implies the additional con-
servation equation, and then to determine the “entropies” that can be assigned
to this system. It should be emphasised that the crucial points of the reasoning
employed in the proof presented here have been found in [3] and, therefore, the
converse to the condition of Friedrichs and Lax should be attributed to Boillat.
The original method proposed here, consisting in application of this converse for
derivation of the restrictions on systems of conservation equations imposed by
consistency with the additional conservation equation (balance of “entropy”),
can be considered as an alternative to the method of Lagrange - Liu multipliers
(5] developed in the framework of extended thermodynamics. In this alterna-
tive approach, the restrictions on the system of conservation equations as well
as the “entropies” are obtained directly, without use of the auxiliary fields of
Lagrange — Liu multipliers.

In Sec. 2, we demonstrate that if the system of N conservation equations has a
syminetrizer which is the Hessian matriz of a certain function of the unknowns
then this system of comservation equations implies the additional conservation
equation, in which this function of the unknowns is a “density”. The result of
FRIEDRICHS and LAX [1] together with the converse leads to the following nec-
essary and sufficient condition for the system of N conservation equations to be
symmetrizable (by premultiplication) by a Hessian matrix: The system of N con-

http://rcin.org.pl



SYMMETRIZATION OF SYSTEMS OF CONSERVATION EQUATIONS 867

servation equations is symmetrizable (by premultiplication) by a Hessian matriz
iff it implies the additional conservation equation.

Therefore, the conditions imposed on the system of N conservation equa-
tions by the requirement that it implies the additional conservation equation
(for example, thermodynamic restrictions implied by consistency with the bal-
ance of entropy) can be obtained by requiring that the system admits symmetric
symmetrizer which is a Hessian matrix. The respective procedure can be ac-
complished in the following five steps: 1) to rewrite the system of conservation
equations in a matrix form, 2) to derive the condition on the entries of the respec-
tive matrices (necessary and sufficient), that those matrices have common left
symmetric symmetrizers, 3) to determine the family of common left symmetric
symmetrizers (the entries of such family of matrices are related to the entries of
the matrices corresponding to the considered system of conservation equations),
4) to derive the condition on this family of symmetrizers that it contains at least
one Hessian matrix (this condition corresponds to the condition that the system
of (1/2)N(N + 1) second-order partial differential equations for entropy function
is integrable), 5) finally, to calculate the entropies admitted by the considered
system of (1/2)N(N + 1) equations for entropy.

In Sec. 3, the example of application of this complex procedure is presented.
In this example, we use the system of conservation equations considered in [2]
because of its particular simplicity. Since this system is consistent with the ad-
ditional conservation equation (balance of entropy) without any restrictions on
the functions of dependent variables involved in it, the respective matrices admit
common left symmetric symmetrizers without any additional relations between
their entries. The family of the respective symmetrizers is derived and the step
2) of the above procedure is not needed in this case. To this end, we note that
the equivalence result (existence of entropy and symmetrizability by Hessian
matrices) together with the described procedure of application enables one to
employ the methods of matrix analysis in studying the properties of systems of
conservation equations endowed with entropies.

2. Converse to the condition of Friedrichs and Lax

We consider a quasilinear system of IV conservation equations for N unknowns
in normal (Cauchy) form

(2.1) du+ 8f'(u) =blu), i=1,2,...,m
with the corresponding matrix form

(2.2) du+ A'(u)du = b(u),
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where
ul = [ u™ (¢, a:')]

£ () = [ K(t 2)), o FN (uF (2,09
(2.3) b (u) = [ Yk (¢, 21) ,bN(uK(txiﬂ

Afw) = Vuritw) = [agen] - [ 2500 )

t = 1, 2., R,LM=1; 2 s:N;
and 5 9
Bt = Et, Bi = % “

The usual summation convention over repeated upper and lower indices is un-
derstood and ()T denotes a transpose.

For the system (2.1), (2.2), (2.3), we consider the following additional conser-
vation equation

(2.4) dth%a + 8;h'u = o (u).

For the clarity and completeness, we recall the well-known results of FRIEDRICHS
and LAX [1]. In [1], FRIEDRICHS and LAX formulated the statement which can
be expressed in the following way:

The conservation equation (2.4) “follows from” (is implied by or is a conse-
quence of, in other words) the system of N conservation equations (2.1) if and
only if

on0(uM) af(uM)  Oni(uM)

2.5 = ) = 1,2,
( ) 8UJ BUR BUR L i 92=3 ™,

hO M
%bJ(uM) = alm™J; JM,R=1,2,..,n

(2.6)

The term “follows from” (is implied by or is a consequence of, in other words),
used in this statement, is understood in a sense that there are N functions
1;(u™), not all identically zero, such that conservation equation (2.4) is a com-
bination of N equations of (2.1) multiplied by respective I;(u™); namely, the
equality

(27) (M) + Bk (u) ~ o (uM) = 1y () [’ + 0, () — ¥ ()]

holds for all functions u™ (¢, z') (in the domain of such functions). With this
interpretation, the following “proof” justifies this statement.
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Assume that (2.4) “follows from” (2.1). Then, the following identity is implied
by (2.7):

OR® (uM) Om (u) o (uM)
(2.8) a_;“ - zJ(uM)] Opu’ + [%—1; - lJ(uM)Bu—g aiul

+ [l M)’ (W) - U(uM)] =4

which holds for all functions u™ (¢, z'). Since in (2.8) the values of u™ (¢, z?),
dyu’ (t,2') and d;ult(t, z') can be taken arbitrarily at each point (¢, z?), the terms
i square brackets must vanish and, as a consequence, we obtain the following
system of identities:

AR (uM
(29) 1) = 28,
j uM o ] uM
(2.11) o(uM) = 1y (uM)b! (uM).

Substituting (2.9) into (2.10) and (2.11) we obtain (2.5), (2.6). Conversely, as-
sume that (2.5), (2.6) hold. Multiplying both sides of (2.1) by row vector com-
posed of Oh%(u™M)/0u’ we obtain the following conservation equation

ORO (uM)

3 aho(uM) afiJ(uM)
ou’ +

ou’ Oult

which, in view of (2.5), (2.6), corresponds to (2.4).
Therefore, the equality (2.7) is satisfied for

07, M
c’?iuR = Oh”(u )bJ(uR)

(2.12) e

atu

M) = ahO(uM) .

Ly(u 50

Then, the following condition was proved in [1]:

If the system (2.1) implies the additional conservation equation (2.4) then
the system (2.2) premultiplied (left-multiplied) by the Hessian matriz of h°(u) is
symmetric.

It was also mentioned in [1] that this symmetric system is equivalent to (2.1)
if the Hessian matrix of h%(u) is non-singular, and it is symmetric hyperbolic if
h%(u) is convex (Hessian of h%(u) is positive definite).

The proof of this condition given in [1] is based on differentiation of (2.10)
with respect to the components of u, which yields

82hi(uM) B ahO(uM) 32fiJ(UM) B a‘ZhO(uM) 62f“(uM)

(2.13) ENE auw)  OuFoulR  ouPoul  OuR
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The left-hand side of (2.13) is symmetric in the indices P, R, so is the right-hand
side. Tt therefore follows from (2.3); that Hessian matrix of h%(u) is the left
symmetrizer of the matrices A*(u).
The converse to this condition can be formulated as the following implication:
If the system of N conservation equations (2.1) has a left symmetrizer which
is a Hessian matriz of a certain function h°(u) then the system (2.1) implies the
additional conservation equation (2.4) with h(u) and o(u) given by (2.5), (2.6).

Proof Assume that there exists function h%(u), such that Hessian matrix
of h%(u) is the left symmetrizer of the matrices A*(u) given by (2.3)4. Then,
32h.0(uM) afiQ(uM) B BZhO(uM) 3fiS(UM)

2.14 = :
( ) ouf ou? Ault Quftous P

Let us denote

. ahO M 9 iS¢, M
(2.15) pp(u) = O )

For each ¢, functions hiR(uM ) can be interpreted as components of the row vector
h'T (u) which, according to (2.3)4, (2.15), is given by the equation
(2.16) hT (™) = 1T (wA'(w), i=12,..,n,

where 17 (u™) is a row vector with components [9h°(u™)]/ou.
Differentiation of (2.15) with respect to u¥ yields

Ohip(uM) @R (M) af S (uM) | 9R°(uM) 87 f5 (uM)
u?  ouQouS  ouR T ou’  GuRouR
and it follows from (2.14), (2.15), (2.17) that

(2.17)

hi (uM AR (uM
(2.18) = g(g ) _ g(R ), §=1%..m,
u u

what means that the matrix representing gradient of h' (with respect to u) is
symmetric.
Equalities (2.18) are necessary and sufficient for the following 1 — forms to be

closed
(2.19) @2 = hidu®,

and, for u from an open convex domain (without loss of generality, it can be
assumed that in (2.1) the domain of u is an open convex set in RN), it is exact
(see, for example [4]). Hence, there exist functions h'(u™) such that

(2.20) 7 = @i,
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and therefore

\ ohi(uM)
¢ @ M

Substituting (2.21) into (2.15) we obtain (2.5). Then, multiplying both sides
of the system (2.1) by the row vector composed of dh%(u™)/du’ and taking
into account (2.5) (implied by (2.21), (2.15)), we finally obtain the following
conservation equation

_ OhO (uM)

0 ¢ 0 1
(2.22) Ouh () + O,h' () = =5

bJ (uM' )

Hence, the system (2.1) implies the additional conservation equation with the

right-hand side term

M) = ahO(uM> bJ(UAJ).
du’

The following observation given in [3] is a direct consequence of the condition
of Friedrichs and Lax and its converse:

o(u

The system (2.1), (2.2) of N conservation equations implies the additional
conservation equation (2.4) (with hi(u) and o(u) given by (2.5), (2.6), respect-
wely) iff there exists a function h®(u) such that its Hessian matriz is the common
left symmetrizer of the matrices (2.3)4.

The necessary and sufficient condition corresponding to this observation but
expressed in the framework of geometrical (coordinate-free) description of the
systems of conservation equations (affine transformations of independent vari-
ables and dependent variables interpreted as local coordinate system on the
manifold) is given by PIEKARSKI [6].

3. Example of application of the converse to the condition
of Friedrichs and Lax

In the Introduction, we have briefly described the details of the general pro-
cedure of determination of the conditions that the system of conservation equa-
tions is consistent with the additional conservation equation, based on the conse-
quences of the converse to the result of Friedrichs and Lax. In order to illustrate
this procedure, we have chosen here, as an example, the system of conservation
equations from [2] because of its extreme structural simplicity and because, in
[2], the respective calculations related to verification of the converse to the re-
sult of Friedrichs and Lax are given in explicit form. Moreover, this system of
conservation equations is consistent with the balance of entropy and therefore
it admits symmetric symmetrizers. Hence, the procedure considerably simplifies
due to those facts and reduces to determination of the family of symmetric left
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symmetrizers of the system, to exploitation of the condition that this family
contains Hessian matrices and, finally, to integration of the respective system of
second-order partial differential equations in order to obtain the entropies.

3.1. System of conservation equations considered in [2]

In [2], the following particular case of N = 5 conservation equations (2.2) in
i = 3 spatial dimensions has been considered

(3.1) o’ (t,7) = [e(t,2%), ¢"(,0%), ¢(t, 2°), ¢* (8, 2"), B(t, )]

[o/(e)q! a(e) 0007

fie) 0 000

0 0 000/,

0 0 000

L O 0 000

o'(e)g” 0 ae) 007

0 0 0 00

(3.2) A*(u)= | fie) 0 0 00],

B Do oo

L 0 0 0 00]

ra'(e)g® 00 ale) 07

0 00 0 O
Al(u) = 0 00 0

fie) 00 0

0 0

0
( 0
L 00 0
dafe) df1(e)

O:,(E) — de " f{(e) = 77

(33)  bl(w) = [or, £(8)d", BB, BB, file) + f2(B)] .

The system of conservation equations (2.2), (3.1), (3.2), (3.3) corresponds to the
phenomenological model of a rigid conductor of heat with internal state variable
3 (called “semi-empirical temperature”). In this model, e is the internal energy
density, ¢; (1 = 1,2,3) are the components of gradient of (—/3), or is the heat
source density and a(e), fi(e) are constitutive functions.

In [2], the condition

. : ¥
(3.4) H(u)Ai(u):[H(u)A*(u)} . i=1,2,..,n,
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has been imposed on the matrices (3.2) for prescribed postulated matrix H(u)

H(u) = diag [, (e), ¢1, c1, c1, 2],

d*ne(e)
772'(3) = a2

(3.5)

c1, cp — const,

which, in fact, is a Hessian matriz of the following function R? of the arguments
e, @* b,

. Il .1
(3.6) h'(u) = h%(e,q", B) = ne(e) + §C1Qiqz T §Czﬁ2-
As a consequence of this condition, the relation between a(e), fi(e) and n.(e)
has been obtained

(3.7) c1fi(e) = ale)ng (e),

and called “symmetrizability condition” for the system (2.2), (3.1), (3.2), (3.3).

In view of the observation given in Sec.2, the “symmetrizability condition”
(3.7) is nothing else but the condition that the system (2.1), (3.1), (3.2), (3.3)
implies the balance of entropy (2.4) for the entropy (3.6).

In the following, we show how the condition (3.7) and the family of entropies
containing, as a special case, the function (3.6) can be obtained from the require-
ment that the family of common symmetric left symmetrizers of the matrices
(3.2) admits Hessian matrices, in other words, by selecting Hessians from this
family.

3.2. Family of the symmetric left symmetrizers of the matrices (3.2)

The term “symmetrizability condition” used in [2] to denote the condition
(3.7) (which, in fact, is the condition of consistency with the entropy balance
(2.4) for entropy (3.6)) seems to be particularly inadequate in view of the fact
that the matrices (3.2) have a family of common left symmetric symmetrizers
(for arbitrary a(e), fi(e))

- ale) ale) ale)
(8) S(w = diag | X5 X gy Xy

parametrized by two arbitrary functions x(e, ¢*, 3), A, ¢*, 5)-
To see this, one can simply verify by inspection that

. . o
(3.9) S(w)A'(u) = [S(wA'(w)] , =123,
holds for A’(u) given by (3.2) and S(u) given by (3.8). The family of matrices

(3.8) represents all symmetric solutions S(u) (S(u) = ST(u)) of the system of
three matrix equations (3.9) with the matrices A'(u) given by (3.2).
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The fact that the matrices (3.2) have common symmetric left symmetrizers
and the family of those symmetrizers takes the form (3.8), is a consequence of
a very specific structure of the set of matrices (3.2); namely, except the first
entry on the main diagonal, they can be obtained one from the other simply by
permuting the respective rows and columns (similarity transformations by the
respective permutation matrices).

Thus, the system (2.2), (3.1), (3.2), (3.3) considered in [2] can be symmetrized
without appealing to the fact that it admits the additional conservation equation
and, as it follows from (3.8), it admits a more general class of symmetrizers than
that obtained in [2]. By choosing x(e,¢',3) > 0 and \(e, ¢*,3) > 0 for all e, ¢',
(3 (from the respective domain), positive definite symmetrizers can be obtained
from the family (3.8) provided that either a(e) > 0 and f{(e) > 0 or a(e) < 0 and
fi(e) < 0. Hence, the only conditions on a(e) and fi(e) that ensure symmetric
hyperbolicity of symmetric systems obtained by premultiplication of (2.2), (3.2)
by S(u) from (3.1) with x > 0, A > 0 is either a(e) < 0, f{(e) < 0 or a(e) > 0,
file) > 0.

3.3. Condition of consistency with balance of entropy and the family of entropies

The condition that the system (2.2), (3.1), (3.2), (3.3) is symmetrizable by
Hessian matrix of a certain entropy function h(e, ¢', 3) is equivalent to the con-
dition that at least one of the matrices S(u) of the family (3.8) is the Hessian of
h%(e,q*, 3). This condition is, therefore, the integrability condition of the follow-

ing system of 15 second-order partial differential equations for h%(e, ¢, 3).

9%h0 i
"(.%5‘ = X(eaq ’B)a
3210
80(’?:0’ 2::].,2,3,
edq’
0210
d h -
dedf
i - oale)
310) e X(e:ql>6) ) i= 1’2’3’
( (7 i)
9?h0
g =0 i=128 i
1210
;igﬁ = [, =183
q
i ol ;
W = )\(evq 7/8)
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It can be easily verified that the system (3.10) is integrable iff

x(e, ¢, B) = X(e),

(3.11) e, q',8) = Ae),
Y(e);{((?) = ¢ ¢ = const.

With the conditions (3.11), the system (3.10) can be integrated and its solutions
(entropies) take the following form:

(3.12) ho(e,qi,ﬁ) = hg(e) + %cqiqi + hg(ﬁ):
where
21,0 !
x(e) = g = 1) = L,
e ale)

(8.13)

. d2h%(e) ol

A(E) = *d—ﬁz— == Jé] (8),

and R (e), h%(ﬁ) are arbitrary C?(R) functions, and ¢ is an arbitrary real con-
stant. Identifying h%(e) with n.(e) and ¢ with ¢; and taking into account (3.13),
we recognize the condition (3.7) in integrability conditions (3.11); 3 and notice
that the function (3.6) corresponding to prescribed symmetrizer (3.5) is a par-
ticular entropy (3.12) corresponding to h% (B) = (1/2)co 32

It follows from Sec. 2 of [2] that the original system of field equations corre-
sponding to the considered model of a rigid conductor of heat is the system of
two partial differential equations of the first order with respect to the temper-
ature @, and of the second order with respect to 3, and that the second law
of thermodynamics (entropy inequality) implies the entropy associated to this
system of the form [2. Eq. (2.5)]

(3.14) n*(0,V5) = n(8) — %qvm?, T

It is assumed in [2] that internal energy e is the inevitable function of @, so the
original system of field equations can be equivalently expressed as the system
of two partial differential equations for e and G (first order with respect to e
and second order with respect to /3), and, according to (3.14), the corresponding
entropy must be of the form

(3.15) 2(e, V5) = nele) — 5el VB[

The system of five conservation equations (2.2), (3.1), (3.2), (3.3) has been ob-
tained in [2] from the original system of two field equations expressed in terms
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of e, 3, supplemented by the additional three equations obtained through spa-
tial differentiation of one suitably chosen member of this original system. For
such system of five equations, the variable q has been introduced through the
substitution

(3.16) q=-Vg.

With the substitution (3.16), the entropy (3.15) corresponding to the original
system of field equations expressed in terms of e, @ (implied by the entropy
inequality) takes the form

(317) (e, a) = nele) ~ yelal’

while the system (2.2), (3.1), (3.2), (3.3) admits the family of entropies (3.12)
implied by the balance of entropy (entropy inequality replaced by the corre-
sponding balance law). The entropy (3.17) is a particular member of the family
(3.12) corresponding to hg(8) = 0.

Hence, the entropy (3.17) obtained from thermodynamic restrictions imposed
on the original second order system of field equations cannot be employed for
symmetrization of the corresponding first order system of conservation equations
(2.2), (3.1), (3.2), (3.3) since, when treated as a function of e, ¢, 3, it will lead
to the singular Hessian matrix.
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