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A yield-vertex modification of two-surface models
of metal plasticity

H. PETRYK (WARSZAWA) and K. THERMANN (DORTMUND)

A PHENOMENOLOGICAL MODEL of elastoplastic behaviour of metal polycrystals is
proposed which combines the features of micromechanical models with the classical
flow theory of plasticity. The standard equation of a smooth loading surface describes
here an outer limit surface which is never reached. The actual inner yield surface
possesses a vertex at the current loading point, interpreted as the point of intersection
of active yield surfaces for plastic flow mechanisms at a micro-level. The incremental
response of the material at the vertex is defined in terms of the position of the current
stress relative to the outer surface. In the computational version of the model, the
effects of partial unloading and of physical and constraint hardening are represented
by separate constitutive functions.

1. Introduction

THE CLASSICAL FLOW THEORY of time-independent plasticity is based on the
assumption of a smooth yield surface and of a flow rule that prescribes the direc-
tion of the plastic part of strain-rate in the current state. On the contrary, micro-
mechanical models of elastoplastic polycrystals invariably predict (cf. [1-4]) the
formation of a vertex on the yield surface at the current loading point, as well
as the existence of a whole range of admissible plastic strain-rate directions, the
actual one being dependent on the current stress-rate.

Accordingly, two separate classes of time-independent phenomenological con-
stitutive models for polycrystalline metals in the plastic range have been pro-
posed: of the classical type and of the corner (or vertex) type. The former have
a simpler structure in the incremental form and can in principle be constructed
using the accumulated knowledge of experimental yield surfaces, while the latter
are closer to micromechanical predictions and are expected to simulate better
the material response after an abrupt change of the direction of straining. In cal-
culations, the Jy corner theory of plasticity formulated in [5] was most frequently
used among relatively few phenomenological corner models proposed so far for
metal polycrystals [6—14].

The purpose of this paper is to develop a phenomenological model of elasto-
plastic behaviour of metal polycrystals which combines the features of the above
two classes of constitutive description. A given model of the classical type is
modified in order to improve the consistency with general conclusions drawn
from a micromechanical analysis [3]. Accordingly, the classical smooth yield sur-
face plays here the role of an outer extremal (limit or target) surface which is
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848 H. PETRYK AND K. THERMANN

never reached, while the related inner yield surface (a boundary of the actual
elastic domain) possesses a vertex at the current loading point. The extremal
surface may be interpreted as a locus of asymptotic stress states approached
when physical hardening is imagined to be suspended [3]. A considerable simpli-
fication in the proposed computational model, and also the difference in relation
to the previous corner theories, is that the incremental response of the material
is defined in terms of the position of the current stress point with respect to
the eztremal surface, independently of evolution of the latter, e.g. according to
an isotropic/kinematic hardening law. In turn, the fundamental distinction from
plasticity models with two or more loading surfaces [15-18] is that the inner
surface is here no longer smooth. The derivation of the incremental law at the
vertex of the inner yield surface also appears to be novel. In the first approxi-
mation, the simplest assumption of mutually independent internal mechanisms
of plastic deformation at a micro-level has been explored.

2. Two-surface model of plasticity with a vertex
on the inner yield surface

The small-strain formulation is given first; an extension to a geometrically
exact description at finite strain will be given in Sec. 4. The standard yield con-
dition of the Huber —Mises type:

(2.1)

all
|
tould

Bl

= (30"~ )’ - a))l/z

is adopted here as an equation of the eztremal surface in the sense of HILL [3]. o
denotes the Cauchy stress(!), o' its deviator, o denotes the deviatoric backstress
and k is the yield shear stress. a and k can vary with the plastic deformation
according to prescribed rules which are left arbitrary here. (2.1) can be replaced
by a more general equation of a smooth surface without changing the remaining
part of this section. However, the specifications in the next section are only given
for the form (2.1).

Contrary to classical elastoplasticity, the surface (2.1) is not allowed to be
reached, and plastic deformation can take place when the current stress lies
inside the surface (2.1). During plastic flow, the current stress point o constitutes
a vertex on the inner yield surface which is a boundary of the current elastic
domain (Fig. 1a). The vertex is interpreted as an intersection point of individual
smooth yield surfaces (transformed to the macroscopic stress space) for a large
or infinite number of internal plastic deformation mechanisms at a micro-level,

(') In the standard symbolic notation employed, bold-face letters denote second- or
fourth-order tensors, a dot between two tensor symbols denotes full contraction, a tensor prod-
uct is denoted by ®, and |&| = (o -0)'/? denotes a norm of the stress-rate. Throughout the
paper, only symmetric second-order tensors are used.
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A YIELD-VERTEX MODIFICATION OF TWO-SURFACE MODELS 849

cf. [3]. Such a mechanism can be identified, for instance, with crystallographic
slipping on some system in some grain in a polycrystalline aggregate. We restrict
ourselves to examining the case when the matrix of hardening moduli, which
represents mutual interactions between the mechanisms either within the same
grain or in different grains, is symmetric and positive definite. A well known
consequence is that the fourth-order tensor of macroscopic plastic compliances,
denoted below by MP, is diagonally symmetric and at least positive semi-definite.

a) extremal surface b)

subspace S a;

yield surface

partial

ol unloading

elastic alastic

unloading fully

active
loading

Fi1G. 1. (a) Two-surface model of plasticity where the inner yield surface has a vertex
at the current loading point and the outer extremal surface is smooth. (b) Overall
structure of the incremental plastic constitutive law at the yield-vertex, within
a two-dimensional subspace S.

As long as unloading is absent or partial so that the elastic domain is not
penetrated, a phenomenological constitutive relationship at the vertex may be
defined without specifying the entire form of the elastic domain but merely the
directions tangent to the corner of the elastic domain at o’. In a given state of the
material, a macroscopic plastic strain-rate € is assumed to be a single-valued,
positively homogeneous of degree one, continuous and (except at o = 0) at least
piecewise-continuously differentiable function of a macroscopic stress-rate a. It is
emphasized that a dot over a symbol denotes the forward rate. We will examine
that function restricted to a two-dimensional subspace § of the Euclidean space
of symmetric second-order tensors, and denote by ég the orthogonal projection
Ps-€” of €” on §(?). By the Euler theorem, the homogeneous incremental plastic
law can be written down as

. o de’
& = MP(6).6, MP =
(2.2) do
é2 = M%(5):a, ME = PsMPPg, if ¢€8.

The diagonal symmetry of MP implies that M% is a diagonally symmetric
operator within §. From the spectral decomposition theorem for fourth-order

(*) If (a,b) with a-b = 0, |a| = |b| = 1 is an orthonormal basis in S then Ps = a®a+b®b.
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diagonally symmetric tensors (cf. [19]), we obtain that M%, henceforth assumed
to be positive definite, has the following representation

(2 3) Mg = Mlal ®a + Mnau @ap,
a, 8, €8, a-a, =0, la,| = la,| =1,

with principal directions a,, a;, and positive principal compliances M, M.
Let g # 0 define a distinctive direction within &, and 3 denote an angle of
inclination of a nonzero o to g,

d’-ao 6’0
a0 = —7/— =~
00|

(2.4) cosff=——,
o]

The considerations below are limited to ¢ € S lying on one side of oy where
B € [0, w]; the other side can be examined analogously.

Each quantity in (2.3) depends in general on 3. An admissible function M%(3),
if discontinuous, must ensure the continuity of €3(d), and at every differentia-
bility point it must satisfy the additional condition

M
BT A = )

obtained by differentiation of (2.2). On substituting (2.3), the condition (2.5) is
easily transformed to

(2.5)

dM, _ (4B N )
(2.6) dg an B (dﬁ ) (M; — My,) sin 3, ,
= dA/In : B dﬁi p

48 sinf3, = (—dﬁ - ) (M; — M, )cos B, ,

where £, is an angle between o and a, with

o-a
. sin 3, :—ﬁ.

g-a
o]

From (2.3) we also find that 3, is connected with an angle a; between €k and a,
through

1

(2.7) cos 3, =

M
(2.8) tanq, = —Ltanf, .
I Mx )]

It can be seen that if one scalar function from the triple {M, (3), M, (3), 3,(8)}
defining M%(3) is prescribed then the two other have to satisfy two differential

http://rcin.org.pl



A YIELD-VERTEX MODIFICATION OF TWO-SURFACE MODELS 851

equations (2.6), with appropriate boundary conditions. That restriction is related
to the existence of a stress-rate potential ¥P(g),

P

(29) €P= daic PP = %é"-& and 0P = %&-Mg-d if ¢ef,
which 1s a consequence of the diagonal symmetry of MP. If more than one scalar
constitutive function in a subspace § is assumed, as in [12, 14|, then the poten-
tiality property is generally lost.

Further considerations are restricted to the case 0 < 8, < /2 illustrated
in Fig.1b. Moreover, we will assume that M, |, = M, — M, > 0 and that
0 < df, /dp < 1. Then (2.6) holds if and only if either

dg dM dM.
2.10 —t =1, —L1 =, —L =
210) 45 B "
or
ﬂ =1 Erie (0,00),
(2.11) -
= dM dM
dﬁl = —rM;_j,tanp, d_ﬁll =—rM,_j;cotf, .
I I

In the former case M% () = const. In the second case, the following differential
equation for M| _|, is obtained:

dM
(2.12) —H = 9r M, . cot28, .
d,@l 1-11 1

This defines a class of constitutive relationships corresponding to different func-
tions (/). A particular solution

(2.13) M,_,, = 2Msin" 28,

is obtained for r independent of 3,, with M > 0 being a positive integration
constant.

Suppose that there exists a stress-rate o codirectional with the principal
direction of MP(a) associated with the mazimum principal plastic compliance;
in particular, & is then codirectional with €”(¢g). To cover all directions in the
stress-rate space, it suffices to consider the two-dimensional subspaces S that
contain o as the common distinctive stress-rate used to determine the angle j
from (2.4). If M% varies continuously with 3 then from (2.10) and (2.11) it follows
that the principal plastic compliances M, (3) , M, (/3) are non-increasing functions
which attain maximum values at 8 = 3, = 0. If (2.10) holds for 3 < f3y, say, then
that interval of 3 can be identified with the angular range of fully active loading
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in the current state, while an interval of validity of (2.11), ) < 8 < (3. say,
can be identified with the transitory range of partial unloading, cf. [3]. We shall
assume that (—og) lies within the current elastic unloading cone corresponding
10 B: < B <, ¢f. Fig. 1b.

To derive a constitutive function in the transitory range rather than to de-
fine it arbitrarily, we propose the following simplifying procedure. The effect of
physical hardening within the grains in a polycrystalline aggregate is included
into a hardening rule for the eztremal surface, e.g. into an evolution rule for
a and k in (2.1). The interaction (in the stress-space formulation) between
micro-mechanisms of plastic deformation in different grains is imagined to be
represented, at least partially, by variations of M inside the extremal surface (see
below). Finally, a phenomenological relationship between the plastic strain-rate
and stress-rate at the vertex on the inner yield surface, which includes the effect
of partial unloading, is constructed as for mutually independent mechanisms of
plastic deformation. For comparison, in the well-known theories of BATDORF
and BUDIANSKY [1] or KOITER [6], the effects of interaction between the plas-
tic deformation mechanisms were fully neglected, while here they are taken into
account in an indirect manner.

Under that assumption, the range of fully active loading becomes a prolon-
gation of the elastic unloading range, so that 8y = # — f3.. Both ranges suffer a
right-hand discontinuous change in time if o, the current right-hand rate of stress,
induces partial unloading. Then, & constitutes one limiting ray of the new angu-
lar range of fully active loading(®), while the second limiting ray of that range is
regarded as varying continuously in time. The key simplifying assumption is that
a, () corresponding to any direction of loading (total or partial) within & always
bisects the right-hand limit (in time) of the angular range of elastic unloading.
It follows that in the range of partial unloading, a, rotates continuously with
increasing (3 so that (cf. (2.13))

(2.14) r=1, M, , = 2Msin243,,

with a parameter M independent of 3,. It may be noted that (2.14) gives d(M, +
M,,)/dB, = —4M. To obtain a smooth transition to elastic unloading, we assume
that M, tends to zero as 3 — (.. On using the condition of continuity of £R(a),
we obtam the following solution to (2.11) in the transition range:

Belbofl Be=m—fo, B=glr—Feth)=5(f+0)
M, = (m — 2B, +sin28)M, M, = (7 - 26, —sin28,)M

1

(2.15)

(*) Fully active loading means that each plastic deformation mechanism that is potentially
active (i.e. stressed to its yield point in the current state) is actually active. After partial un-
loading, some of previously potentially active mechanisms become inactive, so that the angular
range of fully active loading increases discontinuously. For infinitely many mechanisms, g cor-
responding to partial unloading will generally induce neutral loading for some mechanism(s),
i.e. will constitute the limiting ray as stated above; cf. also [20].
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and in the range of fully active loading:

;[3 € [0350]: BI =
M1 = (‘ﬂ' — 26 + SinzﬂO)Mv Mu =

/B)

(2.16) -
(m — 28y —sin205y) M.

For convenience, the basic relationship between M;, M, and Fy or j, for fully
or partially active loading, respectively, is visualized in Fig. 2.

()6 I T T T
0.5F e = MI =
0.4} = s S0 1
=~
0.3 M " 1
0.2 .
~
~N
0.1 T
- N
00 1 + —
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FiG. 2. Principal plastic compliance ratio, M, /M, as a function of 3y for fully active
loading or of (3, after partial unloading. Broken lines show the respective variations
of the principal plastic compliances scaled down by 5M.

From elementary geometry it follows that ég makes an angle (7 — 3, — ay)
or (m — 3y — ;) in the range of partially or fully active loading, respectively,
with the limiting ray of the elastic unloading range in the respective subspace
S, cf. Fig. 1b. It can be checked by using (2.8), (2.15) and (2.16) that this angle
decreases monotonically from (3. to 7/2 as 3 increases from zero to (.. Hence,
ég lies within the range generated by the outward normals to the limiting rays
of the elastic unloading range in §, in agreement with the generalized normality
rule at a yield-surface vertex.

Once the elastic unloading cone in o-space has been specified in the current
state, then the elastic unloading range within each S is known along with its
internal angle 23y, external angle 2/3, and outward bisector ag. Finally, the con-
stitutive relationship between €” and & is fully determined, after substituting
(2.15) and (2.16) into (2.3) and next into (2.9), by the geometry of the current
elastic unloading cone and by the scalar parameter M dependent on the material
state and on S. Of course, when performing the partial differentiation in (2.9),
the dependence of the parameters M and 3y on the subspace § must be taken
into account in general. That dependence is absent from the simplest version of
the model discussed in the next section.
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3. A simple computational version of the model

Suppose first that the current state of the material has been reached by
proportional loading from a virgin unstressed state with o = 0; this condi-
tion will later be relaxed. Under the usual assumption of an incompressible and
pressure-insensitive plastic flow, the following specifications (cf. Fig. 3) are made
in the incremental constitutive law from Sec. 2:

(i) The deviatoric stress-rate space and its two-dimensional subspace S’ are
substituted in place of o —space and S.

(i1) The elastic unloading cone has a symmetry axis codirectional with (&' —
a), and 3 is defined by (2.4) with

o —a

3.1 ag=—.

(3.1) o= T—a

(iii) The parameters 3y and M are independent of S’ and depend on the
placement of ¢’ relative to the extremal surface.

extremal surface

Fi1c. 3. Construction of the elastic unloading cone in the computational version
of the two-surface model.

The relationship between the plastic strain-rate and stress-rate at the vertex
o’ on the inner yield surface becomes fully defined by two state-dependent scalar
parameters 3y and M being functions of the current values of &, k and ¢’. In
the potential form, the incremental plastic constitutive law is given by

; yP 1 ;
(3.2) ¥ = 8—., wP = ~F(B)a',
oo 2
(33) F(B) =M
7w — 2y + sin 28 cos 23 for 0 < 3 < g (total loading),
w— (6 + Fo) + % sin2(3 + fy) for By < B < m — By (partial unloading),
0 for m — 3y < 8 < 7 (total unloading).
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In an explicit form, it reads(?)

&* = M(A(B)|6|ag + B(B)&"),
A(B) = 2cosBsin25,
B = 7 — 28y —sin2p, }
(3.4)  A(B) = sin®(8 + Bo)/sin 3,
=7 — (B + Bo) — sin By sin(B + By)/ sin B

=10,
:0} for m—pGp<B<m.

for 8 < o,

}fol‘ BoLBEm— B,

=
2

W

This can be complemented by the standard equation for the elastic part of
strain-rate, viz.

(3.5) E=€ 4%, € =M.o,
with M? being the compliance tensor of the linear theory of isotropic elasticity.

Finally, specification of the parameters 3y and M and of evolution equations
for & and o completes the set of constitutive equations of the model. The evo-
lution rule for the extremal surface is left arbitrary here since the equations are
proposed as a refinement of a given model of the classical type. By and M are
assumed to depend on the relative distance of the current deviatoric stress o’
from the extremal surface. For instance, they can be expressed in terms of the
ratio 7/k as

ksin gmex 7 |
(38) @ = hicsinr e % € (sinf™*,1), B™ = const € (g n) ,
T
. i ) m — 20y — sin 23
(3.7) M(B) == . xlBe) = :
ol E 1 = x{Bo)/xlmr — BP*) x(ho) sin o '

where [F"* is a material constant and F is the elastic Young modulus. In
comparison with the standard elastoplastic model, that specification of the yield-
vertex modification requires only one additional material constant S**. Formula
(3.6) means that generators of the elastic unloading cone are tangent to a sphere
with centre o and radius kv/2 sin B in o'-space, cf. Fig. 3. During proportional
loading in the range 7/k < sin ™, we substitute M = 0 with 3 undefined. On
the other hand, the inner sphere shown in Fig. 3 by a broken line is only used to

(*) A closer inspection of Eq.(3.4) shows a resemblance to the equation obtained in [9] in a
different way and without considering its potential form. The present equation is more general
since M is a function of state rather than a constant. The distinction is essential since constant
M would be inconsistent with the existence of a fixed unattainable extremal surface when
physical hardening within the grains is suspended. To have consistency, 1/M must tend to zero
when a fixed extremal surface is approached.
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define the current elastic unloading cone at o' and need not be identified with
the boundary of the current elastic domain.

The function (3.7) has been chosen to fit approximately the tensile stress/
plastic strain curves calculated for micromechanical models of a polycrystal [4];
the approximation will further be discussed in the next section. Of course, one
could also take another function M in place of (3.7) to obtain a better fit of
micromechanical results. The.present choice was influenced by the convenient
possibility of determining analytically the plastic strain under proportional load-
ing from the unstressed virgin state if the extremal surface is fixed. From (3.6)
with fixed k£ and from (2.16) we obtain the interesting formula

(3.8) r—d(327).
M M

On using (3.6) and the definition of x in (3.7), the plastic strain under propor-
tional loading is thus given by

T X
(3.9) e = ag\/Q/MI dr = aok\/isinﬁg‘aX[de.
0 0

This motivates the use of M expressed in terms of y. The form (3.7); is one of
the simplest which ensure M — oo as 7 approaches a fixed k; after integration
it yields

Zk\/i max . max 1
B (e s I Y e — B

with 3y determined from (3.6) for a fixed extremal surface.
In turn, from (3.9), (3.6) and the definition of x we obtain

(3.10) eP =g

(3.11) e = M, o'  if M = const.

This is precisely the formula of the classical deformation theory of plasticity
where the proportionality factor between the plastic strain and stress deviators,
being a function of |o’|, serves as the principal plastic compliance for g or-
thogonal to @’. In view of a fixed relationship between M, and |o'| implied by
(2.16) and (2.6), the variant of the deformation theory obtained here for fully
active loading at constant M is very special and, moreover, inconsistent with
the assumption of a fixed extremal surface. The possibility to satisfy Eq. (3.11)
approzimately for the extremal surface subject to a power hardening law will be
discussed in Sec. 5.

The assumption (ii) above, and hence the final specification of the incremental
plastic constitutive law, cannot be regarded as appropriate for all stress-rates in
all states, e.g. in the current state just after partial unloading. Fortunately, to
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calculate the material response along some loading path, it usually suffices to
know the function €”(d) only in the vicinity of the actual stress-rate direction.
For a class of non-proportional loading paths, the actual plastic strain-rate and
plastic compliances can be calculated from (3.3), or directly from (3.4) and (2.15)
or (2.16), respectively, still by using the specifications (i) - (iii) in the following
cases:

(A) for every stress-rate in any state P reached from a virgin state o’ = 0,
o = 0 along a plastic straining path without unloading (i.e. with 3 < fj in the
range 7/k > sin A", except in the current state Py itself);

(B) along any path starting from a state P and such that ¢’ and o are being
contained in a fixed two-dimensional deviatoric subspace and 3 is preserving its
sense, nondecreasing (but possibly discontinuous) in time and satisfying 3 < £ ;

(C) along any straight path in the deviatoric stress space starting from Py
and satisfying 8 < f;;

(D) along any smooth path of a sufficiently small curvature in the deviatoric
stress space, starting from Pa and satisfying 3 < ..

This can be inferred from the assumptions under which the equations of the
computational model have been derived. The common condition in the above
list is that no elastic unloading takes place so that the current stress does not
leave the vertex on the inner yield surface. This condition could be weakened
by allowing for elastic unloading not followed by reloading, and also for certain
cases of reloading. The restriction on the path curvature in point (D) is impre-
cise since it is difficult to specify the circumstances in which the influence of
partial unloading on the actual tangent compliances along a curved path may
still be neglected. A curvature of the order 1/k may perhaps be regarded as being
“sufficiently small” in this respect.

4. Extension to finite strain

The extension of the constitutive equations from the preceding sections to
plastic strain of arbitrary magnitude can be done in the following way, regarded
nowadays as standard. With the volume changes assumed to be purely elas-
tic and small, o is replaced by the Kirchhoff stress T = Jo where J is the
current-to-reference volume ratio, while the stress-rate o is replaced by T, the
Zaremba - Jaumann flux (corotational with the material spin) of T. An exact
elastic constitutive law can be defined as an isotropic linear relationship be-
tween the back-rotated Kirchhoff stress and logarithmic elastic strain relative
to an unstressed state. Accordingly, the elastic compliances of the linear theory
of isotropic elasticity undergo a slight modification, cf. [21]. € is identified with
the Eulerian strain-rate D while its plastic part DP is defined by (3.5) and deter-
mined from (3.2) or (3.4) after making the substitutions indicated. A finite strain
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problem can be analysed in the usual step-by-step manner if, in every traversed
state, D as an invertible function of T is specified at least in the vicinity of the
actual incremental solution.

Questions resulting from the multiplicative decomposition of the deformation
gradient and concerning the effect of plastic rotations on the kinematic hardening
law need not be addressed here since they do not affect the proposed modification
of a giwen classical plasticity model.

5. Illustrative examples

Figures 4 - 7 illustrate the model behaviour during proportional loading from
an unstressed virgin state, by the representative example of uniaxial tension.
The tensile stress o is scaled down by oy = kg /3, the initial tensile yield stress
in the absence of the yield-vertex modification, i.e. for the classical model. The
tensile plastic strain £P is normalized by the elastic critical strain op/E. Fig-
ure 4 shows how the stress varies with the plastic strain for the classical model
(the horizontal line) and for F"** = 105°, 120°, 130° and 139.2° when the ex-
tremal surface is kept fixed. This case corresponds to perfect plasticity within
the grains of a polycrystal, where the increase of the macroscopic stress is due
to “constraint hardening”. The curves can be compared with the results given
in [4] for micromechanical models of a polycrystal. The lowest curve in Fig. 4 for
sin A = sin 139.2° ~ 1/1.53 corresponds to an upper bound of the constraint
hardening effect (cf. [3, 4]) and, after suitable rescaling, fits approximately the
results obtained from the Kroner - Budiansky - Wu self-consistent model. Fitting
the results obtained in [4] for Hill’s self-consistent model, regarded as more accu-
rate, would require a somewhat smaller value of 3"**. Identification of an optimal

11 [ - [
105°

1207 classical law

1
1 2 3 1
E“}D‘/U(]
I'1G. 4. Non-dimensional stress vs. plastic strain in uniaxial tension for a fixed
extremal surface and for different values of 31"
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value of F"®* is not straightforward since the yield-surface corner angle in a phe-
nomenological model should be interpreted as an effective angle obtained when
an unspecified plastic strain due to some internal mechanisms is neglected. For
otherwise, the assumption of the existence of a finite elastic domain at advanced
plastic deformation could be questioned; cf. the remark in [4], p. 271.

a) 1.5 T T T

classical law

L0t 7
1 ’~.‘\ i ﬂ'l'ud.\’ — 13920
o 120°
0.6 l
0.0 1 1 1
(0 5] 10 15 20
6]3/7’[]
b) 15 : : :
, classical law
lO = : 5 6‘1'11‘.1,‘( — 13920 =
T \
o 1120
5. i
0.0 . L L
0 5] 10 15 20
EE/TU

FiG. 5. Uniaxial Kirchhoff stress 7 as a function of logarithmic strain e for the
extremal surface subject to an isotropic, (a) linear 7 = kv/3 = 19 +0.02EeP, or
(b) power hardening law 7 = 7y (1 + ePE /1) !, for different values of 5.

The results in Fig. 5 correspond to the extremal surface being not fixed but
subject to an isotropic linear or power hardening law. The finite strain version
described in Sec. 4 has been employed, with 75 as the uniaxial Kirchhoff stress on
the initial extremal surface and 7 = (e — €P)E. It can be seen that the uniaxial
stress-strain curve for the classical law is closely approximated by the curves
for the present model when the plastic strain becomes only a few times greater
than the elastic strain. However, the difference is no longer fully negligible even
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for larger strains, especially for linear hardening with a constant modulus A
(equal to 0.02F in Fig.5a). The reason is that an asymptotic value 3§° of Gy
is now somewhat greater than (7 — 5***). It can be found from the condition
dfBy/deP = 0 which leads to the relationship

2
3

While the yield-vertex modification of a stress-strain curve for proportional
loading at advanced plastic strain may be regarded as insignificant, the corre-
sponding difference in the incremental constitutive law is substantial. This is
illustrated in Fig. 6 where plots of the effective tangent shear modulus vs. load-
ing angle after tensile prestrain are presented for different values of F**. The
plots correspond to a fixed extremal surface in the small strain formulation, and
the amount of plastic prestrain for each value of F"** corresponds to the same
relative distance to the extremal surface, defined by (1 — 7/k)/(1 — sin g®*) =
(1 —1.3/1.53)/(1 — 1/1.53) to allow comparison with the similar Fig.6 in [4].
The calculated effective tangent shear modulus in the total loading range tends
at B — 7/2 to the elastic shear modulus G, i.e. to the value obtained for the
flow theory of plasticity.

1 G 2 T T T T T
classical flow theory

(5.1) sin B8° — ShM, (f5°) sin B = 0.

1.0

08 1
G,
—£ 0.6] 1
G

04F B = 139.2° 1

0.2+ -

O() | 1 | | =i
0° 30°  60° 90° 120° 150° 180°

B = arctan(v/3 |612]/511)
Fic. 6. Effective tangent shear modulus G, = ¢12/2¢;5 as a function of the
incremental loading angle 3 after tensile prestrain corresponding to a given
relative distance (see the text) to a fixed extremal surface. G = E/2(1 + v)
is the elastic shear modulus with v = 0.3.

The difference between the incremental characteristics for the present and
classical models is also illustrated in Fig. 7. Plots of the principal plastic com-
pliance ratio M, /M, vs. strain in uniaxial tension are shown for g"** = 120°
and 135° while for the classical plasticity law the ratio is identically zero. Solid
lines correspond to a linear isotropic, broken lines to a power-type isotropic, and
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dotted lines to a linear kinematic hardening law for the extremal surface. The
material parameters for the isotropic hardening correspond to Figs. 5a and 5b,
and the kinematic hardening law is specified by o = (2/3)(0.01E)DP. It can be
seen that the value of M, /M, is only slightly influenced by the type of hard-
ening, and also by the amount of strain beyond a certain initial stage. On the
other hand, the ratio depends strongly on the value of 8"**. This 1s, of course,
not surprising since this ratio depends only on fp as illustrated in Fig. 2. Figure
7 may thus be treated as another illustration of the conclusion that during pro-
portional loading at advanced plastic deformation, when the current hardening
modulus is much smaller than E, the value of 3, = 7 — 3y is close to 5"** and
hence almost constant.

0.25 —= T 1 T

(]20 /8[11?1‘\2 — 1350

ﬁélldx i 1200

1 1 1

10 20 30 40
BE/’TU

Fi1c. 7. Variation of principal plastic compliance ratio M,, /M, with logarithmic strain
in uniaxial tension for the extremal surface subject to a linear isotropic :
power-type isotropic - - _ and linear kinematic ....... hardening law for two values

of A** Isotropic hardening parameters as in Fig. 5, kinematic hardening law
a = (2/3)(0.01E)DP.

(S
=)

A stabilized value of the ratio of the principal plastic compliances resembles
the well-known property of the deformation theory of plasticity obeying a power
hardening law. In the small-strain formulation with the elastic strain neglected,
M, /M, under proportional loading becomes then equal to the tangent-to-secant
modulus ratio, and hence to the constant power exponent. The present model
can approzimate such behaviour provided (M** is appropriately selected, with
the help of the relationship visualized in Fig. 2, to give the required value of the
compliance ratio. The power hardening exponent corresponding to G equal
to 120% or 135° can be directly read off as a stabilized ordinate in Fig. 7.

It is beyond the scope of this paper to simulate the material response for
various paths of non-proportional loading, which is expected to be strongly in-
fluenced by the choice of an isotropic/kinematic hardening rule for the extremal
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surface. We recall that the proposed yield-vertex modification does not restrict
the freedom in selecting such a hardening rule that fits experimental data for a
specified material.

6. Concluding remarks

A modification of the family of classical models for plastically deforming
metals has been obtained with the help of general conclusions drawn from mi-
cromechanical analysis of an elastic-plastic polycrystal. In comparison with the
standard equations of the flow theory of plasticity, the proposed model in its
simplest computational version involves only one additional material constant
which defines the maximal sharpness of the corner at the current loading point
on the inner yield surface. A smooth loading surface of the standard form has
been used as an outer “extremal” surface [3], not attainable during plastic flow.
With the yield-vertex effect included, the high (elastic) stiffness of the classical
elastic-plastic model against an abrupt change of the straining direction has been
relaxed. This offers a perspective of more adequate modelling of the material be-
haviour under non-proportional loading, and of arriving at more realistic results
in bifurcation and instability studies, still using a typical isotropic/kinematic
hardening law for the outer loading surface.
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