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Transverse Stokes flow through a square array of cylinders 

A. ZACHARA (WARSZAWA) 

THE WORK PRESENTS results of calculations of the t ransverse Stokes flow through 
a square array of cyl inders. The new fu nctional basis has been derived and the 
solution is sought in the form of seri es expansions in this basis, t he terms of which are 
given explicit ly as fu nctions of t he volume fraction <p. The presented method enabled 
us to evaluate t he expression for the d rag force of high accuracy using symboli c 
computations. 

1. Introduction 

SLOW FLOW of a viscous fluid through an array of cyli nders is observed in 
many technical applications such as heat exchangers, fibre filt ers and bundles 
of man-made fibr es in spinning processes. In this paper we shall study the flow 
through a square array of cylinders in a direction transverse to the cylinder axes. 
This problem was first studied in 1959 by H APPEL who calculated the Stokes 
flow, taking into account t he periodic structure of the array with the aid of a 
so-called free surface model [1- 2]. As a result , he got an expression for the drag 
force F' exerted by the fluid on a unit length of a cylinder. The drag force was 
a function of the volume fraction c.p of cylinders for a given mean velocity U of 
the fl uid. The volume fr action c.p is defined as 

7fa'2 

c.p = A, ( 1.1) 

where a' is the cylinder radius and A is the cross-sectional area of the array per 
single cylinder . In the case of a square area it takes t he form 

(1.2) A = l2
, 

l being Lhe distance between the cylinder axes. 
The expression for the drag force F' may be presented in the foll owing general 

form which involves approximations of various order 

( 1.3) 
F' 1 

= 
Ｌ ＮｾＬｵ＠ K (c.p) ' 

where 

( 1.4) K (c.p) ｓｾ＠ [tn(1/ c.p) + T(n)(c.p)], 
n 

(1.5) T (n) ( c.p) 2:_ Ti c.pi , 
i = O 

and f..L is the dynamic viscosity of t he fluid . 
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The approximation of HAPPEL [1- 2] was rather rough and the results obtained 
were of a reasonable accuracy merely for very dilute arrays ( cp « 1). At the same 
time, an alternative approach to the investigation of a viscous fluid fl ow through 
periodic arrays of particles was proposed by HASlMOTO [3]. Using Fourier series 
expansions, he obtained spatiall y periodic fundamental solutions of the Stokes 
flow for arrays of spheres as well as of cylinders. Latti ce sums which appeared 
in this method were calculated using rapidly converging Evald 's technique. He 
introduced then two functions sl and 52 with the aid of which it was possible 
to construct the infini te system of algebraic equations, in which one of unknown 
quantities was the drag force. After truncation the system was solved and the 
expression for K (cp) (1.4) has been obtained with the accuracy of O(cp). The 
method of Hasimoto was then developed by SANGANI and ACRlVOS [4] who 
obtained the expression for K (cp) to O(cp3). It is also worth to mention the 
paper of DRUMM OND and TAHIR [5]. They calculated K (cp) using the method 
of singulariti es, matching a solution outside a cylinder to a sum of solut ions 
inside each cylinder in an infinit e array. The obtained expression for K(cp) was 
determined with the accuracy up to O(cp4

). 

SANGANI and AcRIVOS [6] made also numerical calculations of a Stokes flow 
past a periodic array of cylinders and evaluated the drag force F' in a wide 
range 0.05 < cp < 0. 75. The results [6] may then be treated as reference data for 
analytical approximations. 

The expressions derived for the drag force may be used to calculate filtr ation 
fl ow through the array of cylindri cal rods, treated as a porous medium [7]. It can 
be shown that the force F' is related to the mean pressure gradient exerted on 
the fluid in the array of cylinders [1-2] 

(1.6) 
F' dp' 

= 
A dx 

Inserting (1.6) to (1.3) we obtain the relation 

(1. 7) 
A dp' 

U = --K (cp)-, 
J..L dx 

which has the form of a li near Darcy equation, where K (cp) (1.4) plays the role 
of a permeability coeffi cient [7]. 

These results, together with the results for the parall el case [1- 2] , were appli ed 
by SZANIAWSI<I and ZA CHARA [8, 9] for calculation of filtr ation fl ow through a 
bundle of man-made fibers in a formation processes. It allowed them to obtain 
veloci ty and pressure distribution inside the bundle of fibers. 

In the present paper , the approach of Hasimoto as well as of Sangani and 
Acrivos has been modifi ed . A new functional basis has been derived. It all owed 
to derive explic it expressions for matrix components of the infinit e system of 
equations and its solution could be obtained using symbolic computations [10]. 
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T he system was truncated and as an example, the coeffi cient K (<p) was calculated 
wi th t he accuracy of O(<p5) . This procedure can be easil y extended to solutions 
of higher accuracy. 

2. Governing equations 

We consider the slow fl ow of a viscous flu id through a square array of cyli n-
ders, each of them of rad ius al They are infinit ely long, so the problem may be 
treated as two-dimensional. W ith respect to the periodicity of t he array, we shall 
li mit ourselves to a unit cell which is repeated throughout the system (F ig. 1) . 
T he dimension of a unit cell is l . To descri be the problem , we shall use both 
the Cartesian ( ｸｾＬ＠ x2) and cyli ndrical ( T 1

, B) coordinate systems. Positi on of the 
cyli nder axes in the plane ｸ ｾ＠ x2 are given by the vector 

(2.1) n 1, n 2 = 0, ± 1, ± 2, ... , 

where a(l) and a(2) are basic unit vectors in ｸ ｾ＠ and x2 direction , respectively. We 
assume that the flu id fl ows in ｸ ｾ＠ direction with the mean velocity U. According 
to the assumption that the Reynolds number is very small , the flow may b e 
described by the Stokes equations which are given below in a non-dimensional 
form 

(2.2) 
82

ui 8p 
8xk8Xk a xi 

) 

(2.3) 
auk = 0, 
axk 

r 

F rc . 1. Unit cell of a square array of cyli nders. 
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where Ui is the veloci ty component of the flu id and Pi is the pressure. The co-
ordinates have been non-dimesionalized wi th land velocity components with U. 
The non-dimensional pressure p is determined as 

p'·l 
p=U ·p,· 

The velocity fi eld must satisfy the periodicity conditions and the no-sli p bound-
ary condit ion at the cylinder surface 

(2.4) 
u(r + n ) = u(r ), 

u(a, B) = 0. 

Foll owing the approach of HASIMOTO [3] and SANG ANI and ACRIVOS [4], we fir st 
consider the Stokes flow through the periodic system where cylindrical particles 
have been replaced wi th singular multipole force distributions located at their 
axes. In this case, the Stokes equations may be presented in the foll owing form: 

(2.5) 

where o(r - n) is Dirac's delta function, while V j and q are velocity component 
and pressure, respectively. The components Fi are F1 = F , F2 = 0. 

The non-d imensional drag force F acting on a unit length of the cyli nder is 
determined by 

F' 
F =- . 

Up, 

T he symbol {n} at the sign I: in (2.5)1 denotes summation in the directions x , 
and x2 to infinity, 

00 00 00 

2:: = 2:: L· 

HASIMOTO [3] found the periodic fundamental solution of Eq. (2.5) in the form 

(2.6) 

(2.7) 
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T he funct ions 51 and 52 which are periodic throughout the lattice are as fol-
lows [11]: 

5 = ｾ＠ "'"' 'exp[- 2ni(n ·r)] 
1 L I 12 ) 

71" {n} n 
(2.8) 

(2. 9) 52
= __ 1_. "'"' ' exp[- 2ni(n ·r)] 

4n3 L lnl4 ' 
{n} 

where i is an imaginary unit and the prime (' ) over the summation symbol 
indicates that the term 1nl = 0 is excluded. 

They are solutions of the equations 

(2.10) 

(2.11) 

what may be proved by the fin ite Fourier t ransforms. 
Now we choose the unit cell of the array, indicated by the point n = 0 at its 

centre. T he funct ions 51 and 52 (2.8)- (2. 9) arc here calcula ted using the Evald 
summation [3] and expanded in planar harmonics near r = 0. The corresponding 
expressions are as follows 

(2.12) 

(2.13) 

where 

00 

51 = -2 ln r- Go+ nr2 + 2 L Amrm cos me ) 
m = 4 

r = (xi + ｸ ｾ Ｉ ｉ Ｏ Ｒ Ｇ＠

e = tan- 1(x2/ xl) . 

Both the funct ions (2.12)- (2.13) fulfi l Eqs. (2.10), (2.11) in the unit cell n = 0 
where the Di rac's del ta 6(0) corresponds to the propert ies of ln r and its deri va-
t ives ai T = 0. The function 51 i simply related to the Wigner potential and 
the fir st non-vanishing coeffi cients A m are evaluated in [12] . Wi th respect to the 
sym metry of the square array, the coeffi cients Am and B m are different from zero 
only for m which are multi ples of 4. The method of evaluation and numeri cal 
values of Am, B m and Co are given in the Appendix 1. 
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The importance of these results exceeds the frames of the fluid dynamics 
since 51 is equivalent to the electrostatic potent ial in a periodic system of charge 
part icles embedded in a neutrali zing uniform background [12]. It is worth to note 
that this background corresponds to the mean pressure gradient which is able to 
balance the drag of the cylinders in the fl ow. The approach of Hasimoto was also 
successfull y applied to the calculation of the effective conductivity of composite 
materials of a regular structure [13- 16]. 

The fundamental solution (2.6) is a star ting point to construct a general 
solution of Eqs. (2.2)-(2.3) where velocity components u1 and u2 defined for 
r 2: a satisfy the no-slip boundary condit ion on the cylinder surface r = a with 
the required accuracy. To this end, fo llowing [3] and [4], we add to the solution 
(2.6) the even deri vatives of Vi and 51 mult ipli ed by unknown coeffi cients. T his 
operation satisfi es the symmetry condit ions of the periodic flow through the array 
and leads to the following expressions for the velocity components u1 and u2: 

(2.14) 

(2.15) 

where G and H are differential operators 

(2.16) 

and 

(2.17) Uo = 1 + Qo. 

We perform differentiation of 51 (r , B) and S2(r , B) , Eqs. (2.12)- (2.13), with re-
spect to x1 and x2 in (2.14)- (2.16) using operators 

a a sine a 
- = cosB-----axl ar T ae ' 
a a cos e a -a = sin e-a + -- ae. 
X2 T r 

(2.18) 

To calculate the coefficients Pn and Qn we make use of the no-slip boundary 
condition on the surface of the cyli nder (2.4)2. Thus we have 

(2.19) u1(a,B)=O, 
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Hence Eqs. (2.14)- (2.19) lead to the system of algebraic equations for the coef-
fi cients Pn and Qn. If we compare (2.6), (2.14) and (2.16)1 we can see that the 
force F exerted by the fl. uid on the cyli nder is equal to the coeffi cient Po, 

(2.20) F = Po , 

and from (1.3) we have 

(2.21) K ( ifJ) = 1/ Po . 

3. The basis functions 

It is useful to define and derive the basis functions which may help to carry 
out calculations of the coeffi cients Pn and Qn in an effi cient and tractable way. 
These functions, which appear in (2.14) and (2.15) are 

(3.1) ul - s - 82s2 u2 = 82S1 
- 1 8 2 ) 7)2• xl xl 

(3.2) vl = 82s2 v 2 = 
82S1 

8xl 8X2 ) 8xl8X2 
) 

where S1 and S2 are determined by (2.12) and (2.13). Performing differentiation 
of sl and s2 with the use of operators (2.18)) we get expressions for the function 
(3.1) and (3.2) given below 

1 [ ] 1rr
2 

1 2 (3.3) U 1(r,e) = 2" ln1/ r 2-Co +T+4"(2-7rr)cos2e 

00 00 

+ ｾ＠ AmEm(r, e)- ｾ ＨｭＫ＠ 2)Dmo(r)Em(r, e), 
m = O m = O 

(3.4) 2 2 cos 2e . 00 (m + 2) I 
U (r, e) = 21r + .2 + 2 ｾ＠ Am+2 

1 
Em(r, e) , 

7 m = O m. 

1 00 

V1 (r, e) = - 4(2 - 1rr2) sin 2e - ｾ ＨｭＫ＠ 2)Dmo(r)Fm(r, e), 
m = l 

(3.5) 

(3.6) 2 2sin 2e 00 (m+ 2)' 
V (r,e) = 2 -2 ｾ＠ Am+2 

1 
Fm(r,e). 

r m = l m . 

T he auxili ary functions which appear in (3.3) - (3.6) are defined as follows: 

(3.7) 

(3.8) 

(3.9) 

1 2 
Dmn(1' ) = 2 Am+2n+2r + (m+ 1)Bm+2n+2, 

Em(r , e) = rm cos m e , 

Fm(r, e) = rm sin me. 
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The even derivatives of the basis fu nctions which appear in the operators (2.16) 
are denoted by the foll owing symbols 

82nu1 
u2 

82nu2 

ｵｾ＠ = 7J'i'1, = fJx2n l n 
(3.10) 

x i 1 

82nv 1 82nv2 
v 1 ___ 

ｶ［ｾ＠ fJx2n l n - fJx2n ' 
1 1 

where n = 1, 2, 3, ... . 
After differentiation of the basis funct ions (3.3) - (3.6), we obtain the expres-

sions for their deri vatives (3.10) which are 

(3.11) 

while 

(3.12) 

(3.13) 

(3.14) 

1f 1 
ｕｾ＠ = - 8111 + -

2 
[(2n)1 cos 2(n + 1)8 - 2(n - 1)(2n - 1)! cos 2n8] 

2 2r n 
00 (m + 2n + 2) I -f o (m + 1)1 Dmn(r)Em(r, 8) 

ｾ＠ (m + 2n )1 
- (n - 1) ｾ＠ Am+2n Em(r, 8), 

m = O m ! 

r r 1 - u 1 v o - , 

2 2(2n + 1)! 
Un = 2nono + r 2(n + 1) cos 2(n + 1)8 

00 (m+ 2n + 2)1 
+ 2 L Amt 2n t-2 

1 
Em(r, 8) 

m = O m . 

for n ｾ＠ 1, 

for n ｾ＠ 0, 

1 (2n)! . . Loo (m + 2n)! 
vn = - 2- [sm2n8- sm2(n + 1)8] - n Am+2n I Fm(r ,8) 

ｾｮ＠ m. 
m = 1 

- ｾ＠ (m + 2n + 2)
1
D (1·)F (r 8' for n >_ 1, 

ｾ Ｑ＠ (m + 1)! mn m , J 

2 2(2n + 1)1 . 
V,1 = 2n+2 sm 2( n + 1 )8 

r 
00 (m + 2n + 2) 1 

- 2 2: Am+ 2n + 2 
1 

Fm(r , 8) 
1 

m . 
m = 

for n ｾ＠ 0. 
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4. Calculation of the drag force 

The drag force F (2.20) can b e calculated fr om the system of Eqs. (2.19) 
where the velocity components u 1 and u2 are determined by (2.14) and (2.15) . 
The different ia l op erators G and H (2.16) act on t he functions (3.3)- (3.6). The 
system of equations (2.19) may thus be wri tten 

(4.1) 

( 4.2) 

GU1 + HU2 
= 411"Uo , 

G V 1
- HV2 = 0. 

Using (2.16) - (2.1 ) we present Eqs. (4.1)- (4.2) in the form 

00 

(4.3) L [PiU / + Qi ( U2
i- 4m5i0)] = 411", 

i=O 
00 

( 4.4) "L [Pi1/i1 - Qiv?] = o. 
i=O 

The basis functions (3.3) - (3.6) and their derivatives (3.11)- (3.14) may be pre-
sented in a form of cos 2iB and sin 2iB expansions whose coeffi c ients are elements 
of a matrix Zlm· Thus we have t he following expansions of ｕＬｾ＠ and Vnk, 

00 

ｕｾＨ｡Ｌ＠ B) = L (411"bio<>no<>k2 + z2i+l ,2n+k) cos 2iB ) 

(4.5) 
i=O 

00 

v;(a, B) = -( - 1)k L z2i,2n+k sin 2iB ) 
i= l 

where /,; = 1 and 2, n = 0, 1, 2, 3 ... . 
Now we inser t the basis function expansions ( 4.5) to Eqs. ( 4.3) - ( 4.4) and 

coll ect terms of Eq. ( 4.3) containi ng cos 2iB and terms of Eq. ( 4.4) containing 
sin2iB. Then, a fter some rearrangement we preseut Eqs. (4.3) (4.4) in the fol-
lowing form: 

00 00 

( 4.6) LL (Z2i+ t,jXj)cos2iB = 411", 
i=Oj= l 

00 00 

(4.7) LL (Z2i,j X j)sin 2iB = 0. 
i= lj - 1 

Here X j are unknown quantities related to Pi and Qi 

( 4. ) 

while the coeffi cients Zij are known elements of t he matri x evaluated from the 
bas is functions (3.3) - (3.6) and their derivati ves (3.11) - (3.14). The detail s are 
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given in the Appendix 2. Thus we can transform Eqs. (4.6), (4.7) to the infinite 
system of algebraic equations where X j are unknown components of the vector 
X and Z i j are known elements of the matrix Z, 
( 4.9) zx = 47rl ' 

where I is a column vector whose first component is 1 and all other components 
are equal to zero. 

We can see from ( 4.8) and (2.20) that the drag force F is equal to X 1 . For 
calculat ion of X 1 it is useful to separate from the matrix Zij the logarithmic 
term included in U1 (a , e) (3.3), which we denote by Ko 

(4.10) Ko = ln1/ a2 - C0 . 

Thus we can present the elements of the matrix Z in the form 

1 
(4.11) Zij = 

2
Kobwhj + W ij , 

while the elements of the matrix W are given in the Appendix 2. 
The unknown X 1 can be written formally as 

(4.12) X - 47r jZsl 
1- IZI , 

where the superscript S denotes a submatrix of the original matrix , correspond-
ing to its fi rst element (1,1). 

It follows fr om ( 4.11) that 

- 1 - s -
(4.13) -IZI = 2Ko !Z I+ IWI, 
and 

(4.14) .zs = Ws 

Inserting ( 4.13)- ( 4.14) to ( 4.12) we get 

( 4.15) 
87r 

X1 = Ko + /3 ' 

where 

(4.16) /3 = 2/ Y1, 

while Y1 is the fir st component of the vector Y which is the solut ion of the 
equation 

( 4.17) WY = l. 

According to (2.21), (4.8) and (4.15) we have 

1 1 
(4.18) ｋ ＨｾＮｰ Ｉ＠ = x

1 
= 

8
7r (Ko + /3) . 
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5. Results 

T he infinite system of equations ( 4.17) was truncated to fi ve equations and 
solved with matrix elements W i j taken from the Appendix 2. The solution Y1, 

which is the subject of our interest , has been obtained with the accuracy of 
O(a10). Inserting Y1 to (4.16) we get the following expression 

(5.1) {3 2 c 2 c 4 c 6 c 8 c 10 = y
1 

= 1a + 2a + 3a + 4a + 5a , 

where the coeffi cients Cn have the foll owing numerical values: 

(5.2) 

c1 = 2n , 

c 2 = - ( ｾ
Ｒ＠

+ 1152 ｂｾＩ＠ , 
C3 = - 1536 A4 B4 , 

C4 = 576n A4B4 - ＵＲ Ｐ ａｾ＠ , 

C5 = ＳＸＴｮａｾ Ｎ＠

Numerical values of Go, A4 and B4 are given in the Appendix 1. 
The expressions (5.2)1_3 are completely equivalent to t hose used by SANGANI 

and ACRIVOS [4] who calculated {3 to O(a6 ) . T he expression (5.2)4 cannot be 
directly compared with the corresponding one of DRUMMOND and TAHIR [5] 
since they used a different calculation method than ours, and these expressions 
are of a quite different form. We shall come back to this question later and 
compare the numerical values of the coeffi cients with the literature data. 

It is however more convenient to express the force F as a function of the 
volume fraction <p ( 1.1) which is related to t he non-dimensional radius a as 

(5.3) 

Inserti ng (5.3) into (5.1) and then combining (5.1) , (4.10) and (4.18), we obtain 
the expression for K (<p ) presented in Sec. 1 (1.4), where T (n)(<p) is a power func-
tion expansion in <p (1.5). The drag force is related t o K (<p ) according to (1.3) 

(5.4) 
1 

F = K (<p ) . 

The ini t ial coeffic ient of the expansion T (n) is 

(5.5) To= lnn - Go = - 1.47633597. 

The other coeffi cients are related to the coeffi cients Ci of (5.1) using expres-
sion (5.3) 

(5.6) 
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Table 1. 

i T, 

0 - 1.4 763359-7 
1 2.00000000 
2 - 1.77428264 
3 4.07770444 
4 - 4.84227403 

5 2.44662267 

The numerical values of all these coefficients To - T5 are coll ected in Table 1. 
We can now compare the numerical values of the coeffi cients from Table 1 

with the values obtained by the previous authors [4] and [5] . The coeffici ents of 
SANGANI and AcRrvos [4], calculated up to four decimal places in frames of the 
approximation to O(cp3 ), i .e. fori = 3, are equivalent to the corresponding values 
from Table 1. The coeffi cients of DRUMMOND and TAHIR [5] (i = 4) are equal 
to those from Table 1 up to nine decimal places, although they were evaluated 
by different procedures, as it was previously indicated. It seems to confirm the 
conclusion that both the procedures are equivalent, and calculati ons in [5] and 
in the present paper were carried out correctly. The coefficient T5 is a new value 

F 

1 

4 

0.1 0.2 0.3 0.-1 0.5 0.6 

Frc. 2. T he non-dimensional drag force F vs. the volume fraction cp. Comparison of 
t he numerical reference data of SANGANI and ACRIVOS [6], (line 1) wit h various 
approximations. Line 2 - Sangani and Acrivos to O(cp3) [4], lin e 3 - Drummond 

and Tahir to O(cp4
) [5], line 4 - the present resul ts to O(cp5

) . 
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obtained in the fr ames of the present approximation corresponding to 0 ( <p5) . The 
results of [4] and [5] were coll ected and presented in the monograph of P . ADLER 
[7]. T he li terature data concerning approximations of higher order than that of 
DRUMMOND and T AHIR, of O(<p4

) , are not known to t he author. 
We calculated the drag force F (<p) from (5.4) for approximations of various 

order using coefficients from Table 1. The resul ts are presented in Fig. 2. The 
results of SANG ANI and ACRIVOS [6] are here included as the reference data. They 
were obtained by numerical integration of the Stokes equations in a range of <p 
from 0.05 up to 0.75. It is almost the full range of <p since the maximum value of <p, 

which corresponds the case of touching cyli nders, is <f/max = 1r / 4 = 0. 785398 ... 
We can see how the accuracy of calculations increases with the order of approxi-
mation. The expression (5.4) with the series expansion T(3)(<p) estimates the drag 
force within the error of about 2% at <p = 0.2. This error is kept with T(4)(<p) at 
<p = 0.3 and with T(5)(<p) at <p = 0.4. For <p > 0.4 all these expressions diverge 
and a new formula of better accuracy is needed. 

6. Conclusions 

A new functional basis derived in this paper enabled us to obtain expressions 
for matrix elements W ij (see Appendix 2). The matrix is involved in Eq. ( 4.17) 
which is subjected to truncation of a chosen order , and its solution enters t he 
formula ( 4.15) for a drag force. The explicit form of the expressions W ij makes 
the calculations very tractable and all ows to derive the solution using symbolic 
computations of Mathematica [10]. This procedure was here applied to the system 
of five equations and the results obtained to O(<p5

) were of higher accuracy than 
the results of the previous authors. Extension of these calculati ons for larger 
systems of equations is straightforward. 

Appendix 1 

We present below numerical values of the fir st non-vanishing coeffi cients Am 
and Em as well as the constant C0, which appear in (2.12) and (2.13). The 
coefficients were evaluated from the expressions derived in [4] and adopted here 
for t he square array. 

(A1.1) A _ a(2n)m [ (1f ) m - Cl'- (m+l) L{n} Em(lnl,e)<Pm- 1 ｾｬ ｮｬ
Ｒ＠

2m(m)' '-' 

+ L Em (1nl, e) <Po(nlnl 2a ) ] , 
{n} 
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(A1.2) Bm ｾ＠ ｾｾＺｾ［ｾＷ＠ [a - (m+l) t?m( In I, B) ＼ｾＧｭ Ｍ Ｒ＠ ( •I: I') 
+ L Em(lnl, B) Po(rr ln l2a)] , 

{n} 

(A1.3) Go="(+ ln(rr/a) +a- L P_l(rrln l2 fa)- a L Po (rrlnl 2a) . 
{n} {n} 

We used here the following notation: 

00 

Pv(x) =I e-xttv dt 

1 

is the incomplete gamma function. In particular we have 

oo n 

P- l(x) = -Ei( -x) = -"(- lnx + L ｾＨ＠ - 1)n+I, 
n = l nn. 

where"'= 0.5772156649 .. . is the Euler constant . The functions Pv(x) of higher 
rank can be obtained from the recurrence formula 

Arguments of the functions can be calculated by taking 1nl 
modulus of the vector n = n' j l , (2.1), 

The parameter a which appears in (A1.1) - (Al.3) is a moderate constant 
involved in Evald's summation method, and is of a very small influence on the 
fi nal result of calculations. 

The constants evaluated from (A l.1) - (A1.3) are as foll ows: 

A4 = 0.7878030005, 

A12 = 0.3282374177, 

B4 = - 1.044856181 10- 1
, 

B12 = - 1.469973805 10- 2, 

Go = 2.6210658523. 

A8 = 0.5319716294, 

A16 = 0.2509809396, 

Bs = - 4.031710210 10- 2 , 

B16 = - 8.399042320 10- 3 , 

The coefficients Am are related to the Rayleigh sums Sm 

A 
_ Sm 

m - ' m 
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which were evaluated up to fi ve decimal places and presented in [16]. umeri cal 
values of the coeffi cients Em, as far as it is known to the present author , were 
not presented in li terature except the coeffi cient B 4 [4], the value of which given 
t here is however not correct . 

Appendix 2 

In Lhis section the expressions are presented which enable us to calculate 
elements Wij of the matrix W. They have been derived from Eqs. (4.11), (4.5), 
and (3.11) - (3.14). The expressions Wij are different for odd and even subscripts 
j corresponding to t he matrix columns. To simplify the form of expression for 
odd j , we exclude here elements of the fir st column (j = 1). 

Matrix elements Wij for j = 1: 

(A2.1) na2 1 2 i 1 
Wi1 = 2oi1 + 4(2-na )(oi3 - oi2) + A i- 1a -

( . 1) [1 A 2 .B] i- 1 - t + 2 i+l a + t i+l a 

- (i + 2) ｛ｾａ ｩＫＲ｡ Ｒ＠ + (i + 1)Bi+2] ai. 

Matrix elements Wij for other odd subscripts j = 3, 5, 7, ... : 

(A2.2) 
1f (j - 1)! 

Wij = 2o;1o13 + 
2
a1_1 (oi,J+2 - oi,j +1 + o; ,1-d 
(j - 3)(j - 2)! (j- 3)(i + j- 2)! i- 1 

- 2a1- 1 Oij- 2(i- 1)! Ai+ j - 2a 

(j - 1)(i + j - 1)1 i (i + j)! [1 2 . ] i- 1 
-'-'-------'---'-.

1
----'-- Ai-! j - la - .

1 
-
2

Ai+ja + tBi+j a 
2t. t. 

(i + j + 1)1 [1 2 . ] i 
- (i + 1)! 2 Ai+j+1a + (t + 1)Bi+J+1 a . 

Matrix elements W;j for even subscripts j = 2, 4, 6, ... : 

(A2.3) 
2(j - 1)! 

W · · - - 2n'·1o ·2 + (o · ·+1 - o· ·) tJ - ut 1 al t ,J tJ 

2(i + j - 1)! i- 1' 2(i + j) ! i 
+ C _ 1) ' Ai+j - l a + .1 Ai+ja . 

t . t . 
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