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Transverse Stokes flow through a square array of cylinders

A ZACHARA (WARSZAWA)

THE WORK PRESENTS results of calculations of the transverse Stokes flow through
a square array of cylinders. The new functional basis has been derived and the
solution is sought in the form of series expansions in this basis, the terms of which are
given explicitly as functions of the volume fraction ¢. The presented method enabled
us to evaluate the expression for the drag force of high accuracy using symbolic
computations.

1. Introduction

SLow FLOW of a viscous fluid through an array of cylinders is observed in
many technical applications such as heat exchangers, fibre filters and bundles
of man-made fibres in spinning processes. In this paper we shall study the flow
through a square array of cylinders in a direction transverse to the cylinder axes.
This problem was first studied in 1959 by HAPPEL who calculated the Stokes
How, taking into account the periodic structure of the array with the aid of a
so-called free surface model [1-2]. As a result, he got an expression for the drag
force F' exerted by the fluid on a unit length of a cylinder. The drag force was
a function of the volume fraction ¢ of cylinders for a given mean velocity U of
the fluid. The volume fraction ¢ is defined as

71'(1.’2

A 1
where a' is the cylinder radius and A is the cross-sectional area of the array per
single cylinder. In the case of a square area it takes the form

(1.2) A=1
[ being the distance between the cylinder axes.

The expression for the drag force F' may be presented in the following general
form which involves approximations of various order

(1.1) @ =

(1.3) F 1 il
' wU  K(p)'
where
1
; o = = (n) ¢,
(1.4) K(p) = o= [In(1/0) + T®(p)]
(1.5) T(”)(ap) = ZTi @',
=0

and g is the dynamic viscosity of the fluid.
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832 A. ZACHARA

The approximation of HAPPEL [1-2] was rather rough and the results obtained
were of a reasonable accuracy merely for very dilute arrays (¢ < 1). At the same
time, an alternative approach to the investigation of a viscous fluid flow through
periodic arrays of particles was proposed by HAsIMOTO [3]. Using Fourier series
expansions, he obtained spatially periodic fundamental solutions of the Stokes
flow for arrays of spheres as well as of cylinders. Lattice sums which appeared
in this method were calculated using rapidly converging Evald’s technique. He
introduced then two functions S; and S3 with the aid of which it was possible
to construct the infinite system of algebraic equations, in which one of unknown
quantities was the drag force. After truncation the system was solved and the
expression for K(¢) (1.4) has been obtained with the accuracy of O(y). The
method of Hasimoto was then developed by SANGANI and AcRrivos [4] who
obtained the expression for K(p) to O(y®). It is also worth to mention the
paper of DRUMMOND and TAHIR [5]. They calculated K(¢) using the method
of singularities, matching a solution outside a cylinder to a sum of solutions
inside each cylinder in an infinite array. The obtained expression for K(y) was
determined with the accuracy up to O(p?).

SANGANI and ACRIVOS [6] made also numerical calculations of a Stokes flow
past a periodic array of cylinders and evaluated the drag force F' in a wide
range 0.05 < ¢ < 0.75. The results [6] may then be treated as reference data for
analytical approximations.

The expressions derived for the drag force may be used to calculate filtration
flow through the array of cylindrical rods, treated as a porous medium [7]. It can
be shown that the force F' is related to the mean pressure gradient exerted on
the fluid in the array of cylinders [1-2]

F' dp’
(1.6) T e

Inserting (1.6) to (1.3) we obtain the relation

ol
(1.7) U= —ﬂK(w)d-—p—.
7 dx

which has the form of a linear Darcy equation, where K(y) (1.4) plays the role
of a permeability coefficient [7].

These results, together with the results for the parallel case [1-2], were applied
by SZANIAWSKI and ZACHARA [8, 9] for calculation of filtration flow through a
bundle of man-made fibers in a formation processes. It allowed them to obtain
velocity and pressure distribution inside the bundle of fibers.

In the present paper, the approach of Hasimoto as well as of Sangani and
Acrivos has been modified. A new functional basis has been derived. It allowed
to derive explicit expressions for matrix components of the infinite system of
equations and its solution could be obtained using symbolic computations [10].
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TRANSVERSE STOKES FLOW THROUGH A SQUARE ARRAY OF CYLINDERS 833

The system was truncated and as an example, the coefficient K () was calculated
with the accuracy of O(°). This procedure can be easily extended to solutions
of higher accuracy.

2. Governing equations

We consider the slow flow of a viscous fluid through a square array of cylin-
ders, each of them of radius a’. They are infinitely long, so the problem may be
treated as two-dimensional. With respect to the periodicity of the array, we shall
limit ourselves to a unit cell which is repeated throughout the system (Fig.1).
The dimension of a unit cell is [. To describe the problem, we shall use both
the Cartesian (2, z5) and cylindrical (r’,8) coordinate systems. Position of the
cylinder axes in the plane z}z} are given by the vector

(2.1) Il’ = l(nla(l) + nzam), ny, Ng = 0, il, :t2, W Ty

where a(;) and a(y) are basic unit vectors in z and z% direction, respectively. We
assume that the fluid flows in !} direction with the mean velocity U. According
to the assumption that the Reynolds number is very small, the flow may be
described by the Stokes equations which are given below in a non-dimensional
form

200
(2.2) 8% =0
Oz 0z}, AE;
Buk
2. =t =
(2.3) B, 0,

F1G. 1. Unit cell of a square array of cylinders.
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834 A. ZACHARA

where u; is the velocity component of the fluid and p; is the pressure. The co-
ordinates have been non-dimesionalized with [ and velocity components with U.
The non-dimensional pressure p is determined as

_
o

P

The velocity field must satisfy the periodicity conditions and the no-slip bound-
ary condition at the cylinder surface

u(r + n) = u(r),

(2.4)

u(a,f) = 0.
Following the approach of HASIMOTO [3] and SANGANI and ACRIVOS [4], we first
consider the Stokes flow through the periodic system where cylindrical particles
have been replaced with singular multipole force distributions located at their
axes. In this case, the Stokes equations may be presented in the following form:

62 (2 - Bq

amkamk = 8_1; =+ FiZJ(r —n),
(2.5) &
L
dzp

where §(r — n) is Dirac’s delta function, while v; and ¢ are velocity component
and pressure, respectively. The components F; are F} = F| Fy = 0.

The non-dimensional drag force F acting on a unit length of the cylinder is
determined by

FI
= U

The symbol {n} at the sign }_ in (2.5); denotes summation in the directions z;
and zs to infinity,

F

(o <] oo o0
{n} n1=—00 N3=—00
HasimoTo [3] found the periodic fundamental solution of Eq. (2.5) in the form
(2.6 g — 2 gy s
iy Y. _—
6) vi = Uodin — 7= | $10a — 55 -1
dq 1 9*S
2 =F|=dy+— :
(&7} dw; [ L+ 47 Ox10%;
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TRANSVERSE STOKES FLOW THROUGH A SQUARE ARRAY OF CYLINDERS 835

The functions S; and Sy which are periodic throughout the lattice are as fol-
lows [11]:

(2.8) s, — lzfexp[—Qﬂ;'(n-r)]
T n|

(29) S =~

?

rexp[—2ni(n-r)]
|n|* ’

|
=
3&4

g

where ¢ is an imaginary unit and the prime (") over the summation symbol
indicates that the term |n| = 0 is excluded.
They are solutions of the equations

(2.10) V28, = —4n IZ d(r —n) — 1}
{n}
(2.11) TSy = 8,

what may be proved by the finite Fourier transforms.

Now we choose the unit cell of the array, indicated by the point n = 0 at its
centre. The functions S; and Sy (2.8)-(2.9) are here calculated using the Evald
summation [3] and expanded in planar harmonics near r = 0. The corresponding
expressions are as follows

o0
(2.12) By = —2111T—C0+7rr2+2 Z Apr™ cosmé,
m=4
1, r2
(2.13) Sy = -7 (l—lnv)—COZ
mrd o
==+ 3}, [Am/(Q(m +1)r? + Bm] r™ cosmé
16 —
where
T = (I% + 13)1/2,

0 = tan™(za/x1).

Both the functions (2.12)—(2.13) fulfil Eqgs. (2.10), (2.11) in the unit cell n = 0
where the Dirac’s delta 6(0) corresponds to the properties of Inr and its deriva-
tives at » = 0. The function S; is simply related to the Wigner potential and
the first non-vanishing coefficients A,, are evaluated in [12]. With respect to the
symmetry of the square array, the coeflicients A,, and B, are different from zero
only for m which are multiples of 4. The method of evaluation and numerical
values of A,,, B,, and Cj are given in the Appendix 1.
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836 A. ZACHARA

The importance of these results exceeds the frames of the fluid dynamics
since 5] is equivalent to the electrostatic potential in a periodic system of charge
particles embedded in a neutralizing uniform background [12]. It is worth to note
that this background corresponds to the mean pressure gradient which is able to
balance the drag of the cylinders in the flow. The approach of Hasimoto was also
successfully applied to the calculation of the effective conductivity of composite
materials of a regular structure [13-16].

The fundamental solution (2.6) is a starting point to construct a general
solution of Egs. (2.2)—(2.3) where velocity components u; and us defined for
r > a satisfy the no-slip boundary condition on the cylinder surface » = a with
the required accuracy. To this end, following [3] and [4], we add to the solution
(2.6) the even derivatives of v; and S; multiplied by unknown coefficients. This
operation satisfies the symmetry conditions of the periodic flow through the array
and leads to the following expressions for the velocity components u; and us:

1 0% S, 925,
(2-14) u1(750) = U _G[G (51_3—33%)+H3—33%_ )
1 0?8, 88,
(2.15) up(r,0) = o {Gaxlaxg *Hamlaxg]’

where G and H are differential operators

oo 2n
B=3 B .
n=0

W,

(2.16) N gin
B = ; Qnm»

and

(2.17) Usg=1+Q:

We perform differentiation of Si(r,8) and Sa(r, @), Egs. (2.12)-(2.13), with re-
spect to x; and x in (2.14)—(2.16) using operators

9 e? 00
(2.18) dry 08 o r 08’
Bl i_ . 92 Cosf)ﬂ
dry S ™ ¥ r 00

To calculate the coefficients P, and @, we make use of the no-slip boundary
condition on the surface of the cylinder (2.4);. Thus we have

(2.19) uy(a,d) =0, us(a,8) = 0.
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TRANSVERSE STOKES FLOW THROUGH A SQUARE ARRAY OF CYLINDERS 837

Hence Egs. (2.14)-(2.19) lead to the system of algebraic equations for the coef-
ficients P, and Q). If we compare (2.6), (2.14) and (2.16); we can see that the
force F' exerted by the fluid on the cylinder is equal to the coefficient Py,

(2.20) F =8,
and from (1.3) we have

(2.21) K(p) = 1/P.

3. The basis functions

It is useful to define and derive the basis functions which may help to carry
out calculations of the coefficients P, and @, in an efficient and tractable way.
These functions, which appear in (2.14) and (2.15) are

025, 9%,
3]- Ul — — e U2 = —_—
3.1) " a3’
9*S 98
(3 ) 4 3:1318172 ’ ¥ 61’1(9272 :

where S} and Sy are determined by (2.12) and (2.13). Performing differentiation

of S} and Sy with the use of operators (2.18), we get expressions for the function
(3.1) and (3.2) given below

(3.3) Ul(r,0) = L [ln 1fr2 ~ C()] + 7r_r2 + E(2 — wr?) cos 20
' 2 2 4
+ Y ApEn(r,0) = > (m+2)Dpo(r)En(r,0),
m=0 m=0
B4)  Uno) =2m+ 252 0 3 4, P Bg rg)
m=0 !
(3.5) Vi(r,0) = —%(2 — 7r?) sin 260 — i (m 4+ 2) Do (r) Fpm(r, 8),
m=1
(36)  Vi(rp) = 2302 _, i Am+2( )'F (r,8).

The auxiliary functions which appear in (3.3) - (3.6) are defined as follows:

1

(3.7) Do (r) = §Am+2n+2r2 + (m+1)Bnyoniz,
(3.8) En(r,8) = r"™cosmé,
(3.9) Fp(r,0) = r™sinmé .
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The even derivatives of the basis functions which appear in the operators (2.16)

are denoted by the following symbols

a2nrrl
= _‘963;5{1 e R =
(3.10) o
Vl
Vl - 8— VZ _
n ax%n 1 n

where n =1, 2, 3,....

After differentiation of the basis functions (3.3) -

sions for their derivatives (3.10) which are

a2n U2
8x2n !

a2n V2
2m ¥
ozy

(3.6), we obtain the expres-

(3.11) i = 72r5n1 + 2'1"% [(2n)! cos 2(n + 1) — 2(n — 1)(2n — 1)! cos 2nb]
m+ 2n + 2
- Z Tl)!)Dmn(T)Em("’\g)
o0
—(n—1) Z Am+2nMEm(r,9), for n>1,
m!
m=0
while
Ug =0,
2(2 1)!
(3.12) U2 =2mbno + %ﬂ% cos2(n + 1)6
00 I
+ 2 Z Am+2n+2(m—+2L2)'Em(r,6) for n >0,
= m!
! = + 2n)!
(3.13) Vl= (221’;21 [sin2nf — sin2(n + 1)8] —n S Amﬁnwzﬁm(r,m
m=1 )
+ 2n + 2)!
- Z (m m ; D Dmn(r)Fm(r,O) for n>1,
while Vgt = V1,
2 !
1e)  v2=22t DG o 1)e
v

00
~ Z Am+2n+‘2

m=1

(m + 2n + 2)!
m!

Fn(r,0) for n>0.
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TRANSVERSE STOKES FLOW THROUGH A SQUARE ARRAY OF CYLINDERS 839

4. Calculation of the drag force

The drag force F (2.20) can be calculated from the system of Egs. (2.19)
where the velocity components u; and uy are determined by (2.14) and (2.15).
The differential operators G and H (2.16) act on the functions (3.3) - (3.6). The
system of equations (2.19) may thus be written

(4.1) GU! + HU? = 4xU,,
(4.2) GV —HV? = 0.

Using (2.16) - (2.18) we present Egs. (4.1) - (4.2) in the form

(4.3) i [P,»U} +Qi (U - 4ms,-0)] = 4r,
=0
(4.4) 5 [Pvi-Qiv?] =0
1=0

The basis functions (3.3) —(3.6) and their derivatives (3.11) - (3.14) may be pre-
sented in a form of cos 2i6 and sin 216 expansions whose coeflicients are elements

of a matrix Zj,,. Thus we have the following expansions of U, k and V,i‘,

UN(a,0) = (4m6i08n00k2 + Z2is1,2n+k) cOS 246 |
(4.5) =h N
Vnﬁ(a'y 9) — —(—'1)k Z ZZi,2n+k sin 216 N

=1

where k= 1liand 2, =0, 1; 2; 3

Now we insert the basis function expansions (4.5) to Eqs. (4.3)-(4.4) and
collect terms of Eq.(4.3) containing cos2if and terms of Eq.(4.4) containing
sin 2if. Then, after some rearrangement we present Eqs. (4.3) - (4.4) in the fol-
lowing form:

oo 00
(4()) ZZ (ZQH..IJ'XJ‘)COS 2i0 = 47‘(,
=0 j=1
o 00
(4.7) > (Z2ijX;)sin2i0 = 0.
=1 7==1

Here X; are unknown quantities related to P; and @Q;
(4.8) Xont1 = Py, Xons2 = Qn,

while the coefficients Z;; are known elements of the matrix evaluated from the
basis functions (3.3) —(3.6) and their derivatives (3.11) - (3.14). The details are
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840 A. ZACHARA

given in the Appendix 2. Thus we can transform Eqs. (4.6), (4.7) to the infinite
system of algebraic equations where X; are unknown components of the vector
X and Z;; are known elements of the matrix Z,

(4.9) ZX = 4r1,

where I is a column vector whose first component is 1 and all other components
are equal to zero.

We can see from (4.8) and (2.20) that the drag force F is equal to X;. For
calculation of X it is useful to separate from the matrix Z;; the logarithmic
term included in U'(a,8) (3.3), which we denote by Kj

(4.10) Ki=m1/a® =Gy,

Thus we can present the elements of the matrix Z in the form
1
(4.11) Zij = '2"K0¢51i51j + Wi,

while the elements of the matrix W are given in the Appendix 2.
The unknown X; can be written formally as

B 4n|Z5|
|Z]
where the superscript S denotes a submatrix of the original matrix, correspond-

ing to its first element (1,1).
It follows from (4.11) that

(4.12) X

(4.13) 12| = %KUIZS] + W],
and
(4.14) Z5 = w5,
Inserting (4.13) - (4.14) to (4.12) we get

8w
(415) s
where
(4.16) B=2/",

while Y] is the first component of the vector Y which is the solution of the
equation

(4.17) WY =1.
According to (2.21), (4.8) and (4.15) we have

(4.18) mw—%ﬁngm.
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5. Results

The infinite system of equations (4.17) was truncated to five equations and
solved with matrix elements W;; taken from the Appendix 2. The solution Y,
which is the subject of our interest, has been obtained with the accuracy of
O(a'?). Inserting Y; to (4.16) we get the following expression

.
(5.1) 8= T Cra® + Caa* + C3a® + Cya® + C5a'?,
1

where the coefficients C,, have the following numerical values:

¢ =27,
7r2
Cy = — 7+1152BZ :
(5.2) Cs = —1536 A4 By,
Cy = 576w Ag4Bg — 52042,
Cs = 384w A3,

Numerical values of Cj, A4 and By are given in the Appendix 1.

The expressions (5.2);_3 are completely equivalent to those used by SANGANI
and ACRIVOS [4] who calculated 3 to O(a®). The expression (5.2)4 cannot be
directly compared with the corresponding one of DRUMMOND and TAHIR (5]
since they used a different calculation method than ours, and these expressions
are of a quite different form. We shall come back to this question later and
compare the numerical values of the coefficients with the literature data.

It is however more convenient to express the force F' as a function of the
volume fraction ¢ (1.1) which is related to the non-dimensional radius a as

(5.3) @ = ma’.

Inserting (5.3) into (5.1) and then combining (5.1), (4.10) and (4.18), we obtain
the expression for K (¢) presented in Sec. 1 (1.4), where T(™ () is a power func-
tion expansion in ¢ (1.5). The drag force is related to K (y) according to (1.3)

1
5.4 F=—.
- K(9)
The initial coefficient of the expansion T is
(5.5) To =Inm — Cyp = —1.47633597.

The other coefficients are related to the coefficients C; of (5.1) using expres-
sion (5.3)

(5.6) s E,
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Table 1.

i T;

—1.47633597
2.00000000
—1.77428264
4.07770444
—4.84227403
2.44662267

U W= O

The numerical values of all these coefficients Ty — T5 are collected in Table 1.
We can now compare the numerical values of the coefficients from Table 1
with the values obtained by the previous authors [4] and [5]. The coefficients of
SANGANI and ACRIVOS [4], calculated up to four decimal places in frames of the
approximation to O(¢?), i.e. for i = 3, are equivalent to the corresponding values
from Table 1. The coefficients of DRUMMOND and TAHIR [5] (i = 4) are equal
to those from Table 1 up to nine decimal places, although they were evaluated
by different procedures, as it was previously indicated. It seems to confirm the
conclusion that both the procedures are equivalent, and calculations in [5] and
in the present paper were carried out correctly. The coefficient T5 is a new value

F
104 F :
g 3.
¢ F " ]
i / /
: /‘//
10° /
. 2
I -
| /
]nl " 1 L 1 L 1 " | L | s !’#/
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fic. 2. The non-dimensional drag force F' vs. the volume fraction ¢. Comparison of
the numerical reference data of SANGANI and Acrivos (6], (line 1) with various
approximations. Line 2 — Sangani and Acrivos to O(¢”) [4], line 3 - Drummond

and Tahir to O(p*) [5], line 4 — the present results to O(¢®).

http://rcin.org.pl



TRANSVERSE STOKES FLOW THROUGH A SQUARE ARRAY OF CYLINDERS 843

obtained in the frames of the present approximation corresponding to O(®). The
results of [4] and [5] were collected and presented in the monograph of P. ADLER
[7]. The literature data concerning approximations of higher order than that of
DRUMMOND and TAHIR, of O(¢?*), are not known to the author.

We calculated the drag force F(¢) from (5.4) for approximations of various
order using coeflicients from Table 1. The results are presented in Fig. 2. The
results of SANGANI and ACRIVOS [6] are here included as the reference data. They
were obtained by numerical integration of the Stokes equations in a range of ¢
from 0.05 up to 0.75. It is almost the full range of  since the maximum value of ¢,
which corresponds the case of touching cylinders, is @max = m/4 = 0.785398... .
We can see how the accuracy of calculations increases with the order of approxi-
mation. The expression (5.4) with the series expansion T3) () estimates the drag
force within the error of about 2% at ¢ = 0.2. This error is kept with T () at
¢ = 0.3 and with T®) () at ¢ = 0.4. For ¢ > 0.4 all these expressions diverge
and a new formula of better accuracy is needed.

6. Conclusions

A new functional basis derived in this paper enabled us to obtain expressions
for matrix elements W;; (see Appendix 2). The matrix is involved in Eq. (4.17)
which is subjected to truncation of a chosen order, and its solution enters the
formula (4.15) for a drag force. The explicit form of the expressions W;; makes
the calculations very tractable and allows to derive the solution using symbolic
computations of Mathematica [10]. This procedure was here applied to the system
of five equations and the results obtained to O(¢®) were of higher accuracy than
the results of the previous authors. Extension of these calculations for larger
systems of equations is straightforward.

Appendix 1
We present below numerical values of the first non-vanishing coefficients A,
and B,, as well as the constant Cpy, which appear in (2.12) and (2.13). The

coefficients were evaluated from the expressions derived in [4] and adopted here
for the square array.

2 m
(A1.1) Am:%r)— a MmN En(Inl, 0)Pm- 1(—In|)
ol o {n}

+ZE (In,0) @o(Inl*a) |,
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(A1.2) B, = —a*(2m)™ [a—(m+1) S En(|n], 8) Sz (lelz)

4151
w2t Ll o

+Y Em(In|, 6) %(ﬂlnPa)] )
{n}

(A1.3) Co=v+In(r/a) +a - 2515_1(71'|n|2/a) - aZ@o(ﬂ|n|2a),
{n} {n}
We used here the following notation:

oo}

&, (z) = f et gt

1
is the incomplete gamma function. In particular we have

P_q(z) = —Fi(—xz) = —lnz+ Z 1)t

nn‘

where v = 0.5772156649... is the Euler constant. The functions @,(z) of higher
rank can be obtained from the recurrence formula

z®, =e *+vd,_;.

Arguments of the functions can be calculated by taking |n| = (n} + n3)}/2, a
modulus of the vector n =n'/l, (2.1),

gL Arctan (na/ny), ng #0,
~ | m—sgn(na)w/2, ny=0.

The parameter o which appears in (Al.1)-(Al.3) is a moderate constant
involved in Evald’s summation method, and is of a very small influence on the
final result of calculations.

The constants evaluated from (A1.1) - (A1.3) are as follows:

Ay = 0.7878030005, Ag = 0.5319716294,
A1p = 0.3282374177, A = 0.2509809396,

By = —1.044856181 1071, Bg = —4.031710210 1072,
Bis = —1.469973805 1072, Big = —8.399042320 1073,

Co = 2.6210658523.

The coefficients A,, are related to the Rayleigh sums Sy,

Am:S_ms
m
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which were evaluated up to five decimal places and presented in [16]. Numerical
values of the coefficients B,,, as far as it is known to the present author, were
not presented in literature except the coefficient By [4], the value of which given
there is however not correct.

Appendix 2

In this section the expressions are presented which enable us to calculate
elements Wi; of the matrix W. They have been derived from Bgs. (4.11), (4.5),
and (3.11) - (3.14). The expressions W;; are different for odd and even subscripts
j corresponding to the matrix columns. To simplify the form of expression for
odd j, we exclude here elements of the first column (j = 1).

Matrix elements W;; for j = 1:

7ra2

(A2.1) Wi = 75,-1 + 2(2 — 7a?) (83 — i2) + A;_1a* 1

1 .
—(i+1) [5&41&2 + 'iBi—Hjl a!
1 _ .
- (14 2) [§Ai+202 + (2 + 1)Bi+zj| a'.
Matrix elements W;; for other odd subscripts j =3, 5, 7,...:

7r j — 1)!
(A2.2) Wi = 5(5,‘15]'3 -+ UﬂlTl)(di’j_ﬂ - (5,’|j+1 A 53'1]',1)

=3G9t -3+ —2)
2071 ™ 2(i — 1)!

i— DG+ —1)! Lo+ . -
Y )(22_! j )AM_M ~(i+17) [~Ai+ja2+zBi+j] 4i-1

Aiyj2a'!

2

7!
(i+4+1) 1 , .
= W [§Ai+j+la2 + (i +1)Biyjs1| a”.

Matrix elements W;; for even subscripts j = 2, 4, 6,...:

. 2(3 —1)!
(A2.3) Wi = —2mbudje + (]—aj_)(fsi,,HI - &i5)

2(i 4 j — 1)!
(i—1)!

2(i + j)!

=1 1
A0 + i A ja.
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