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The velocity of the fluid due to the many-sphere
Oseen hydrodynamic interactions

I. PIENKOWSKA (WARSZAWA)

WE CONSIDER the velocity field, generated in the incompressible, viscous fluid due
to the hydrodynamic interactions between a finite number of solid spheres. The
particular properties of the velocity field, due to the convective inertia of the fluid,
are examined. The inertia effects are taken into account up to the contributions of
the order of 0(Re).

1. Introduction

THE PRESENT PAPER concerns the hydrodynamic interactions of a finite number
of solid spheres at small, but finite sphere Reynolds number Re. In the previous
paper [1] we have investigated the effects of the hydrodynamic interactions on
the friction relations between the spheres. In this paper the respective velocity
field of the fluid is studied. In particular, some properties of the velocity field,
not to be expected on the basis of the Stokes equation, will be analysed. The
analysis is performed in the framework of the Oseen equation of motion of an
incompressible fluid. The inertia of the fluid is evaluated up to the contributions
of the order of O(Re), where Re = a|U|/v (a — the radius of the sphere, U —
the uniform velocity of the fluid at infinity, U = (U, 6, ) in spherical polar
coordinates, v — the kinematic viscosity).

Under the condition of vanishingly small Re, the velocity field, generated by
the many-sphere hydrodynamic interactions, has been recently considered by
DuRLOFSKY, BRADY and Bossis [12] and by PHiLLIPS [13]. In the paper [12],
devoted to the dynamic simulation of hydrodynamically interacting particles, it
has been shown that the velocity field may be expressed in terms of the propa-
gators, acting on the forces, torques and stresslets, exerted by the particles on
the fluid ((2.13), (2.14) in [12]). That representation of the velocity profile is
the basis of the dynamic simulation of hydrodynamically interacting spheres in
a quiescent second-order fluid, developed in the paper [13], to account for the
non-Newtonian behaviour.

The influence of the inertia of the fluid on the hydrodynamic interactions of a
cluster of spheres moving in the fluid at small Re has been recently examined both
theoretically and experimentally by KUMAGAI [2]. The author has extended the
conventional reflection method of the description of the interactions, developed
for the Stokes flow regime, to the case of the Oseen flow regime. His numerical
results, concerning the inertia effects in the free-fall motion of spheres, show a
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816 I. PIENKOWSKA

good agreement with the experimental results. Earlier approaches to the analysis
of the nonlinear effects have been quoted in [1].

In the present paper, we use the multiple scattering approach [3] to the analy-
sis of the hydrodynamic interactions and the velocity field. Starting from the
integral formulation for the Oseen flow, the interactions and the velocity field
are expressed in terms of the following parameters:

(i) ¢ = a/R, describing the dependence of the interactions on the radial
distribution of the spheres (R is a typical distance between the centres of two
spheres),

(i1) k = a/ Py, giving the dependence of the velocity field on the radial distance
between the centre of the k-th sphere and the point r in the fluid,

(iii) RU /v, P, U /v — characterizing the regime of the interactions (the role of
the convective inertia effects).
Here we consider the regime specified by the following conditions:

e < 1, i o 1, RU/v < 1, PU/v < 1.

It means, we regard the intermediate sphere spacing and the velocity field in
the region near to the assemblage of the spheres. The spheres are held fixed.
No lubrication behaviour is included. The hydrodynamic interactions and the
velocity profile are regarded up to a given order with respect to ¢ and «. The
0(Re) convective inertia effects are taken into account.

2. Governing equations

The presence of the spheres in the fluid is accounted through the induced
forces f;, j = 1,..., N, distributed on the surfaces of the spheres. In an external
Cartesian coordinate system, the centres and the surfaces of the spheres are
given, respectively, by R‘J?, and R;. The fluid velocity v(r) and pressure p(r)
satisfy the Oseen [8] and continuity equations:

N
0U- Ty — putw + Vp = Y [ a6 - Ri(2)] (),
J=1

2.1
(2.1) V=0

where p and p are the density and the dynamic viscosity of the fluid, 6[r—R;(£2;)]
indicate the positions of the surfaces of the spheres, R; = Rg +r;. In the local
spherical polar coordinates r; = (a, {2;) = (a,6;, ;). Inside the volumes of the
spheres, the respective stress tensors P(r;) satisfy

(2.2) VPlr;) =0, Ir;] < a.
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THE VELOCITY OF THE FLUID 817

On the surfaces of the spheres, we impose the no-slip boundary conditions:
(2.3) R;(%2;) =v(R;(2)),  R;(%5) =0,
where Rj(ﬂj) denotes the velocity of the j-th sphere.

The velocity field in the considered system can be presented in the following
form of the convolution integral:

N
(2.4) vir) = U+ [a'Te - o) Y [ e [ - Rj(2))] (),
j=1

where T(r —r’) is the free-space Green tensor.
Its space-Fourier transform reads [4]:

[ d%k exp(ik-r)(1 - kk)
(2.5) Thi) = / (2m)3 p(k?+iv-1U0-k)’

where k = k/[k|, k(k, x,7) in spherical polar coordinates.

The second term on the r.h.s. of (2.4) describes the disturbance of the uniform
fluid velocity U due to the hydrodynamic interactions of the spheres. To perform
the integrations over the surfaces of the spheres, appearing in this term, we ex-
pand the induced forces f;, exp(ik-Py) and exp(ik-r;) in terms of the normalized
surface spherical harmonics ¥} [5]:

1
(2.6) fj(r;) = /e %n:fj,lmyzm(ﬂj)a 120, |ml<i

exp(ik-Py) = 4 > ' j1(Pek)Y™ Or, me) Y, ™ (X, m),
(27) ; o A el m —m
exp(ik-r;) = 4r Y _i' j'(ak)Y™(6;, ;)Y ™ (x,m),

Im

where j; is the spherical Bessel function, P = R} —r = (P, xk, 7x) in spherical
polar coordinates. Finally, we arrive at the following representation

N
(2.8) vief = U+ 3 3 OB b

k=1 lamo

giving the velocity field in terms of the (l3m2) components of the induced forces
fi.. The second order tensors C'2™2(P}) are called the velocity field tensor. They
are introduced to examine the disturbance of the velocity field U due to the
hydrodynamic interactions of the k-th sphere in the presence of the N —1 other
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818 I. PIENKOWSKA

spheres. For further consideration, the tensors are written down in the following
form:

(2.9) (P, = % SR R ey ),

lam:;

where

c—ly—l3 3 i1
s ek (1-kk)
(210) et = r | G o e i (e (Pk)

We note that the properties of the velocity field tensors follow the properties
of the Green tensor T(r). In the description of the velocity profile, the role
of the velocity tensors is similar to the role of the propagators, introduced by
DURLOFSKY, BRADY and Bossis [12]. In what follows, the dependence of the
tensors on the parameters £ and Re will be discussed.

3. Properties of tensors C22(P,)

L’3m3

lamo

Lom2(Pg) can be presented in

It is shown in the Appendix that the tensors C
the following form (A.7):

(31) C[vmn Fdar Z ﬁm(lg,[3)ill2+2m—l3‘

[3m
m=0
Z R(lz, ma, 7714)R(l3, —ms, _mS)dZudi—gms
mg,ms
1
27r mr7 pnz
' d 7714 ,ms Z 57n~/ tmg,ms 'mGR(Z me, nl?)d P (5)
m0,m7

0
- P ()R, () (Pra) Kp(Prat),

where the signs {£} refer to the cases ly+13 = 2n, ly+I3 = 2n+1, respectively, the
quantity By, (l2,13), depending on Py, is given by the formula (A.3), the quantities
R(l;, m;,m;) describe the rotation of the coordinate system, the functions |
are written down in the form:

Ylm = d'lﬂl Bm61W1¢,

I, K are the modified Bessel functions, a=U /v, 2 =max(ly+2m+1/2,13+1/2),
o0 =min(ly +2m +1/2, I3+ 1/2).

We note the appearance of the parameter P,U/v (in the arguments of the
modified Bessel functions), characterizing the regime of the disturbances of the
velocity field U. The above formula is valid for arbitrary values of that parameter.
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THE VELOCITY OF THE FLUID 819

In what follows we are going to discuss the properties of the above tensors in the
range Py U /v < 1, referring to the weak inertia effects in the velocity profile. In
this range, the products of the modified Bessel functions behave as follows:

1

F-p+1 =
(3.2) Ig(Pkcré)K@(Pkaf):(‘) 9 FF(Q)

= (Pyog)ltim=lal
5 G4 1) Feed) ¥

From (3.2) it follows that for the case considered we have two kinds of the velocity
field tensors:

(1) the Stokes velocity field tensors (disregarding the role of the inertia of the
fluid);

(i1) the 0(Re) Oseen velocity field tensors (taking into account the weak inertia
effects).

We see that the leading order contributions to the velocity tensors, which do
not depend on Re, are equal to

o0
(33)  Cpmi=s4rd Bmlla,l3) Y R(ly, ma, ma)R(I3, —my, —ms)dj*d, ™

m=0 ma,ms .

1
2 ,27‘( Yy DIy
° \/d& |:§51n4,n1,5 - '1r'5- Z 5m7+m4,m5K7n5R(23mﬁam'f)d2 7P2 '(6):|
0

me,me
1y #=6H  Fig)
- B P —) :
The integrals over the associated Legendre functions are different from zero for
the following sets of the indices /; [6]:

(34) 1,'2 = 13 and 12 = 13 - 2.

Hence the leading order contributions to the considered tensors are characterized
by the following parameters:

(i) m = 0, 12 — lg;

(3.5) i
(11) m = 1, 12=l3—2,

The tensors exhibit the characteristic dependence on the inverse powers of the
distances P.:

l2+1
(i) they are of the leading order of (%) :
(3.6) k

l5+3
(ii) the tensors with m=1 contain the contributions of the order of (m) .
k
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820 1. PIENKOWSKA

For example, the velocity tensors of low indices assume the following form:
(i) diagonal with respect to I; (m = 0):

1
3.7 C®(P) = ———1I:
( ) 00( k) gﬁHPk )
(ii) off-diagonal with respect to l; (m = 1):
\/-2- g 2
3.8 i - (L e R |, (—) K. ...
( ) 2m3( k) Smﬂpk P, 3

The leading order contributions to the velocity tensors, given by (3.3), will be
used to describe the velocity field past N spheres, provided the inertial effects
are negligible.

In the considered range P.U/v < 1 the second group of the velocity tensors,
being of our interest, are the tensors of the order of 0(Re). It follows from (3.2)
that they are equal to

(39)  CPm=dmiy Pmlla,ls) Y R(lo, ma, ma)R(ls, —mz, —ms)d;r*d,.™

lams
m=0 mq,Ms5
1
2 27 i
/dé §6m4,m5 - E Z 6m7+mq‘m5Km5R(2»7n6:m7)d2 P2 (6)
0 me,my
1t z—o+1 F(é)
. P (g)Pms(g) ( = !
PP (5)  praageal+

Taking again into account the properties of the integrals over £ we deduce that
the tensors, belonging in that group, are characterized by the following sets of
their indices:

(l) = 01 13 = £2 s ]-)
(3.10) (i) =01 =%+l
(iif) m=12 |h=L+id

It follows from (3.9) that the above tensors are built up of the contributions of
the following orders with respect to (a/Py):

Iy
a 2
i (3)"
la—1m3 P}c
ls lo+2
Tnrry a a
o ot~ (7) - (5)

i la+2 la+4
cleme (i) ’ (i) (_“t) _
lo+3ms Pk ) Pk Pk-
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THE VELOCITY OF THE FLUID 821

Here we list, for example, a few low indices 0(Re) tensors, for the particular case
of U7(0,0,1):

()lz=1la—1, m=0,

Re
3.12 Clmypy=__ & (_q)me=lma)/2]5
( ) 00 ( k) gm#PL( ) 2,0
2 11
E L | i B Ky 17
ma . mg mo 0

(ii) I3 =0+1, m=0, 1,

Re
——  (—1){-ma=ims}/2) _ s
6\/3_1Ta,u( ) i

2 11 a\?
- me—]‘ﬂle\)/? K., +0 (—) )
8\/_7n§—2 N 6 e B | D ) Pk

(il) 3=l +3, m=1, 2,

v5Re 2 2 3 1 ( &V
3.14 C P)= ——— ) K O = :
(3.14) oms (Pk) = 5627 ap m§_2 MO\ g —mg 0 me+ Pk)

Iy 1y 13
my Mo M3

(318) CR (F)=

where the Wigner 3-j symbols ( ) are given by the formula (3.7.11)

from [6].
In view of the properties of the Bessel functions I;/; and Ky, the contri-
butions linear in Re appear also in the series expansion of the tensor ng with

respect to P.U/v. Tt follows from (A.8) that the tensor CJ(P;) can be presented
in the following form:

(3.15) CH(P)=Crp+CL +...

?

where Cj, denote the Stokes contributions (3.7), C}, are the 0(Re) contributions,
equal to:

Re -

3.16 S SR
( ) 4 16v6map - —

R(2,m¢,0) K, ,

and the quantity R(2,mg,0) is defined by (A.4).

We note that the leading order contributions to C{%, (P), C3,, (Px) and Cj
are independent of P;. In the paper [7] we have discussed an analogous lack
of |R;x| in the leading order contributions to the mutual interaction tensors
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822 [. PIENKOWSKA

Ti2m2 (Rj) (Rji = RS — RJ, the formula (4.20) in [7]). The above contributions
to the velocity tensors, acting on the component f}, oo of the induced forces, give
rise to the Pj-independent terms in the expression (2.8) for the velocity field.

That type of the independence has been reported, for example, in the paper by
PROUDMAN and PEARSON [14], concerning the flow past one sphere. The authors
have considered the velocity field in the framework of the Navier - Stokes equa-
tions, applying the method of the matched asymptotic expansions. The above
contributions to the velocity field, being proportional to Re, vanish at the Stokes
conditions.

4. The components f;,, .., of the induced forces

The hydrodynamic interactions between the spheres are treated as the multi-
ple scattering events, describing the scattering of the disturbances of the velocity
field due to the presence of the spheres. The approach leads to the following for-
mula, providing the representation for the components f;,,,, in terms of the
relative velocity of the fluid with respect to the spheres V; ;,,:

g Y l ml
(A1) Bgoy=2, TRH0;) | Vitems =), ¥, Tino(Rr) Tima{0x) - Vie sme
lama k#j lim;
I I Gowng = gem,
+X 3 ¥ T R) T (04) Tt (R, ) Ty (O V7 Vit g = <+ s

k7 k#ky limg

where i = 2,3.4,5, 6,

i v _[-U 1=0
i T e rsaf”

Til‘;iz(() ) and Tf“;:“(Rjk) are respectively the inverse self- and mutual interac-
tion tensors; their properties have been analysed in the author’s previous paper
(1], under the assumption Rj;U/v < 1. For example, we list below a few hydro-
dynamic interaction tensors with the lowest indices, including the contributions
up to O(Re):

(1) self-interaction tensors:
T88(OJ) :TJ‘—FT} s T

where

1 1 3 S
iy = I = ——Re (31-UU)|;

7 6mpa 7 brpa { 16 e( )]
(i) inverse self-interaction tensors:

(4.3) TO(0;) =T; + T +...,
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THE VELOCITY OF THE FLUID 823

where
T; = 6mpal T! = 6rpa [iRe (31 - ﬁfj)] A
] ’ J 16 b
(111) mutual-interactions tensors:

ng(Rjk) =T + T}k Fire 4

where
1 %2a® 71 .
Tjk — —SW/LRjk [ +e]kejk + R2 (gl— ejkejkﬂ,
. Ry
= IRjx|
Re s
ml
Tk =~ Somma (31-00) + ; 00,1m; Y1+ ZTOO 3mg Y3 T
TOO lmas O(Re)v T88.3n13 = (Re)! ij/U £ 1

The first contributions to the above tensors describe the Stokes interactions,
the second terms, respectively, the 0(Re) Oseen interactions. Taking into account

the properties of the tensors Tngz, the formula (4.1) yields the series expansion

of the fj;,,,, with respect to o and Re. For example, the components f; oo are
equal to:

(1) for the case of the flow past one sphere:
(4.4) fj,goz—[i‘j+i‘}+”.]'U:fj'i“f]l“i"...,

where f; denotes the Stokes drag force, fJ1 ~ the 0(Re) Oseen force;
(11) for the case of the low past N spheres:

(4.5) fi00 = —To0(0 {1 Z

R;x)-T30(0y) +ZT1'” )-Tﬁ’?n(ok)}

k#j
+3° > T 00(Ok) - TGO (Ry)- T30 (01)
ket Ltk
-33. Zng(Rjk)'ng(ok)'ng(RH)‘ng(ol)‘ng(Rln)‘ng(on)} U
iy
+ 55 T (05) - T, (Rji)- TH0(0k) - U + ...,
k#j m

where, taking into account (4.3), the Stokes f; and the O(Re) fj] contributions
can be separated. The above expression is written down up to the terms of the
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824 I. PIENKOWSKA

order of 0(c?) in inverse sphere spacing. In that approximation, the four body
effects enter the formula (4.5). Hence, to analyse that range of the interactions,
a pairwise additivity assumption cannot be used. The more detailed discussion
of the properties of f; ;,, can be found in the paper [1].

5. The velocity field in the range Re < 1, (Re/k) < 1

It follows from (2.8) that the velocity field can be presented as the sum of the
contributions, generated by each sphere in the presence of (N—1) other spheres. In
view of the properties of the velocity tensors, the contributions exhibit different
features in the regions near to and far from the assemblage of the spheres. The
velocity of the fluid in the region, characterized by P,U/v < 1, assumes the form
of the sum of the Stokes (linear in U) and the Oseen (quadratic with respect to
U) terms.

Within the considered approximation (i.e. including the contributions up to
0(x?)), the Stokes terms can be expressed by means of the four Stokes velocity

tensors (CJ9, C99,., C%ﬁ;, Cénmlg), whereas the description of the O(Re) terms

. " s x 1
requires, in addition, the tensors C(l)?ns, C%.., e, Com and Cy%. Below we

continue the list of the relevant tensors (comp. (3.7), (3.8), (3.12), (3.13), (3.14)):
(i) the Stokes velocity tensors:

a

!
6/man (Fk
T 2 =m L L
+ \[5 Z (5m2-§-ms,1‘n3(_1)(m6 oy (mﬁ mao _m3) Kms}’

2
2
(5.1)  CI2(R) = ) (—nymemmasimal=imal/2 {2 (1),

1m3

mg:—?
V3 a\? 2
5.2 giteipy — _ __NY (_) _1)(mz—ma—|mz|—|ms])/2 s
( ) 3m3( k) Sma‘u P. ( ) m(;__g my+me,ms3

4
.(_1)(ms—|men/2( il L )Km5+0((i) );
meg Mgy —M3 Pk

(ii) the O(Re) velocity tensors (for the case of U/(0,0,1)):

(5.3) Cim V2R (a

Pl

1 B 1 V3 9
: Y S e ma (— 1) (ma—Imel) 2 {__
( ) 5 — 67712-1— 6y 3( )

) (_1)(m2~m3—[m2|—im3\)/2 {sz,mg

ma —Ma 0 4\/?

1 & @ i f1 2 1 a)®
.(m2 —ms3 m5>-+ﬁ (mz —m3 me)}Km6}+0((Fk) )’
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(G4)  Cim(p,) = VIR (“

2 ) (—1)(m2—ms—|ma|~|ms|)/2 S - mn
60 /_ﬁrra,u Pk)( ) Z 6+ma2,m3

meg

3
- (—1)(me-me])/2 ( I )Kms 40 (( 5 ) )
Mg My —TM3 Pk

The Stokes and the 0(Re) contributions to the velocity field are expressed in
terms of the listed velocity tensors, acting on the respective components of the
induced forces. The components are the results of the many-sphere hydrody-
namic, non-additive interactions. Up to the contributions of the order of 0(c?),
the non-additive interactions of three and four spheres enter the description of
the velocity of the fluid. In Table 1 we have written down the admissible (from

Table 1. The velocity field (v(r) — U, cf. (2.8)) near to N spheres (PU/v < 1),
including terms up to 0(x?) and 0(c?), j = 1,..., N.

Oseen contributions

ZCL-YO- A
e : z_z;cmyma-fj

ms3

z Z C\?msym3 'fj

Z G, Y31}

Z Z o W 4

Z_ Z Cog Yy fj,im,

> > G fum

j mz,m3

1mz m
E E ; C4fn ’ f] 1mz

j mz2,Mm3

Stokes contributions

ZC-YOD-f,-
K Z ¥ G

msa

> D Gy fam,

Jj mo,ms

E : E : 1m m
C 1!.2Y3 3, ]‘lTn:z

j ma2,ma

Z IS S 7

msa

Z Z Cons Y3 -1
Z Z CLm2 Y™ Gms

Jj ma2,m3

> 2 Ci¥a™ fiims

j ma2,mg3
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826 1. PIENKOWSKA

the point of view of the properties of the velocity tensors and of the components
f; 1m) sequences of the hydrodynamic interactions.

We note the following qualitative properties of the velocity profile, due to the
inertia of the fluid:

(i) the velocity exhibits the stronger, than under the Stokes conditions, de-
pendence on the non-additivity of the interactions (at the Stokes regime the
non-additive interactions of three spheres enter);

(ii) the components f; oo generate the contributions to the velocity field start-
ing from the terms of the order of 0(x) (at the Stokes regime, respectively, from
the terms of 0(x!));

(iii) the components f; 1,, generate the analogous contributions, starting from
the terms of the order of 0(k!) (at the Stokes conditions, respectively, from the
terms of 0(k?));

(iv) there appear the contributions, expressed in terms of the functions Y™
and Y3", which describe the lack of the fore-aft symmetry.

We note that for the particular case of one sphere, the tensor C; and 039,”,
acting on the component f; = —6mpual, give the classical Stokes velocity profile.
To our knowledge, the description of the velocity field past N spheres, involv-
ing the Oseen hydrodynamic interactions between more than two spheres, is at
present not available in the literature. Summing up, in the present paper it has
been investigated to what extent the weak convective inertia of the fluid increases
the role of the hydrodynamic interactions and modifies the symmetry properties
of the generated velocity field.

Appendix. Series expansion of the tensors C2™? with respect to P.U//v

iaﬂ’lg

The tensors Cl27"‘>‘(Pk) describe the effect of the component fi ;,.m,, of the
force, induced on the surface of the k-th sphere, on the velocity field of the fluid.
The tensors CfSIZ;(PL) concern the respective radial properties. To examine these
properties, we start with the integration over |k| in the expression (2.10). To this
end we use the properties of the Bessel functions J /5, expressed by the formula
(7) on the page 45, and by the formula (7) on the page 99 of [9], and we apply

the expansion of 1 — kk in terms of ¥J™ [5]:

T pE 3
(A1) 1—1‘:k=§1—,/E S Kumg¥a ™
me=—2
where
2
3
Kii = ege, +e,e; T ieye, Fre,ey,

(g, —E,8, + 26,8,

Ki; = ege; —eyey T iegey T ieye, .
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As a result, we obtain the following expression:

ma s 2 27‘[‘ 2 7 S i
(A2)  Cm =Y Ballals) [ A ST- /2 T Ko™ | YimY™
m=0 mg=—2
- k—iPyat = -
5 dk——"—"—.] s k)J 5(k),
/ 2 4+ (Prat)? la+1/242m (k)14 1/2(k)
where
gla—ls 7 g\ letl
A .3 Al 13) = =
(A3)  Bullals) =5 (Pk)

1 1
i (=1)"(2ls —2n+1) (lz - 3 + Zm) r (12 + 5 +m>

1
n=0 n!(2ly —n+ H!I" (12 —n+ %) ir (—12 + w4 5) m!

F. b s mply ~n k2, gk +1-(a)2(a)2
4m,22m,2n2,2n2,2pk,2pk )

Fy is the hypergeometric series,
a=Uly, U=U/U  €E=cos(U,k), k=Pk.

To perform the k integration, we apply a rotation of the coordinate system by
the linear transformation, k = A -y, letting the new axis 3 coincide with U. Then,
taking into account the properties of the functions ¥;™:

(A4) Y(k) = 3 R(,q,m)Y(@),

[n|<l

and using the formula (6.577) from [10], we obtain:

(A5)  Cpmi=+ Bullzls) / 2, {... il 2L (Pyag) Ky (Prat)

m=0 £50
oo
+ 3 Bllz, 13) [ A2, {.. " 2Bl (Peale]) K 3 (Pealé]),
rri=0
£<0

where (+) refers to the cases I + I3 = 2n, and (—) - to the cases Iy +1l3 = 2n+1,
I: and K denote the modified Bessel functions, z = max(lp+1/2+2m, l3+1/2),
0 =min(ly +1/2 +2m, l3 + 1/2), and the expression in the parentheses reads:

(AG) {} = Z R(lg,nzg,m4)R(13,—mg,—m5)FI

3
my,ms

2 my (= g [ —ms [~
~Te X KmeR(2memr)Y; 7(9)}14;@3@3 (@)

me,mry
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828 I. PIENKOWSKA

Carrying out the integrations over the meridional angle, we arrive at:

lamg

o0
(A7) O = 3dy 3 Byl Iy )it Bm—tal
m

3" R(la,ma, m4)R(l3, —mg, —ms)djrd;™

mgq,ms5
i
2 2m myr pms7
/d€ '3“(5m4,m5“ 1‘5" Z 6M7+m4,M5KMGR(21m51m7)d2 Pz (ﬁ)
me,my

0
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where the coefficients d"* read:

N ool (2L +1)(l — m)!
= (-1 H\/ 4r(l+m)!

P™(&) are the associated Legendre functions [cf. [6], formulae (2.5.17) and
(2.5.18)].

Taking into account the properties of P/"(£), we can accomplish the integra-
tion with the help of the formula 1.11.3.2 from [11]:
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where the parameter A depends on the P/™(¢) involved, and the following condi-
tion should be fulfilled:
Ak 8405 ~1.

http://rcin.org.pl



THE VELOCITY OF THE FLUID 829

The last integration leads to the representation of the velocity field tensors in
terms of the linear combinations of the 3 Fy functions. That representation is valid
for the arbitrary values of Re. We are going to examine the particular regime of
the hydrodynamic interactions, which is described by the velocity tensors, having
arguments Pra < 1.

References

1. 1. PIENKOWSKA, Arch. Mech., 48, 231, 1996.

2. T. Kumacal, JSME Int. J., Ser. B, 38, 563, 1995.

3. P. Mazur and W. VAN SAARLOOS, Physica A, 115, 21, 1982.

4. P. Mazur and A.J. WEISENBORN, Physica A, 123, 209, 1984.

5. T. YosH1zakl and H. YAMAKAWA, J. Chem. Phys., 73, 578, 1980.

6. A.R. EbMONDS, Angular momentum in quantum mechanics, Princeton University Press,

1974.
7. I. PIENKOWSKA, Arch. Meeh., 45, 665, 1993.
8. R. BERKER, Encyclopedia of Physics, vol. VIII/2, S. FLUGGE, Springer, 1963.
9. A. ErpELY1, Higher transcendental functions, vol. II, New York 1953.

10. 1.S. GrapSTEIN and .M. RyzHik, Tables of integrals, series and products [in Russian],
Moskva 1962.

11. A.P. PrubNikOov, YU.A. BrYCkov and O.I. MARICEV, Integrals and series, special func-
tions [in Russian], Nauka, 1983.

12. L. DurLoFrsky, J.F. BrRapY and G. Bossis, J. Fluid Mech., 180, 21, 1987.
13. R.J. PHiLLips, J. Fluid Mech., 315, 345, 1996.
14. I. ProupMAN and J.R.A. PEARSON, J. Fluid Mech., 2, 237, 1957.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH

e-mail: ipienk@ippt.gov.pl

Received March 5, 1997.

http://rcin.org.pl



