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The velocity of the fluid due to the many-sphere 
Oseen hydrodynamic interactions 

I. PIENKOWSKA {WARSZAWA) 

WE CONSIDER the velocity field, generated in the incompressible, viscous fluid due 
to the hydrodynamic interact ions between a fi ni te number of solid spheres. The 
particular properties of the velocity fi eld, due to the convective inertia of the fluid , 
are examined. The inertia effects are taken into account up to the contributions of 
the order of O{Re). 

1. Introduction 

Til E PRESE NT PAPER concerns the hydrodynamic interactions of a finite number 
of solid spheres at small , but finit e sphere Reynolds number Re. In the previous 
paper [1] we have investigated the effects of the hydrodynamic interactions on 
the friction relations between the spheres. In this paper the respective velocity 
fi eld of Lhe fluid is studied. In particular , some proper t ies of the velocity fi eld , 
not to be expected on the basis of the Stokes equation, wi ll be analysed. The 
analy sis i performed in the framework of the Oseen equation of motion of an 
incompressible fluid. The inertia of the fluid is evaluated up to t he contribut ions 
of the order of O(Re), where Re = a JUJ/v (a - the radius of the sphere, U -
the uniform velocity of the flu id at infinity, U = (U, e, <p) in spherical polar 
coordinates, v the kinematic viscosity) . 

Under Lhe condition of vani hingly small Re, the velocity fi eld , generated by 
the many-sphere hydrodynamic interact ions, has been recently considered by 
D u nLor.s r<Y, 8RADY and Bossrs [12] and by PliiLL!PS [13]. In the paper [12], 
devoted Lo the dynamic simulation of hydrodynamicall y interacting par t icles, it 
ha::; been shown that the velocity fie ld may be expressed in terms of the propa-
gators, acting on t he forces, torques and stresslets, exerted by the parti cles on 
lhe fluid ((2.13), (2.14) in [12]) . That representation of the velocity profi le is 
the basis of t he dynamic simulation of hydrodynamically interacting spheres in 
a quiescent second-order fluid , deYeloped in the paper [13], to account for the 
non-. 1ewtonian behaviour . 

The influence of the inertia of the fluid on the hydrodynamic interactions of a 
cluster of spheres moving in the fluid at small Re has been recently examined both 
theoretically and experimentally by KUMAGA! [2]. The author has extended the 
conventional r :flection method of the descr iption of the interactions, developed 
for the Stokes flow regime, to the case of the Oseen flow regime. His numerical 
results, concerning the inertia effects in the free-fall motion of spheres, show a 
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good agreement with the experimental results. Earli er approaches to the analysis 
of the nonlinear effects have been quoted in [1]. 

In the present paper, we use the multiple scattering approach [3] to the analy-
sis of the hydrodynamic interactions and the velocity fi eld. Starting from the 
integral formulation for the Oseen fl ow, the interactions and the velocity fi eld 
are expressed in terms of the foll owing parameters: 

(i) a = a/ R , describing the dependence of the interactions on the radial 
distribution of the spheres (R is a typical distance between the centres of two 
spheres), 

( ii ) "' = a/ Pk, giving the dependence of the velocity fi eld on the radial distance 
between the centre of the k-th sphere and the point r in t he flui d, 

( iii ) RU / v , Pk U / v - characterizing the regime of the interactions (the role of 
the convective inert ia effects). 

Here we consider the regime specifi ed by the foll owing condit ions: 

a< 1, "'< 1, RU /v < 1, 

It means, we regard the intermediate sphere spacing and the velocity fi eld in 
the region near to the assemblage of the spheres. The spheres are held fix ed. 
No lubrication behaviour is included. The hydrodynamic interactions and the 
velocity profile are regarded up to a given order with respect to a and "' · The 
O(Re) convective inertia effects are taken into account. 

2. Governing equations 

The presence of the spheres in the flui d is accounted through the induced 
forces f1, j = 1, ... , N, distributed on the surfaces of t he spheres. In an external 
Cartesian coordinate system, the cent res and the surfaces of the spheres are 
given, respectively, by ｒｾ Ｌ＠ and Rj. The fluid velocity v(r) and pressure p(r ) 
satisfy the Oseen [8] and continuity equations: 

(2.1) 

N 

gU·'ilv - J.Ltw + V p = L/ dst1o[r - R1(n1)] f1(n1), 
j=l 

\i' ·V = 0, 

where g and J.L are the density and the dynamic viscosity of the flui d, o[r - Rj ( f21 )] 
indicate t he positions of the surfaces of the spheres, Rj = ｒ ｾ＠ + r j. In t he local 
spheri cal polar coordinates r1 = (a, f21) = (a,81 ,<pj) . Inside the volumes of the 
spheres, the respective stress tensors P (rj) satisfy 

(2.2) V ·P(r j) = 0, 
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On the surfaces of the spheres, we impose the no-sli p boundary conditions: 

(2.3) 

where Rj ( J?j ) denotes the velocity of the j-th sphere. 
The velocity fi eld in the considered system can be presented in the foll owing 

form of the convolution integral: 

N 

(2.4) v (r) = U +I dr'T(r - r ') · L I dJ?jJ [r '- Rj(J?j)] fj (J?j), 
J = l 

where T(r- r' ) is the free-space Green tensor. 
Its space-Fourier transform reads [ 4]: 

(2.5) T(r) =I d
3
k exp(ik ·r)( l - kk) 

(21r)3 J1.(k2 + iv- 1 U ·k) ' 

where k = k/l k i, k (k, x, 77) in spherical polar coordinates. 
The second term on the r .h.s. of (2.4) describes the disturbance of the uniform 

fluid velocity U due to the hydrodynamic interactions of the spheres. To perform 
the integrations over the surfaces of the spheres, appearing in this term, we ex-
pand the induced forces fj , exp(ik ·Pk) and exp(ik ·r1) in terms of the normali zed 
surface spherical harmonics Yim [5]: 

(2.6) l 2 0, lm l :S l , 

(2. 7) lm 

exp(i k ·rj) = 47f L i 1 j 1(ak)Yim(ej , </>j)1{-m(x, ry) , 
lm 

where j 1 is the spherical Bessel function, Pk = ｒ ｾＭ r = (Pk , Xk , 7Jk ) in spherical 
polar coordinates. Finall y, we arrive at the following representation 

N 

(2.8) v (r ) = u + L L C12
m2(Pk) ·fkhm2) 

k= l l2m2 

giving the velocity fi eld in terms of the (12m2) components of the induced forces 
ｦ ｾＬ［Ｎ＠ The second order tensors C12m2 (P k) are called the velocity field tensor. They 
are introduced to examine the disturbance of the veloci ty fi eld U due to the 
hydrodynamic interactions of the k-th sphere in the presence of the N - 1 other 
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spheres. For further consideration, the tensors are written down in the following 
form: 

(2.9) C12
m

2 (P k) = 2.: ｣Ｚ ｾＺｾ＠ ( Pk) }[:3 (Xk, 17k), 
13m3 

where 

(2.10) 

We note that the properties of the velocity field tensors fo ll ow the properties 
of the Green tensor T(r). In the description of the velocity profile, the role 
of t he velocity tensors is simil ar to the role of the propagators, introduced by 
D URLOFSKY, BRADY and Bossrs [12]. In what foll ows, the dependence of the 
tensors on the parameters r;, and Re will be discussed. 

3. Propertie s of tensors c:!:! (Pk) 

It is shown in the Appendix that the tensors ｣ ＺＡＺｾ＠ (Pk) can be presented in 
the following form (A.7): 

1 

ﾷｉ､ ｾ＠ ｛ｾ＼ＵｭＴＬｭ ｳ＠ - /¥1 L 6m7 +m4 ,m5 Km6 R(2, ffi6, ffi7 )d'{'7 ｰｾｮ Ｗ＠
(()] 

0 m5,m7 

· P{; 4 ＨＰｐ Ｑ ｾ ｭｳ＠ (0fz(Pkcx0K e(Pkcx0, 

where the signs{±} refer to the cases l2 + l3 = 2n, l2 + l3 = 2n+1, respectively, the 
quantity /3111 (12, l3), depending on Pk, is given by the formula (A .3), the quantit ies 
R(li , mi, mj) describe the rotation of the coordinate system, the functions ｾｭ＠
are written clown in the form: 

I :., J([J are the modified Bessel functions, ex= U / v , z = max(l2 + 2m+ 1/ 2, l3 + 1/ 2), 
f! = min(l2 + 2m + 1/ 2, l3 + 1/ 2). 

We note the appearance of the parameter PkUf r; (i n the arguments of the 
modified Bessel functions), characteri zing the regime of the disturbances of the 
velocity field U. The above formula is valid for arbitrary value of that parameter. 
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In what fo ll ows we are going to discuss the properties of the above tensors in the 
range PkU j v < 1, referring to the weak inert ia effects in the velocity profil e. In 
this range, t he products of the modifi ed Bessel functions behave as follows: 

(3.2) 

From (3.2) it follows that for the case considered we have two kinds of the velocity 
field tensors: 

( i) the Stokes velocity fi eld tensors (disregarding the role of the inerti a of the 
fluid ); 

(ii ) the O(Re) Oseen velocity fi eld tensors (taking into account the weak iner tia 
effects). 

We see that the leading order contributions to the velocity tensors, which do 
not depend on Re, are equal to 

00 

(3.3) ｣ ＺｾＺｾ＠ = ±4n :L f3m(l2, l3) :L R(l2, m2, m4)R(l3, - m 3, - m 5)dh4 dGms 
m = O m4,m5 

The integrals over the associated Legendre functions are different from zero for 
the foll owing sets of the indices li [6]: 

(3.4) and 

Hence the leading order contributions to the considered tensors are characteri zed 
by the fo ll owing parameters: 

(3.5) 
(i) 

( ii ) 

m= 0, 

m= 1, 

12 = l3; 

l2 = l3 - 2. 

The tensors exhibi t the characteristic dependence on the inverse powers of the 
distances Pk: 

(
a )l2+l 

(i) they are of the leading order of - ; 
( ) 

pk 
3.6 l + 3 

(ii ) the tensors with m=1 contain the contributions of the order of (;J 2 

. 
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For example, t he velocity tensors of low indices assume the following form: 

(i) d iagonal with respect to li (m= 0): 

(3.7) 00 1 
C00(Pk) = 

3
/1f p I ; 

1f/-L k 

( ii ) off-di agonal with respect to li (m = 1): 

(3.8) 

The leading order contri but ions to the velocity tensors, given by (3.3), wi ll be 
used to describe the veloci ty fie ld past N spheres, provided the inertial effects 
are negligible. 

In the considered range PkU j v < 1 the second group of the velocity tensors, 
being of our interest, are the tensors of the order of O(Re). It foll ows from (3.2) 
tha t they are equal to 

00 

(3.9) ｣ ＺｾＺｾ＠ = ±47ri 'L: .6m(l2, l 3) 'L: R(l2, m2, m4)R(l3, - m3, - ms)d7;4 dGm5 

m = O m4 ,m 5 

Taking again into account the properti es of the integrals over ｾ＠ we deduce that 
the tensors, belonging in that group, are characterized by the foll owing sets of 
their indices: 

(3.10) 

( i) 

( ii ) 

( ii i) 

m = 0, 

m = 0, 1, 

m = 1,2, 

l3 = l2 - 1, 

l3 = l2 + 1, 

l3 = l2 + 3. 

It foll ows from (3.9) that the above tensors are buil t up of the contributions of 
the following orders with respect to ( aj Pk): 

et 2m2 
l2- lm3 ( ｾ＠ y 2 

pk 

(3 .11) c l 2m2 
l2+lm3 ( ｾ＠ y 2 

pk 
( ｾ＠ y 2+2 

pk 

ct2m2 
l2+3m3 ( ｾ＠ y 2 

pk 
( ｾ＠ y 2+2 

pk 
( ｾ＠ y2+4 

pk 
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Here we li st, for example, a few low indices O(Re) tensors, for the parti cular case 

of U(O, 0, 1): 

(i) l3 = l2 - 1, m = 0, 

(3.12) c lm2(P.) = _ Re (- 1)(m2-lm2I)/2{ J 
oo k gV3n p,Pk m2 ,o 

3 ｾ＠ J ( )(m6-lm6l)/2 ( 
2 1 1

) K }· - 2 ｾ Ｕ＠ L...t m2 +m6 ,0 - 1 m m O m5 ' 
V V m6=-2 6 2 

(ii ) l3 = l2 + 1, m = 0, 1, 

( 3.13) c oo (P .) = R e (-1)(- m3-l m31)/2 { _ J 
1m3 k 6V3n ap, m3,0 

+ _ 9_ ｾ＠ J (-1)(m6- lm61)/2 ( 2 1 1) K } + 0 ＨＨ ｾＩＲ ＩＮ＠
8 's L...t m3 ,m6 m - m O m5 P ' 

V Vm6=-2 6 3 k 

(iii ) l3 = l2 + 3, m= 1, 2, 

(3.14) 

where the W1gner 3-J symbols are giVen by the formula (3.7.11) . . ( h 12 13 ) . 
m1 m2 m 3 

from [6]. 
In view of the properties of the Bessel functions ! 1; 2 and K 1; 2 , the contri-

b ut ions linear in Re appear also in the series expansion of the tensor egg with 
respect to PkU/ v. It foll ows from (A.8) that the tensor cgg (Pk ) can be presented 
in the following form: 

(3.15) 

where Ck denote the Stokes contributions (3.7), Cl are the O(Re) contributions, 
equal to: 

(3.16) 
R 2 

cl = ｾ＠ L R(2, m6, O)Km6' 
16 ap, m6=-2 

and the quantity R (2, m6 , 0) is defined by (A.4). 
We note t hat t he leading order contributions to ｃ ｾｾ Ｓ ＨｐｫＩＬ＠ ｃｾ ｾ ＱＳ ＨｐｫＩ＠ and Cl 

are indep endent of Pk. In the paper [7] we have discussed an analogous lack 
of IRjk l in the leading order contrib ut ions to the mutual interaction tensors 
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ｔ ｾ ｾ ［ ｾｾＨ ｒ ｪｫＩ＠ (Rjk = R2 - RJ, the formula (4.20) in [7]). The above contri butions 
to the velocity tensors, acting on the component fk ,oo of the induced forces, give 
ri se to the ＿ ｾＮＺＭ ｩｮ､ ･ｰ･ ｮ､･ｮｴ＠ terms in the expression (2.8) for the velocity fi eld . 

That type of the independence has been repor ted, for example, in the paper by 
PROUDMAN and PEARSO [14], concerning the fl ow past one sphere. The authors 
have considered the velocity field in the framework of the avier - Stokes equa-
ti ons, apply ing the method of the matched asymptotic expansions. T he above 
contributions to t he velocity fi eld, being proportional to Re, vanish at the Stokes 
condit ions. 

4. The components fj.L2m2 of the induced forces 

The hydrodynamic interactions between the spheres are treated as the multi-
p le scattering events, describing the scattering of the disturbances of the veloci ty 
fi eld due to the presence of the spheres. The approach leads to the foll owing for-
mula, providing the representation for t he components fj.l2m2 in terms of the 
relative velocity of the fluid with respect to the spheres V j,lm: 

(4.1) ｦ ｪＬ ｬｴｭ Ｑ ］ ｌ ｔ ＺｾＺｾＨ ｏ ｪＩﾷ ｛ｖ ｪ Ｌ Ｑ Ｒ ｭ Ｒ＠ -L ｌｔ Ｚ ｾＺｾＨ ｒ ｪｫ Ｉ ﾷ ｔＺ ［Ｚ［Ｈ ｯ ｊＮＺＩ Ｍｖ ｫ Ｌ ｬＴｭ Ｔ＠
l2m2 ki:j I, m, 

+ L L ｌｔ ｩ ｾＺｾＨ ｒ ｪｊＮＺＩ ﾷｔＺ ［Ｚ［Ｈ ｏ ｊＮＺＩ ﾷ ｔ ＺＺＺＡＨ ｒ ｫｫｊ ﾷ ｔ ＺｾＺ ｾＨ ｏ ｫ Ｑ Ｉ ﾷ ｖ ｫ Ｑ ＬＱ Ｖ ｭＶＭ · · ·] • 
ki:j k i:k 1 I, m, 

where i = 2, 3, 4, 5, 6, 

(4.2) { 
- U 

v j,lm = 0,, 

ｔ ＺｾＺｾＨ Ｐ Ｑ Ｉ＠ and ｔ Ｚ ｾＺｾＨ ｒ Ｑ ｊＮＺＩ＠ are respectively the inverse self- and mutual interac-
tion tensors; their properties have been analysed in the author 's previous paper 
[1], under the assumption RjkU j v < 1. For example, we li st below a few hydro-
dynamic interaction tensors with the lowest indices, including the contributions 
up to O(Re): 

(i) self-interaction tensors: 

ｔｾｾ Ｈ ｏ ｪＩ＠ = T j + TJ + ... , 

where 

T = -
1

- 1 1 61fJ.La ' 
TJ = -

1
- ｛ Ｍ ｾ ｒ ･＠ (31 - uu)]; 

61fJ.La 16 

( ii ) inverse self- interaction tensors: 

(4.3) 
-oo - -1 
T 00 ( 0 i) = T i + T i + . . . , 
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where 

( iii) mutual-interactions tensors: 

where 

The first cont ribut ions to t he above tensors describe the Stokes interactions, 
the second terms, respectively, the O(Re) Oseen interactions. Taking into account 
the properties of the tensors ｔ ＺｾＺｾＬ＠ the formula ( 4.1) yields the series expansion 
of the fj, l1m 1 with respect to a and Re. For example, the components fj,OO are 
equal to: 

(i) for the case of the fl ow past one sphere: 

(4.4) 

where fj denotes the Stokes drag force, f} - the O(Re) Oseen force; 

(ii ) for the case of the flow past N spheres: 

- oo { ｾ＠ [ oo -oo ｾ＠ lm -oo ] (4.5) fj,oo = - T00(0 j) l - L-. T00(Rjk) ·T00(0 k) + L.- T00 (Rjk) ·Ttm(Ok) 
k# J m 

+ 2: ＲＺｔ ｾｾＨ ｒ Ｑ ､＠ ＾ ｲ ｾｾＨ ｯ ｫＩ＠ ﾷｔ ｾｾＨ ｒ ｫｬＩ＠ ﾷ ｔｾ ｾＨ ｯ ｬＩ＠
k # jlfk 

- L L ｌｔ ｾｾＨ ｒ ｪｫＩ＠ ﾷｔ ｾｾＨ ｏ ｫＩ＠ ﾷ ｔ ｾｾＨ ｒ ｫｴＩ＠ ﾷ ｔ ｾｾＨ ｏ ｴＩ＠ ﾷ ｔ ｾｾＨ ｒ ｬｮＩ＠ ﾷｔ ｾｾＨ ｏ ｮＩ ｽ＠ · U 
k # j l fk n # l 

ｾ＠ ｾ＠ -lm oo -oo + L- L- T00 (Oj)·T1m(Rjk)· T00(0 k) ·U + .. 
k # j m 

where, taking into account (4.3), the Stokes fj and t he O(Re) f} contributions 
can be separated. The above expression is wr itten down up to the terms of the 
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order of 0( a2
) in inverse sphere spacing. In that approximation, the four body 

effects enter the formula (4.5). Hence, to analyse that range of the interactions, 
a pairwise additivity assumption cannot be used. The more detail ed discussion 
of the properties of f j ,Lm can be found in the paper [1]. 

5. The velocity fi eld in the range Re < 1, (Re/ K;) < 1 

It fo llows from (2.8) that the veloci ty field can be presented as the sum of the 
contributions, generated by each sphere in the presence of (N- 1) other spheres. In 
view of the properties of the velocity tensors, the contributions exhibit different 
features in the regions near to and far from the assemblage of the spheres. The 
velocity of the fluid in the region, characterized by ｐｾＮ［＠ U / v < 1, assumes the form 
of the sum of the Stokes (linear in U) and the Oseen (quadratic with respect to 
U) terms. 

Wi thin the considered approximation (i.e. including the contributions up to 
Ｐ Ｈ ｾｾＺ Ｒ ＩＩＬ＠ the Stokes terms can be expressed by means of the four Stokes velocity 
tensors (egg , ｣ ｧｾ Ｓ Ｌ＠ ｣ ｩＺｾ Ｌ＠ ｣ ｪＺｾ ＩＬ＠ whereas the description of the O(Re) terms 

· · dd' · h t coo coo clm2 clm2 d clm2 B 1 reqmres, m a 1t10n, t e ensors lm
3

, 3m
3

, 00 , 2m
3 

an 4m
3

. e ow we 
continue the li st of the relevant tensors (comp. (3.7), (3.8), (3.12), (3.13), (3.14)): 

(i) the Stokes veloci ty tensors: 

(5.1) 

(5.2) 

(ii ) the O(Re) velocity tensors (for the case of U(O, 0, 1)): 

(5.3) 
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(5.4) clmz(P.) = V7Re (!!:__) (- l )(mz-ma-lmzl-l mal) / 2" 0 4ma k 60 f6= p L_.- m6+mz,ma 
ｶｯｲｲｾ＠ k ｾ＠

. ( - l) (m6-lm6l)/ 2 ( 3 1 4 ) K m6 + 0 ((!!:__) 3). 
m 6 m2 - m3 Pk 

The Stokes and the O(Re) contributions to the velocity fie ld are expressed in 
terms of the li sted velocity tensors, acting on the respective components of the 
induced forces. The components are t he results of the many-sphere hydrody-
namic, non-additive interactions. Up to the contributions of the order of O(a2) , 

t he non-additive interactions of three and four spheres enter the description of 
t he veloci ty of the flu id. In Table 1 we have written down the admissible (from 

Table 1. The velocity field (v(r ) - U, cf. (2.8)) near to N spheres (PkU j v < 1), 
including terms up to 0(!1;2) and O(cr2 ) , j = 1, ... ,N. 

Stokes contributions Oseen contributions 

L C}Yoo.ri 
j 

1\;0 - I: 2: c oo y;m3 .r. 
1m3 1 J 

j m3 

LLcoo ym3.f 
3m3 3 J 

j m3 

L CiYoo.ri Lciyoo·f} 
j j 

1\;1 LLcoo y m3.f 2m3 2 J 
I: I: c oo ym3 .r1 

2m3 2 J 

j m 3 j 1113 

L L Cb;;"2Y0° · fj ,1m2 
j m, 

2: 2: c1m,ym3 f 
2m3 2 . j ,lm, 

j m2 ,1n3 

2: 2: c tm,ym3 f 
4m3 4 · j,1m2 

j ffi2 , ffiJ 

2: I: c 1m, y m3 f 
1m3 1 • j ,l m 2 I: I: c oo y m3 . r 1m3 1 J 

j m2 ,m3 j m3 

1\;2 I: I: ctm,y m3 . f . 
3m3 3 J ,1m, LLcoo y m3 . f 3m3 3 J 

j ffi2 , ffiJ j m3 

2: 2: clm 2y m3 f 
t m 3 1 · j , lm2 

j ffi 2 ,ffiJ 

I: 2: c1m,y m3 f 
3m3 3 · j ,lm2 

j ffi2 , ffi 3 
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the point of view of t he proper ties of the velocity tensors and of the components 
fj, lm) sequences of the hydrodynamic interactions. 

We note the following quali tative proper t ies of the velocity profile, due to the 
inert ia of t he flui d: 

(i) the velocity exhibits the stronger , than under the Stokes condit ions, de-
pendence on the non-additi vity of t he interactions (at t he Stokes regime the 
non-additive interactions of t hree spheres enter); 

(ii) the components fj,OO genera te the cont ributions to the velocity fi eld star t-
ing from the terms of the order of Ｐ Ｈｾｾ［ Ｐ Ｉ＠ (at the Stokes regime, respect ively, from 
the terms of Ｐ Ｈ ｾｾ［ Ｑ ＩＩ［＠

(ii i) the components fj, lm genera te the analogous contribut ions, starting from 
the terms of the order of Ｐ Ｈ ｾｾ［ Ｑ Ｉ＠ (at the Stokes conditi ons, respectively, fr om the 
terms of 0( ｾｾ［ Ｒ ＩＩ［＠

(iv) there appear the contributions, expressed in terms of the functions Yt 1 

and Y3m, which describe the lack of the fore-aft symmetry. 

We note that for the parti cular case of one sphere, the tensor Cj and ｣ ｧｾ Ｓ Ｌ＠

acti ng on the component f1 = - 6nJ..LaU , give the classical Stokes velocity profi le. 
To our knowledge, the descrip t ion of the velocity fi eld past N spheres, involv-
ing the Oseen hydrodynamic interactions between more than two spheres, is at 
present not availab le in the literature. Summing up, in t he present paper it has 
been investigated to what extent the weak convective inertia of the fl uid increases 
the role of the hydrodynamic interactions and modifi es the symmetry proper t ies 
of the generated velocity fi eld. 

Appendix. Series expansion of the tensors ｣ Ｚ ｾ Ｚｾ＠ with respect to PkU jv 

The tensors C12m2 (P k) describe the effect of the component fk.L2m2 of the 
force, induced on t he surface of t he k-th sphere, on the velocity fi eld of the fl uid. 
T he tensors ｣ ＺｾＺｾ＠ (Pi.:) concern the respective radial proper ties. To examine these 
properties, we star t wit h the integration over \k\ in the expression (2.10). To this 
end we use the propert ies of the Bessel functions J1+1; 2 , expressed by the formula 
(7) on the page 45, and by the formula (7) on the page 99 of [9], and we apply 
the expansion of 1 - kk in terms of Y2m [5] : 

(A .1) 

where 

Ko = ｾ＠ (-ex ex - ey ey + 2ezCz) , 

K±l = CxCz + CzCx =f 'ieyez =f i ezey, 

K±2 = exex - eyey =f i exey =f i eyex . 
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As a result, we obtain the foll owing expression: 

(A.2) 

where 

(A.3) 

F4 is the hypergeometri c series, 

(; = u;u, ｾ＠ = cos ( (; ,k) ' 
To perform t he k integration, we apply a rotation of the coordinate system by 
the linear transformation , k = A ·y , letting the new axis 3 coincide with U. Then, 
taking into account the properties of the functions 1Lm: 

(A.4) YLq(k) = L R (l,q,n)Yt(y) , 
lni:Sl 

and using the formula (6.577) from [10], we obtain: 

(A.5) ｣ ｾ ｾ［ｾｾ＠ = ± L f3m(12,13) I df2y{ .. } i ll2+2m- l31]z(Pka0K u(Pko:0 
m=O ( > O 

+ f f3m(12, l3) I d.Qy{ .. ｽｩ Ｑ Ｑ ＲＫ Ｒ ｭ Ｍ ｌ Ｓ Ｑ ｊＮ ｾＨ ｐ ｫ｡ｩｾ ｉＩ ｋｵＨｐｫｯＺ ｬ ｾ ｬＩ Ｌ＠
m = O (:SO 

where ( +) refers to the cases 12 + 13 = 2n, and (-) - to the cases l2 + l3 = 2n + 1, 
fz and J(t? denote the modifi ed Bessel functions, z = max(12+1/ 2+2m, 13+ 1/ 2), 
Q = min(12 + 1/ 2 + 2m, 13 + 1/ 2), and the expression in the parentheses reads: 

(A.6) { ... } = L ｒＨｬＲＬｭＲＬｭＴＩ ｒ Ｈ ｉ Ｓ ＬＭ ｭＳＬＭｭＵＩ ｛ ｾ ｉ＠
m4 ,ms 

-ifs L Km6 R (2, m5, m7) · y;n7 (y)l 11:n4 ＨｙＩ ｙｌ ｾｭｳ＠ (y) . 
mo ,1n7 
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Carrying out t he integrations over the meridional angle, we arrive at: 

m 

1 

ﾷ ｉ ､ｾ＠ ｛ ｾｏｭＴ Ｌ ｭｳ＠ - If{ L ｏｭＷ Ｋ ｭ Ｔ Ｌ ｭ Ｕ ｋ ｭ Ｖ ｒ ＨＲ Ｌｭ Ｖ Ｌ ｭ ＷＩ ､ ｾ Ｗ ｐ ［ｮ Ｗ ＨＰ ｝＠
0 ffi 6,ffi 7 

· Pt:4 
ＨＰ ｐｬ ｾ ｭ ｳ＠ ＨＰ ｦｺ Ｈ ｐｫ｡ＮＰｋ ｾＨ ｐｫ ｡ＮＰ Ｌ＠

where the coeffi cients dj read: 

dl = (-1)(m-lml)/2 (2l + 1)(l - m)! 

47r(l +m)' 

P1m(0 are the associated Legendre functions [cf. [6], formulae (2.5.17) and 
(2.5.18)]. 

Taking into account the propert ies of Pt(O, we can accomplish the integra-
t ion with the help of the formula 1.11.3.2 from [11]: 

1 

(A .8) ｉ ､ｾ＠ e I z(Pka.OKQ(Pka.O 
0 

1r [ Ｈ ｐｫ｡Ｎ Ｏ ＲＩ ｩ Ｍ ｾ＠

- 2sin fj7f (A+ z- fj + 1)F(z + 1)F(- fj + 1) 

[
A+ z- fj + 1 z- fj + 1 z- fj + 2 

. 3F4 2 ' 2 ' 2 ' 

A+ z-Q + 3 2] z + 1' - Q + 1' z - Q + 1' 2 ; ( pk a.) 

Ｈ ｐ ｫ｡Ｎ Ｏ Ｒ Ｉ ｩＫｾ＠

(A+ z + fj + l )F (z + 1)T(fj + 1) 

[
A+ z + fj + 1 z + fj + 1 z + fj + 2 

. 3F4 2 ' 2 ' 2 ' 

_ _ _ _ A + z + Q + 3 2]] 
z + 1, e + 1, z + e + 1, 

2 
; ( Pk a.) , 

where the parameter A depends on the P1m(0 involved, and the following cond i-
t ion should be fulfi ll ed : 

A+z+fj> - 1. 
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The last integration leads to the representation of the velocity field tensors in 
terms of the linear combinations of the 3F4 functions. That representation is valid 
for the arbit rary values of Re. We are going to examine t he particular regime of 
the hydrodynamic interactions, which is described by the velocity tensors, having 
arguments Pko: < 1. 

References 

], r. PlENI<OWSKA, Arch. Mech. , 48, 231, 1996. 

2. T. KUMAGAI, JSME Int. J., Ser. B, 38, 563, 1995. 

3. P. MAZUR and W. VAN SAARLOOS, Physica A, 115, 21, 1982. 

4. I' . MAZUR and A.J. WEISENBORN, Physica A, 123, 209, 1984. 

5. T. YOSHIZAK I and H . YAMAKAWA , J . C hem. Phys., 73, 578, 1980. 

6. A.R. EDMONDS, Angular momentum in quantum mechanics, Princeton U niversiLy Press, 
1974. 

7. I. PJENI<OWSI<A , Arch. Mech., 45, 665, 1993. 

8. R. BERI<ER, Encyclopedia of Physics, vol. VII I /2, S. FLUGGE, Spr inger , 1963. 

9. A. ERDEI,YI , Higher transcendental functions, vol. II , New Yor k 1953. 

10. l. S. GRADSTEIN a nd I. M . RYZHII< , Tables of integrals, se1·ies and products [in Russian], 
Moskva 1962. 

11 . A.P. PRUDNII<OV, Yu .A. BRYCKOV and O.I. MARICEV , In tegrals and series, special func-
twns [in Russian], Nauka, 1983. 

12. L. DURLOFSKY , J .F . BRADY and G. B OSSIS, J . F luid Mech., 180, 21, 1987. 

13. R .J . PHILLIPS, J. Fluid Mech., 31 5 , 345, 1996. 

14. I. PROUDMAN and J .R.A. PEARSON, J. Fluid Mech., 2 , 237, 1957. 

POLI SH ACADEMY 01' SCIENCES 

INSTITUTE OF FU OAMENTAL T ECH OLOGICAL RESEARCH 

c-mail: ipienk@ippLgov.pl 

Received March 5, 1997. 


