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Numerical simulation of an inviscid transonic flow
through a channel with a leap

P. LISEWSKI (WARSZAWA)

A TWO-DIMENSIONAL inviscid transonic channel flow of a perfect gas is considered.
The gas of relatively high pressure, flows into a channel through a converging nozzle.
The channel geometry is characterised by a discontinuity of cross-section at the noz-
zle outlet. A fast, explicit differential algorithm based on a two-step Lax—Wendroff
scheme is used to solve the set of Euler equations. Results of calculations are com-
pared with the visualised flow and with the measured pressure distributions. The
computed steady-state flow field agrees well with measurements.

Notations

speed of sound,
total energy per unit mass,

flux vectors,

a
e
G
H  channel height,
J  Jacobian determinant,
k  specific heats ratio,
L channel length,
po  stagnation pressure at the nozzle inlet,
Pout  pressure in a large volume at the outlet of the channel,
R+ right running Riemann invariant,
R—  left running Riemann invariant,
t time,
uw  velocity component in = direction,
v velocity component in y direction,
Ty  stagnation temperature at the nozzle inlet,
U flow variable vector,
z,y coordinates in physical plane,
Al distance between two nodes in physical plane,
At time step,
An  distance between two nodes in 7 direction,
A¢  distance between two nodes in £ direction,
&1 coordinates in computational plane,
p  density,
¢ ratio of the nozzle exit height to channel height.
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1. Introduction

TRANSONIC FLOWS through channels with abrupt changes of cross-section can
be found in practice in reducing valves or industrial installations. The structure
of the flow field depends on the geometry of the channel and on the difference of
pressures in the areas situated at the channel inlet and outlet. If the cross-section
of the channel changes sharply and the pressure difference is high enough, shock
waves may occur in the flow. Determining such flows field seems to be important
from practical point of view.

Contemporary techniques of solving transonic flow problems can be grouped
generally in two categories. The first contains methods that use central differ-
ence approximation applied to spatial derivatives. One can find here both ex-
plicit and implicit algorithms of different order of accuracy in time and space.
Lax - Wendroff and Beam-Warming approaches are the most popular in this
group. The second family of numerical methods for transonic aerodynamics con-
tains the so-called “upwind” schemes. Their nature is closer to physics as they
distinguish directions of the propagation of information in the flow. Different
approaches of Godunov-type methods can be found in this category.

In the present work, a central difference method based on two-step Lax—Wend-
roff scheme has been chosen to solve two-dimensional inviscid transonic flow.
This method is believed to be simpler to implement as compared with upwind
schemes. It requires less arithmetic operations per time step than the explicit
upwind algorithms. Hence, it is less time-consuming.

2. Problem description

A two-dimensional, inviscid flow of continuous medium is assumed. The gas
flows through a two-dimensional (plane) channel shown schematically in Fig. 1.
The first part of the channel consists of a converging nozzle and the second part
is a duct of constant cross-section. Air flows into the channel from a large volume
characterised by constant stagnation pressure (pg) and temperature (75). At the
channel outlet air flows into the surroundings where constant pressure (pouy) is
assumed. The flow starts after breaking a diaphragm placed at the nozzle inlet.
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F1c. 1. Shape of the channel.
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Air is treated as a perfect gas. A limiting case of steady-state solution is of
interest.

3. Mathematical formulation

The inviscid unsteady two-dimensional flow without body forces and heat
transfer is described in differential conservative form by Euler equations, i.e.
the continuity, momentum and energy equations. This set of equations can be
written in a vector form:

ou 9JF 0G
(3.1) gt dx Oy
The vectors are:
[ ou QU
2
u Vs o ) uv
ov ouv ov° +p
oe u(ge + p) v(oe +p)
The total energy per unit mass is expressed by
. P } 2 2
8_——(k—1)g+2(u +v).

By knowing the initial and boundary conditions, Eq. (3.1) can be integrated
to provide the inviscid solution at a later time. Since the steady flow can be
considered as a special case of unsteady flow, the steady-state solution can also
be obtained from unsteady Euler equations as an asymptotic case.

For flows in complex geometries it is advantageous to transform the set of
Eqs. (3.1) to the generalised, curvilinear coordinate system. General relations be-
tween the coordinates in the computational plane of reference and in the physical
plane of reference are:

(3.3) € =¢&(z,y), n=n(z,y).

After the transformation has been applied, Eq. (3.1) preserves its strong conser-
vation form:
oU  OF 9G

3.4 E=l + — =0,
34 at 9t an
where “new” flow variable vector and “new” flux vectors are:

xR+ §,G G- nF + nyG .

| = U =
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The Jacobian of the transformation is given by

1

(3.6) J =&ty — Eglle = =,
TeYn — TnYe

The metrics are:
BT &L=ypd  G=-zpd, =y, my =zl

4. Numerical method

As the aim of this work is to investigate transonic channel flow, it is necessary
to use a method that captures well the shock waves occurring in the flow. As
mentioned in the introduction, a modified two-step differential scheme based on
Lax ~ Wendroff - Richtmyer formulation [1, 3] is used to solve the set of equations
(3.1) in the computational plane of reference. The formulation applied in the
current work is described below.

During the first step, the values at the intermediate time level are calculated:

T=n+1/2 1 j—n —t —
(4.1) U == (Ui+1,j T+ UZ;’ " U?4-1/2,j+1/2 % ﬁ?+l/2,j~1/2)

i+1/25 = 7
-y —n 1 At = rall
T3 Af (Fi+l,j = Fi,j) T3 An (Gi+1/2,j+1/2 - Gi+1/2,j—1/2)'

New values of the flow variable vector U are obtained from the final step:

—n At (—n+1/2 =n+1/2 ) At (—n+1/2 Gl )

sl
(4.2) Ui,j :Ui,j—A_é Fi+l,j _Fivl/ﬁ,j *Aﬁn ij+1/2 = ij-1/2

The flux vector F based on middle nodes is calculated as follows (the flux vector
G is calculated similarly):

—n —n =1 Eaal
=T F (Ui+l,j + UH 1,7+1 + Uivj+1 + Ui’j)

Fz+l/2,j+1/2 - 4
(43) F{H—l/? _ F(ﬁfH»l/‘l‘)
+1/2,5 i+1/2,5 /"
The described algorithm differs from the Ritchmyer’s version [1, 3]. Its main
advantage is that averaging of flow variables, necessary to calculate the flux
vectors at points located between nodes (see (4.1)), takes place only on the basic
time level. Values obtained from the intermediate step (4.1) having no physical
meaning, serve only for further calculations.
The described integration method is of second-order accuracy in space and
time. As it is an explicit method, the maximal time step is limited by the stability
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criteria (CFL number). In the present work the size of time step is obtained from

the condition
At < min (Al/\/i- (\/u2 +02 + a)) ;

The method chosen, applied to transonic flow problems, requires artificial
damping in order to minimise oscillations produced around the captured shocks.
The effect of artificial viscosity has been introduced by adding the third, smooth-
ing step in which the solution obtained from the Lax - Wendroff final step (4.2)
is corrected proportionally to the second spatial derivative, separately for £ and
1 directions.

5. The physical plane of reference

Because of the symmetry of the steady-state flow, the physical plane of ref-
erence can consist only of one half of a real channel. The shape of this area
is shown in Fig. 2. Tt contains two subregions: the first one, corresponding to a
converging nozzle and the second, corresponding to the part of the channel of
constant cross-section. These two subregions are connected at the nozzle outlet.
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Fic. 2. Physical plane of reference.

6. Numerical implementation of boundary conditions

At the inlet boundary, a quasi-one-dimensional boundary condition is ap-
plied. Stagnation pressure py and temperature Ty are imposed. These values are
assumed to be constant over the channel width at the inlet. The energy equation
and the Riemann invariant R— (calculated from the interior of the flow field)
are used to find static parameters at the nozzle inlet. The value of R— is found
with the method of characteristics, assuming linear interpolation of flow variables
between nodes.

At the outlet boundary similar treatment is made. Subsonic and supersonic
cases are considered separately. At the subsonic outlet, the only variable to be
imposed is static pressure.

In the supersonic outflow, no information from outside is coming upstream. In
this case both Riemann invariants along suitable characteristics, combined with
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the value of entropy along the streamline, are used to calculate flow variables at
the channel outlet.

Rigid walls are modelled by superimposing the layer of fictitious nodes placed
behind the walls.

At the near axis boundary the symmetry condition is applied.

At the nozzle exit, the exchange of information between two computational
subdomains is assured.

7. Sample calculation of the flow field

The calculated steady-state flow field in the wide part of the channel is shown
in Fig. 3. The gas flows from the left to the right. The figure presents pressure
contours obtained for ¢ = 0.3 L/H = 5.33 (L = 160 mm) and poy /po = 0.132.

x/H
F1G. 3. Calculated steady-state solution (pressure contours).

Figure 4 shows the interferogram obtained from flow visualisation for identical
conditions. Results of SzuUMOWSKI and MEIER work [4] have been used.
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F1G. 4. Interferogram showing transonic channel flow.

As seen in Fig. 3 and Fig. 4, oblique shocks appearing in the flow are captured
in the calculation accurately. The calculated structure of the flow agrees well
with that observed in the real flow. The effect of a “double” wave seen in the
interferogram, where the first shock is reflected from the wall, is a result of shock
boundary layer interaction. Hence, it cannot be obtained from the inviscid model.
The first shock seen in the interferogram, is relatively strong and produces a small



NUMERICAL SIMULATION OF AN INVISCID TRANSONIC FLOW 813

separation “bubble”. The shock is reflected from the boundary of the separation
area rather than from the wall.

a) b)

03 4+ = T 03
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x/H
I'1G. 5. a. Calculated pressure along the wall (solid line) and the axis (dashed line).
b. Pressure along the channel wall: calculated (solid line) and measured (dashed line).
c. Pressure along the channel axis: calculated (solid line) and measured (dashed line).

Figures 5a, b, ¢ show pressure distributions (non-dimensionalized with the
inlet stagnation pressure) along the wall and the channel axis. Calculated values
(Fig.5a) are compared with the measured ones for the wall (Fig.5b) and the
axis (Fig. 5 c). Experimental data for the chosen case is provided by SZuMOWSKI
and MEIER [4].

http://rcin.org.pl



814 P. LISEWSKI

The calculated pressure distributions confirm the tendency of the shocks to
become weaker along the channel. The decrease of shock amplitude is related
to the increase of the entropy along the channel length. The largest differences
between the calculated and measured pressures are seen for the wall distribution
in the region where the supersonic stream hits the wall for the first time.

8. Conclusions

The presented numerical results are in good agreement with experiment. The
calculated steady-state flow field properly reflects the presence and positions of
oblique shocks occurring in the flow as well as their amplitudes. It is noticed that
satisfactory results are obtained with relatively simple modelling of boundary
conditions. It can be concluded that the selected numerical method based on
two-step Lax — Wendroff algorithm can be effectively used for predicting transonic
inviscid channel flows.
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