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Dynamic response of a fluid-saturated 
elastic porous solid 

S. BREUER (ESSEN) 

IN T HIS PAPER, the field equations governing the dynamic response of a fluid-satu-
rated elastic porous media are analyzed and built up for the study of the consolida-
tion problem and the one-dimensional wave propagation. The two constituents are 
assumed to be incompressible. A one-dimensional numerical solution is derived by 
means of the standard Galerkin procedure and t he finite element method. As a result 
of the incompressibility, there is only one independent di latational wave propagating 
in the solid and the fluid phase. This work can provide further understanding of the 
wave propagation in porous materials, not only in view of the propagation speed , 
but also with respect to the development of the amplitudes. 

1. Introduction 

A FLUID-SATURATED POROUS MEDIUM is a portion of space occupied partly by a 
solid phase (solid skeleton) and partly by a void space fill ed with fluid , e.g. water. 
The mechanical behaviour of such a medium is governed mainly by the interac-
tion of the solid skeleton with the fluid . This interaction occurs in quasi-static 
problems, like foundations, but is particularly strong in dynamic problems, for 
example earthquakes. In contrast to wave propagation in one-component bodies, 
t he wave propagation in a porous medium has special characteristics. As usual, 
we have two different kinds of waves, the compression (longitudinal) wave and 
the shear (transversal) wave. But in a porous medium with compressible con-
stituents, the compression wave has two different velocities, a fast Pl wave and 
a slow P2 wave. In this contribution, however, the constituents are assumed to 
be incompressible and as a result of this assumption, the Pl velocity is infinit e. 

The two-phase behaviour of a fluid-saturated porous medium can only be 
predicted quantitatively by elaborate numerical computation, which fortunately 
is possible today due to the development of powerful computers. 

Many computat ions done in the field of dynamics of porous media have made 
use of BlOT's theory [1], because Biot's theory leads to quite good results for 
linear elastic problems. But as this theory has not been developed from the basic 
equations of mechanics, its further development causes many problems. 

In this investigation, the calculation of the dynamic response of a fl uid-satu-
rated elastic porous solid is based upon the macroscopic porous media theory 
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(TPM - Theory of Porous Media), which is defined as the mixture theory re-
stricted by the volume fraction concept. Readers interested in details of this 
theory are referred to the papers of de BOER [8], BLUHM [2], BLUHM and DE 

BOER [3], EHLERS [10] and BOWEN [4, 5] . In order to simplify the problem, ther-
mal effects and exchanges of mass between the constituents are excluded, and 
single constituents are treated as incompressible. 

In Sec. 2 the governing equations of the above mentioned theory are discussed 
and the field equations and constitutive relations are taken into account. In the 
third section these equations are built up for the numerical computation. The 
finite element method is used for the discretisation of the basic equations and 
the time integration is done by the Newmark method. In Sec. 4 the dynamic 
consolidation problem of a one-dimensional elastic porous body and the wave 
propagation in this medium is investigated. Solutions obtained by the finite ele-
ment method are compared with the existing analytical solutions based on the 
same theory. This paper ends with some concluding remarks in Sec. 5. 

2. Governing equations 

2.1. Kinematics and the concept of volwne fraction 

Considering the kinematics of the fluid-saturated porous medium, which is 
an immiscible mixture of the constituents tp0 with particles X 0 (a = S : solid 
phase, a = F : fluid phase), it is assumed that at any timet each spatial point is 
simultaneously occupied by the particles X 5 and X F. These particles X 0 proceed 
from different reference positions X 0 at time t = to. Thus, each constituent is 
assigned its own independent motion function X0 , from which the velocity ｸｾＬ＠
the acceleration ｸｾ＠ and the deformation gradient F 0 can be calculated: 

F0 = Grad0 Xa, 

where Grad0 means the derivative with respect to X 0 . The volume fractions 

are defined as the local ratios of the constituent volumes v0 with respect to the 
bulk volume v of the control space Bs, which is shaped by the solid skeleton 

With the aid of the volume fractions 

V = I dv = t V
0 

= I t dv
0 

= I t n° dv, 
Bs o=l Bs o=l Bs o=l 
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we get the volume fr act ion condition 

(2.1) 

The volume fraction condit ion (2.1) plays an important role as a constraint in 
the constitutive theory of porous media, see DE BoER [8] or BLUHM and DE 
BOER [3]. 

Each of the constituents cp0 has a real density Q0 R , which is defined as the 
mass of cp0 per unit of v0

. With the aid of the volume fraction concept, these 
properties can be "smeared" over the control space and we obtain the partial 
density 

2.2. Field equations 

Excluding mass exchanges and thermal effects, the mechanical behavior of a 
fluid-saturated porous solid is described in BLUHM [2] and EHLERS [10] by the 
balance equation of mass for each single constituent 

(2.2) ( 0)1 0 d. I 0 Q 0 + Q 1V X 0 = , 

the balance equation of momentum 

(2.3) 

and the volume fraction condit ion that changes for a binary mixture into the 
saturation condition 

(2.4) 

In these equations T0 is the partial Cauchy stress tensor, b the external acceler-
ation, and s0 the interaction force of the constituents. In addition, "div" is the 
divergence operator and the symbol ( ... Ｉ ｾ＠ denotes the material time derivative 
with respect to the trajectory of cp0

. 

As the sum of the interaction forces must vanish, we obtain for a binary 
mixture 

The balance equation of moment of momentum leads, excluding any moment of 
momentum supply, to a symmetric stress tensor 
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2.3. Constitutive relations 

Since the number of unknown fields (Ta, xa, sa) is larger than the number of 
field equations, we have to introduce constitutive relations for Ta, sa and the 
density eaR. As both constituents are incompressible, we have 

eaR = constant. 

With this assumption, the volume fractions can be calculated from the balance 
equations of mass (2.2) and with the aid of the deformation gradient, one obtains 

where nao describes the initial porosity of r.pa. 
The constitutive relations for the solid and fluid stress tensor Ta and for the 

interaction force sa (a = S, F) consist of two terms, where the former, as a result 
of the saturation condition, is proportional to the pore pressure p, while the latter 
represents the extra quantities, index ( ... )E, determined by the deformation: 

Ta = - napi+T£, 

sF = pgradnF Ｋ ｳ ｾＮ＠

The partial effective stress tensor of the fluid can be neglected: 

ｔ ｾ＠ ｾ ｯ Ｌ＠

and the partial effective stress tensor of the solid can be expressed by the law of 
SIMO and PISTER [12]: 

ｔ ｾ＠ = -
1
- (1-/Bs + [>- 5 ln(detFs)- J..L5 ] 1) , 

detFs 

where >.5 and J..Ls are the Lame constants of the solid material and Bs = Fs FI 
is the left Cauchy - Green tensor. 

The interaction between the fluid and solid constituents, caused by the mo-
tions, can be described by the extra supply term of momentum 

with w F = ( x'p - x$) being the seepage velocity, IF R the real specific weight of 
the fluid and kF the Darcy permeabilit y parameter. 
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3. Numerical solution concept 

3.1. Solution strategy 

An effective way to solve the system of equations and to match the problem to 
the boundary and initial conditions consists in combining the balance equations 
of momentum (2.3) of both constituents 

(3.1) div (Ts + TF) + (rl + t/)b - ｲＯ ｸｾ＠

- {}F [(wp + x$)$ + grad (wp + x$) wp) = 0 

as well as the balance equation of momentum of the fluid , 

The remaining equations and unknowns can be substituted by a combination of 
the balance equations of mass (2.2) together with the saturation condition (2.4). 
Considering the incompressibility of both constituents, we get: 

(3.3) 

In these equations the fluid velocity x'p is replaced by x'p = wp + x$, for a 
better fit to the boundary conditions. For example, at an undrained boundary it 
causes less problems to prescribe wp = 0, i.e., x$ = x'p. 

3.2. Weak formulation 

For numerical computations, a standard Galerkin procedure was chosen. 
Therefore, each of the basic equations (3.1), (3.2), (3.3) has to be multiplied 
by a weighting function. For Eq. (3.1), a virtual solid displacement li s is chosen . 
The volume integral of a divergence can be transformed, see DE BoER [7], into 
a surface integral 

I { Ｈｔｾ Ｍ pI)· grad lis + es ｸｾ＠ ·lis 
B 

+ {}F [(wp + x$)$ + grad (wp + x$)wp) ·lis} dv 

=I t·fis da + l(es +eF)b·fisdv, 
A B 

where t is the stress vector on the surface of the mixture, including the stress on 
the solid and the stress on the fluid . 
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For Eq. (3.2), a virtual seepage velocity wp was taken into account and the 
volume integral was transformed into a surface integral 

I{( · - ) "fFR nF - FR [ 1 1 
-pdtv wp + kf wp ·wp + (! (wp + xs)s 

B . 

+ grad(wp ＫｸｾＩｷｰ｝ ﾷ ｷｰｽ､ｶ＠ =-I pwp·nda +I (!FRb ·wpdv. 

A B 

Equation (3.3) represents the saturation condition together with the mass bal-
ance equations, and it has been multiplied by a virtual pressure p 

I div ( nF wp + ｸｾＩ＠ pdv = 0. 

B 

3.3. Solution algorithm 

From the weak formulation, one gets 3 scalar equations with the unknown 
functions (us , wp,p). For the discretisation of the problem, the unknown func-
tions (us, wp,p), as well as their time derivatives and the corresponding weight-
ing functions (iis, wp,p) are approximated by linear shape functions. Since the 
values of the weight functions are not specified, the coefficient multiplied by the 
value of the weight function must vanish. Now, the 3 scalar equations of the 
weak formulation are split into n equations, where n is the number of unknowns 
at each node, multiplied by the number of nodes per element. Thus, the dis-
cretisation of the problem leads to a system of n equations with the unknowns 
(us, u5, ｵｾＬ＠ wp , w'p,p). The matrix of the coefficients multiplied by the value of 
the discrete unknowns are denoted by M, D , K. M means the mass matrix and 
is connected with the second time derivative of the unknowns. D represents the 
damping matrix and is coupled with the first time derivative of the unknowns, 
and at last K denotes the stiffness matrix and is connected with the unknowns. 
The index M, F or K in Eq. (3.4) means, that these coefficients come from the 
balance equation of mixture (M), the balance equation of fluid (F) or from the 
saturation condition (K). The second index represents the kind of unknowns, 
1 stands for the motion of solid, 2 for the motion of fluid and 3 for the pressure. 
F determines the load vector of the mixture (M) and of the fluid (F) . Equation 
(3.4) shows the problem after the discretisation in the form of a matrix equation. 
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The Newmark method was chosen for the time integration and with the help of 
the result of the last time step, the problem can be converted into a n x n matrix 
with an update of the load vector. 

4. Examples 

4.1. Consolidation problem 

Taking the linear theory into account, DE BOER et al. [9] presented an ana-
lyti cal solution for an infinit e halfspace using the Laplace transformation. Thus 
there is an excellent example for the comparison of the analytical and the nu-
merical solution. In order to model the half-space via the finit e element method, 
a column of 10 m depth and 2m2 surface was taken into account. The solution 
was calculated for a very short time, so that no signal of the rigid boundary in 
10 m depth could influence the solution. The upper boundary of the column is 
perfectly drained and loaded in the first case by a sine load ( q): 

q1(t) = 3sin(wt) [ kmN2] , w = 75 s-1
, 

and in another case by a step load ( q): 

q2(t) = 3 [ kmN2] . 

The other boundaries are undrained and rigid, see Fig. 1. The material par-
ameters are taken from [9] as: 

J.Ls = 5583 kNj m2, 

{}SR = 2000 kg/ m3, 

ng5 = 0.67, 

>.8 = 8375 kN/ m2, 

{}FR = 1000 kgjm3 , 

kf = 0.01 mfs. 

As expected, the displacement-time behaviour starts with a large time-gradi-
ent, which decreases with passing time. We can compare this behaviour with a 
strong damped vibration-system, which has in fact the same structure after the 
dicretisation. 

Figure 2 shows the surface displacement under both the loads. It shows a 
good agreement between the analytical and the numerical solution. In the case 
of the sine load, there is no visible difference between both the solutions. 

In the example mentioned above, the external acceleration was neglected. 
Thus the calculation has started when the settlement under its own weight is 
finished. An interesting point is to show the settlement under its own weight, 
without an external load. This result is to be seen in Fig. 3. 
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FIG. 2. Comparison between an analytical and a numerical solution. 

We can see that at the begining, the weight of the whole column: 

j (e8 + eF) b dv = 167 kN [e1], 

V 

is causing the pore pressure. With the passage of time, the effective stress in the 
solid increases to - 67kN/m2 , and the pore pressure it decreases to 100kN/m2

, 
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FIG. 3. Pore pressure and effective stress under its own weight. 

which is the exact pore pressure of a water column of 10 m depth, 

10 I QFRbdx = 100kN/ m2
. 

0 

799 

• 

The part of the weight entering the solid is exactly the weight of the solid minus 
the uplift : I n 5 (QSR- QFR)bdv = 67kN. 

V 

In the case of a linear theory we can neglect the external acceleration; only 
in the case, when we are intrested in the absolute value of the pore pressure, 
displacement or stress, we have to add the initial values. 
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4.2. One-dimensional wave propagation 

The second example is the one-dimensional wave propagation in the same 
structure as shown in the fir st example, where only the Darcy parameter has 
changed: kf = 10 mj s. 

4.2.1. Step load. In the first case the column was once again loaded with the 
Heaviside function, but with a different amplitude: q3(t ) = 100 kN (see Fig. 1). 

According to BlOT'S theory [1], with two compressible constituents there are 
two longitudinal waves in a porous medium. One wave is transmitted through 
the fluid (P1-wave) and the other is t ransmitted through the elasti c structure of 
the solid skeleton (P2-wave), see [11]. These two waves are coupled through the 
coupling effect produced by motions of the solid and fluid . In this article both 
constituents are incompressible, thus the speed of the wave transmitted through 
the fluid (P1-wave) is infinite. 

This is illustrated by Fig. 4, where the pore pressure versus time is shown. 
The pore pressure at the bottom of the column changes directly from the static 
value of 100 kN j m2 up to the static value plus the external load per m2 . This 
is according to the statement of TERZAGHI [13], where he found out that the 
whole external load is firstly carried by the water body and then, while water 
is flowing out, the solid skeleton is going to take the external load. In Fig. 4 
there are some oscillations in the pressure, which result from the big jump in 
the pressure. Furthermore, the diagram shows when the disturbance is refl ected 
from the bottom or the top of the column. If we observe Fig. 4 in detail , we can 
see that the pressure at the bottom is 100 kN/m2 (stati c value) + 100 kN/ m2 

(external load) = 200 kN / m2 . In 2 m depth (this point in the Fig. 4 is called top), 
the value is 20kNj m2 (static value) + 100kN/ m2 (external load)= 120kN/ m2

. 
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We see, that the information about the external load is transmitted with an 
infinite velocity through the incompressible fluid . The pore pressure at the top 
soon decreases to t he static value of 20 kN j m 2 as the soli d skeleton takes up 
the external load. But it takes time t ill the disturbance travelling in the solid 
skeleton reaches the bottom of the column. This happens at t = 0.1 s, when the 
pore pressure decreases to the static value (100kNj m2). 

,....._ 
E 
'-' 
..... 
c 
QJ 

E 
QJ 

u 
.2 
0. 
U1 

"0 
I 

"0 

0 
fJ) 

0.00 

-0.02 

-0.04 

-0.06 

-0.08 

- 0.10 
0.0 0.1 0.2 

time (s) 

0.3 0.4 

ＲＮＭＭＭｾＭＭＭＬＭＭＭＭｾＭＭｾＭＭｾＭＭＭＭｲＭＭＭｾＭＭｾ＠

ｾ＠
0 
0 
QJ 

> 
QJ 

0> 
0 

0 

2- -1 
QJ 
fJ) 

- bottom 

ＭＲＫＭＭＭｾＭＭＭＬＭＭＭＭｾＭＭｾＭＭｾＭＭＭＭﾷﾷ ｾ ﾷﾷ｟ｴｾ ｯｾｰ ｾＭＭｾ＠
0 .0 0.1 0.2 0.3 0.4 

ti me (s) 

FIG. 5. Solid displacement and seepage velocity versus time. 

In comparison with Fig. 5, where the solid displacement and the seepage vel-
ocity are shown, it can be observed that at time 0.1 s the P2-wave (transmitted 
by the elastic structure) hits the rigid bottom of the column and is reflected. 
This is coupled with a change in the pore pressure and the seepage velocity. At 
the time-instant 0.2 s, the P2-wave reaches the unfixed top of the column and the 
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sign of the disturbance changes, see [6, 14]. At the time-instant 0.3 s the P2-wave 
hits the rigid bottom again, and at time 0.4 s one period of this procedue is 
closed. 

4.2.2. Impulse load. Another good example to show the coupling between solid 
displacement and pore pressure is to load the column with an impulse load: 

{ 
100 sin(314.16/s t) kN 

!4(t) = 0 
for 0 < t < 0.01 s, 

for t > 0.01 s. 

The dynamic response at time 0.02 s of the column, as described above, is shown 
in the Fig. 6, where the solid strain and the pore pressure are exhibited ｶｾｲｳｵｳ＠
the length of the column. The top is at x = 10 m and the bottom at x = 0 n. 
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FIG. 6. Solid strain and pore pressure versus time. 
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The line in the pore pressure diagram from 100 to 0 [kN/ m2] is the static 
solution for the pore pressure under its own weight. We can see a disturbance 
travelling with the speed of the P2 wave in the pore pressure as well as in the 
solid strain. 

5. Concluding remarks 

The dynamic response of an incompressible fluid-saturated porous media is 
studied. The calculation via the finit e element method is based upon the incom-
pressible porous media model of DE BOER [8] and BLUHM [2] . The first appli-
cation of this theory in this paper is the numerical solution of the consolidation 
problem. This numerical solution in comparison with the existing analytical so-
lution shows a good agreement. In the second application the propagation of 
longitudinal waves is studied. According to Biot's theory (Biot treated com-
pressible constituents), there are two longitudinal waves: a Pl wave transmitted 
by the pore fluid and a P2 wave transmitted by the elastic structure. This paper 
shows that the speed of the Pl wave, transmitted in the incompressible pore 
fluid , is infinite and only the P2 wave, transmitted by the elastic structure, can 
be observed in porous media with incompressible constituents. 
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