Arch. Mech., 49, 1, pp. 77-101, Warszawa 1997

An idea of thin-plate thermal mirror
I. Mirror created by a heat pulse

Z. PLOCHOCKI (WARSZAWA)
and A. MIODUCHOWSKI (EDMONTON)

AN IDEA AND THE THEORY of thermal mirrors created on the surfaces of a simply supported thin
plane circular plate of an isotropic thermoelastic solid material by a uniform heat pulse, which is
applied to one of the plate surfaces, is presented. Such a thermal mirror is — within the approxi-
mations applied for obtaining the solutions of the heat conduction and thermoelasticity equations
— an ideal (aberration-free) optical mirror. The optical properties of the thermal mirror and their
time evolution are derived and discussed in two asymptotical time regimes: the short-time and
the long-time ones. Observability conditions for optical characteristics of the thermal mirror are
estimated. Theoretical possibilities of an application of the thermal mirror to experimental deter-
mination of the temperature conductivity of a material are discussed. The theory presented can be
also used for estimations of distortions of optical properties of pulse high power optical systems,
originated by absorption of light by optical mirrors in such systems.

1. Introduction

IN THE PREVIOUS PAPER by the Authors [5] the idea of thermal mirror was pre-
sented following an example of the thermal mirror created by a focused heat
pulse on the surface of an isotropic thermoelastic solid material half-space. In
the present paper an opposite (in some sense) case is examined, namely — the
thermal mirror created on the surfaces of a simply supported thin plane circular
plate of a material of the same kind by a heat pulse, which is applied to one of the
plate surfaces and is homogeneous across the surface. The aim is to calculate the
fundamental optical properties of the mirror (i.e. — its aberration characteristic,
optical power, and focal length), and their time evolution.

All the fundamental assumptions adopted here are the same as in the previous
paper [5]; these are: thermal stresses theory approximation (rigid heat conduc-
tor approximation), quasi-static treatment of all the mechanical phenomena, and
linearization of: the thermoelasticity and the heat conduction equations, and suit-
able boundary conditions (which are formulated at the undeformed surfaces of
the plate); the plate is also assumed to be adiabatically insulated on its sur-
faces. Criteria of applicability of the thermal stresses theory approximation and
the quasi-static displacement field one will be discussed in a separate paper by
the Authors; here we note only that the former approximation depends on ne-
glecting the influence of deformation rate on heat conduction processes, and the
latter one denotes, that all the phenomena are observed in the time scale specific
for heat conduction processes (the time scale specific for dynamic mechanical
processes is much shorter). Some comments on the quasi-static displacement
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field approximation and on the adiabatic insulation are given in Secs.7 and 8,

respectively.
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specific heat (the value of ¢, for the numerical estimations is assumed together
with Qn),

optical power,

Young’s modulus,

focal length,

half-thickness of the (unperturbed) plate (the numerical estimations are
performed for 2h = 10~ m, and 10"2m),

integral complementary error function:

ierfe(z) = [~ erfe(t)dt, erfe(t) = 1 —erf(t) = v [ exp[—y*] dy,

refers to the lower surface of the plate,

see suitable equation at the beginning of Sec. 4 and Eq. (4.1),,

see suitable equation at the beginning of Sec. 4 and Eq. (4.1)1,

assumed small number (< 1), determining the accuracy of a given
approximation (the value of the order of 0.01 is assumed for

the numerical estimations),

total energy of the heat pulse,

cylindrical coordinates,

radius of the (unperturbed) plate (for the numerical estimations ry is assumed
to be of the order of 10-(2h)),

time,

temperature, measured from an initial (constant) value,

final temperature, defined by Eq. (3.1),

refers to the upper surface of the plate,

a-th coordinate of the displacement vector,

vertical displacement (shift) of the surface with respect to its initial
(unperturbed) level (Fig. 1),

BEE 1, B,

linear heat expansion coefficient (the value of the order of 107> 1/K

is assumed for the numerical estimations),

Dirac’s delta distribution,

small terms (Eqgs. (4.4)),

1= U(0) - U(r),

deflection angle (Fig. 2),

:= z/(2h) - dimensionless z-coordinate,

=T/T. - dimensionless temperature,

= A/(eoncp) — temperature conductivity (heat diffusivity), (A — heat conductivity),
(the values of the order of (10~7 — 10~*) m%/s are assumed for the numerical
estimations, where the first value refers to the worst temperature conductors,
and the second to the best ones),

Poisson’s coefficient,

mass density of the (unperturbed) material (the value of goc,, as being of the
order of 5-10” J/(m*K), is assumed for the numerical estimations),

= 1m/(2h)2 — dimensionless time,

see T iz,

reads: is of the order of.
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2. Statement of the problem

Let us consider a plane circular plate of an isotropic thermoelastic solid ma-
terial of thickness 2h and of radius ¢ (Fig. 1). The plate is described using the
cylindrical coordinate system with the origin located in the center of the plate and
with z-axis perpendicular to the main surfaces of the plate (before deformation).
The plate is perturbed thermally by a heat pulse (in Fig. 1 the pulse is applied to
the upper surface), which is homogeneous across the surface.
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['16. 1. Geometry of displacements.

The aim is to calculate the fundamental optical properties of the thermal
mirror, i.e. — its aberration characteristic and optical power (focal length).
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FiG. 2. Geometry of light rays.

The aberration characteristic is understood as a dependence: ¢ = £(r), where
£ is an angle between incident testing light ray parallel to the symmetry axis
and this ray after reflection from the mirror (Fig.2). The deflection angle ¢ is
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understood to be negative in the case of defocusing mirror (the upper surface in
our case), and positive in the case of focusing mirror (the lower surface in our

case).
The relationship between the deflection angle ¢ and the function [/, which

describes the vertical displacement of the surface with respect to its initial (un-
perturbed) level (Figs. 1 and 2), is (for both the upper and lower surfaces):

d(/
(3:
2 )

)

therefore the aberration characteristic of the mirror is given by the formula:

tan or tan ¢ =

= 2V
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where the approximation is valid if:
aUN? _ 30"
. ——1 & ——B30",
(23 (dv‘) ~1+0* g

where, in turn, (" stands for an assumed small number, which determines an
approximation accuracy in the sense, that a relative error of an approximation
does not exceed O~.

The classical definition of the focal length is used [2], namely: the focal length
[ of the mirror is defined as a distance of the focal point /' from the mirror along
the mirror symmetry axis (Fig.2); the focal length is understood to be negative
in the case of defocusing mirror (the uppper surface in our case), and positive
in the case of focusing mirror (the lower surface in our case). According to this
definition we have (Fig.2):

"

tane = m.

where
(2.3) AU(r) :=U@Q) - U(r);

therefore the optical power [) and the focal length [ of the mirrors are given by
the formula:
1 tane 1 _ 20U 1 ~ 20U

i foor A[~ta”“ ror 1_(%)2 200, 70

ar) r or
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where the approximation holds, if

77N 2 o7
2.5) l(dl‘> + 2%,y

Ir r or

In an ideal case both [ and [ do not depend on r, i.e. — each of these two
functions has the same value for each testing ray, or — the focal point [ is the
same for all the testing rays, independently of r. Such a situation takes place
when (/ is simply proportional to r? (parabolic mirror) (*).

Thus, in order to find the fundamental optical characteristics of the mirror
and their time evolution, it is sufficient to find the function U(r, 1).

The function U/(r,t) is determined by both coordinates u. and wu, of the
displacement field in the material at a given surface (at z = £ h, Fig. 1):

Ut(r) = u.(r',, h) — u.(ro, —h),
Ui(r) = u.(rg, —h) — u.(r, —h),

where 77, (r) and r’_(r) are solutions of the equations: ry + u,(ry,+h) = r
with respect to 17, respectively (criteria of linearization of these formulae, which
depend on the approximation: /. = r, are given in Sec. 6).

Thus, in order to find the fundamental optical characteristics of the mirror,
it is sufficient to find the displacement field (the vertical displacement . only,
if linearized Egs.(2.6) are applied) at a given surface. This information will be
deduced from the solution of the Lamé thermoelasticity equation, for which we
need the solution of the heat conduction equation first. Thus, we will examine,
first, the thermal part of the problem, and next — the thermoelastic part. Having
suitable information we will come back to the analysis of the optical properties
of the mirror.

(2.6)

3. Thermal problem

Following the specification of the thermal perturbation, the temperature field
in the material is assumed to be dependent on =z and ¢ only: 7" = T'(z, {). There-
fore, according to the general assumptions adopted, the heat conduction equation
is:

00 9o : 1
—*=—_+($ T—'O (5<h—"—)
ar ~ a2 YO -0 ¢-3)
(') Both criteria expressed by Inegs. (2.2) and (2.5) determine the so-called paraxial optics approximation:
1 & 208U

D=—-=- - —
f s rdr
An ideal case in this approximation is characterized by simple proportionality of = to 7.
It will be proved later that this approximation is not necessary for the mirrors examined, because for such
mirrors the left-hand side of Ineq. (2.5) is identically equal to zero (and only the approximation arctanz = x
may be applied).
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where
K ) Z

ey s

stand for dimensionless time and z-coordinate, respectively, x = A/(ggc,) is the
temperature conductivity (heat diffusivity) of a given material, A, gy and ¢, stand
for heat conductivity, density and specific heat of a given material, respectively,
6(x — xg) stands for the Dirac’s delta distribution, and

o, ) = Tz = z(%it = {(7)]

stands for dimensionless temperature (as a function of dimensionless variables),
where, in turn,

Q1

&4 to = T = 09) mr3 2hooc,’

and () stands for the total energy of the heat pulse. The boundary and initial
conditions are: » g
G ;

()—C(Q —ii) —O—O(T—O)
The Green function for the thermal problem in the whole space is known [3].
Applying therefore the method of sources and sinks one may write the solution

of our problem in the form:

1 2 3 2
1 = (2”’ +t5- C) (E'm + § + g)

(32 6= \/FZ exp | — e +exp |- e

1+ 22(—1)" exp[—k2r?7] cos krr (C + %) i

k=1

where the first line represents the original solution obtained using the method
mentioned(?), and the second one - that solution after expansion into Fourier
cosine series(®) (the function @((, 7) is symmetric with respect to ( + 1/2, and
it satisfies the Dirichlet conditions).

(*) The same result is obtainable by applying the Laplace transformation method to solve the following
equivalent problem:

0O 0@ a0 1 50 1
— = ) (=== =0, — (== =8T=0) @(r=0)=0.
or ace? ac (g 2) 0 a¢ (L 2) (r ) (r )

(*) The same result is obtainable by applying the Fourier method of separation of independent variables to
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4. The thermoelastic problem

The solution of the Lamé thermoelasticity equation for a simply supported
plane finite thin plate (*) with 7' = 7'(>) and with no external forces is known [1]
(in the approximation, which depends od replacing the local boundary conditions
for the stress tensor coordinates at the side surface of the plate by suitable integral
ones); in the case of circular plate we have:

* [Ny 3z
up(r,z) = ; 2; 23 M'T]
oy o M . 2 N 3uz?
u.(r,z) = — Aok 1_1/ (1+I/)O/Td~— Ny — 2}3EMrT ;

where « stands for the (linear) heat expansion coefficient, /2 — for the Young’s
modulus, © — for the Poisson’s coefficient, and

h h
Nip 5= aE/Tds, My := OzE/Tzd;.

—h —h

Using the formulae representing the solution of the thermal problem (Eq.(3.2))
we have:

= 2hFEaT,,,

2h*EaTy, |1 [ T VT — 8T Z( 1)"ierfe 7]

exp[—(2k — 1)27T2T],

(4.1) My
m=1

1

72 2k — 1)

2Bl Z

where ierfc () stands for the integral complementary error function:

50

jerfc(z) = / erfe(t) di, erfe(t) = 1 - erf(t) = — [ exp[—y?] dy.
solve the following equivalent problem:
20  8*e a0 ( 1\ . 1
T=¢i(2' 7(-((.—1’:5)—0. @(T-—O)—O(C—i)

It may be useful to note that, if the initial condition is not specified, then the solution of the heat conduc-
tion equation has the same form with coefficients 2(—1)¥ replaced by unknown coefficients a, (which are
determinable from the initial condition after it will be specified), i.c. the structure of time-dependence of the
solution (in the Fourier cosine representation) does not depend on the initial condition.

(*) The plate is understood to be thin in the sense that the following approximate conditions for the stress
tensor coordinates are valid: ¢, = 0, =0, = 0.
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Using these formulae one may rewrite Eqgs. (2.6) in the form:

; A’VT i 2 1
(T T i . — — =
( I3 + [ max |:1 (7‘0) (1 r 5“)2]

[0
1‘-2
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T ——
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® e
o'|-"’
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e 3

(4.2)
U =-U 1—(1)2 ! = .. |1 (")2
where
y _ 3My ,
(4.3) Unix = 375578
T e _ 1 3z
(4.4) o = ir u(r,x h) = ShE [i Nt + hM]].

where, in turn: the superscript u and the upper sign refer to the upper surface
of the plate; the subscript / and the lower sign refer to the lower surface; N is
given by Eq.(4.1); and M7 - by Eq.(4.1); or Eq.(4.1);; and the approximations
in Egs. (4.2) (which correspond to the linearization of Egs. (2.6)) are valid if the
functions ¢ can be neglected (see Sec.6).

5. The optical problem

After substitution of Egs.(4.2) into Eq.(2.1), the aberration characteristic of
the thermal mirrors examined is obtained:

2Umax T i .
5. s = F2arct L
(5.1) [ =F arctdn[ o o (X b;‘)z]

2L r'] o WWimax 7

12

o 7o

F 2 arctan {
"o To

where (as previously): the superscript « and the upper sign refer to the upper
surface of the plate; the subscript / and the lower sign refer to the lower surface;
{may 18 given by Eq. (4.3) with Eqs. (4.1), 3; ¢ are given by Eq. (4.4) with Egs. (4.1);
the first approximation (which corresponds to the linearization of Egs.(2.6)) is
valid, if the functions ¢ can be neglected (see Sec.6), and the second one (the
paraxial optics approximation) — if (in addition)

20U max \ > 172 3 [P
5‘ ﬂl:l.\) A g * .
(5.2) (—_}_0 257708 30

where O* is an assumed small number.
It may be useful to comment at this place on the condition of applicability
of the paraxial optics approximation, as given by Ineq. (5.2). The functions ¢ are
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assumed to be negligible. As it follows from Egs.(4.1); 3, the function My is a
monotonically decreasing one from 2h2EaT., to 0, as time varies from 0 to o,
respectively. Therefore, according to Eq.(4.3) we have:

where the right-hand side of this inequality represents the value of [/, at 7 = 0,
and the left-hand one - at 7 = oc. The criterion of applicability of the paraxial
optics approximation can be therefore written in the form:

&) < aree (3) wi
ro/ T 12140 \rg/) (a@Ts)? "

Assuming
e O =102,
e 79 = 10-(2h),
e a=10"°1/K,

e 1. =(1-10)K,

(the sign = reads: is of the order of) and taking into account that the maximum
value of r is very close to r, one can see, that the right-hand side of the inequality
given above is of the order of 10° — 103, so the criterion examined is well satisfied
(it can be violated only in a case of very strong requirements; if for instance:
O* = 1074 rg = 10%-(2h), and o7, = 1074, then the right-hand side of the
inequality given above may be even of the order of 10~! in the worst case).

The aberration characteristic obtained represents an ideal case, therefore
both the upper and lower surfaces of the plate considered represent an ideal
(parabolic) mirror (the upper - defocusing mirror, and the lower — focusing one).
In fact, substituting Egs. (4.2) into Eq.(2.4) we obtain the optical power ) and
the focal length [ of the mirror as independent of distance r:

I 4 1 4
(5.3) Di=— =7

‘/[u I'% [ max (1 i b!“)z = s [_(2] l max »
where (/. is given by Eq.(4.3) with Eq.(4.1),3, and ¢ are given by Egs.(4.4)
with Eqgs.(4.1); and the approximation holds, if the functions é can be neglected
(see Sec.0):

The results expressed by Egs. (5.3) denote, that the mirrors considered are
aberration-free, and no paraxial optics approximation is needed to idealize them
(although this approximation may be applied for simplifying the formulae for the
functions ¢, if it is allowable (see comment given above)). It should be noted,
that our results are not valid for an arbitrary plate, because they were obtained
under defined assumptions.
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As it is seen from the formulae given above, the time evolution of the displace-
ment function [/ and the optical properties of the thermal mirror is governed by
the dependence of the function Upax (Egs.(4.3) and (4.1)) and, in addition, by
that of the functions ¢ — on time. This dependence is complicated and difficult
for a simple interpretation. It can be simplified in two steps: first, by neglecting
the functions ¢ in the suitable expressions (see Sec.6); then, second, significant
simplification can be obtained for sufficiently short or long time (see Secs. 7 or 8,
respectively).

6. Criterion for neglecting the functions 6

Because the quantity N7 (Egs. (4.1);) is independent of time, and the quantity
M7 (Egs.(4.1)23) is a monotonically decreasing function of time, which varies
from 2h%FEaT,. at 7 = 0 to 0 at 7 = oo, therefore the functions § vary within
the limits:

ol
— 01 o

IA A

o
]

where the right-hand side limits correspond to 7 = 0, and the left-hand side ones
- to 7 = oo. Adopting the previously assumed values for « and 7, one has:

6" < 4+(107° - 107%),
6] < 2-(107° - 107%),

where the first value in the brackets corresponds to 7., = 1K, and the second
one-to 7T, =10K.

Thus, in practical cases the functions ¢ are in fact small quantities in compar-
ison with unity. Criteria for neglecting these fuctions in each of the formulae for
U, U, et 2 and D = 1/ f are examined in details in the Appendix. This discus-
sion suggests the following assumption as the common criterion for neglecting the
functions 6 in all the formulae mentioned (in the sense, that a relative error of
an approximation in any case does not exceed (0%, if this criterion is satisfied)(® ):

6.1) 611 < 40T < 507

(which is approximated in some cases, with a reasonable accuracy however, as it
is pointed out in the Appendix). This assumption implies no limitation for the
distance r in the case of the functions ¢ and ) = 1/f, whereas in the case of

(*) If this criterion would be formulated for the upper and the lower surfaces separately, then for the upper
surface it would have the form as given by Ineq. (6.1), and for the lower one - by the same inequality with
only number 4 replaced by number 2.
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the functions {/ it is (approximately) equivalent to the following condition for »
(see Appendix):

P % 1o = 0.7071 rg.

It may be useful to note here, that using Eq.(3.1) one can rewrite Ineq. (6.1)
as a criterion for the maximum pulse energy (1o, for which Ineq. (6.1) is satisfied.
Assuming (in addition to the assumptions of this kind adopted previously):

o 0pc, = 5-108 J(m*K)
we obtain in this way

2.10% 7, for 2h = 10~3m,
(21()! S

2.10° J, for 2h =107 m;
Qo {6-105J/m2, for 2h =10"3m,

73 = | 6-1053/m?, for 2h=10"2m.

(6.2)

7. Short-time regime

For sufficiently short time the sum in the brackets in Eq. (4.1), can be truncated
after the second term. Let us note, that because ierfc(z) is a monotonically
decreasing function, therefore ierfc(m /2./7) > ierfc[(m + 1)/2\/7]. In addition,
if 7 < /16 = 0.196, then ierfc(1/2/7) < 1/2\/7. The whole sum in the brackets
in Eq.(4.1); can be therefore treated as a Leibniz-type series(®). Then, the sum
considered can be approximated by the first two terms only with an accuracy to

O~ if
; 1 . 4./T
Sﬁlerfcﬁ <0 (1 - 7) .

This inequality is satisfied, if

T < Ty = L,
4zg
(%) The Leibniz-type series (L.5) is understood to be a convergent series of the type:
oo
LS = Z(H])m Gm s am > apeq > 0.
m=0
Such a series can be precisely estimated as follows (Leibniz’s theorem):
2%k -1
Z(~1)"' am > L8 > Z(—I)”‘ i
m=0 m=(

In particular case one may obtain
ag—ay+az > LS > ap—ay,
therefore .S = aj — o with an accuracy to O*, if a; < O%(ap — ay).
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@& 1
h a( stands f luti f th ion: ierfce = O*( = — —— :
wnere rp stands Ior a solution O eequatlon 1eric @ @) (4 Zﬁ) with

respect to x.
Assuming (as previously) O* = 0.01, one may find zg = 1.87, and

(7.1) T < Tohort = T2 = 7-107%

Assuming, in addition
o k= (1077 -10"%) m?s,
where the first value in the brackets refers to the worst temperature conductors

and the second one - to the best temperature conductors, one may rewrite the
criterion expressed by Ineq. (7.1) in dimensional form(”)

7-(1071 - 10%)s, for 2h =10"3m,
7.2 t < dgpory = 1g = ’
(7:2) =L gy {7-(10 ~10-%)s,  for 2h=10"2m.
By the way let us note here that all the mechanical phenomena are treateted
in the quasi-static approximation, i.e. observation time 7 should be sufficiently
large. The following criterion is assumed:

O ¢ a2’ fzinlin:@

.

(73) T 2 Tmin = : i i . ]?O

where the first condition is written in the dimensionless form (in the time scale
applied in the paper), the second condition is written in the usual dimensional
form, and ¢ stands for velocity of sound in a given material. Assuming (in addition
to the assumptions of this kind adopted previously):

o c=2:10°mys,
we have (in dimensionless and in dimensional forms):

1073 m,
10~2m,

S, Hi
T 2 Tmin

5:(107° - 10"%), for 2h
5.(1076 - 1073), for 2h
o e [50107%s for 2k =107 m,

™7 )5.1073s, for 2h =102m.

(7.4)

Comparing Inegs. (7.4) and (7.1) [(7.2)] one can see, that within the quasi-static
displacement fields approximation, there exists a relatively large field for the
short-time regime approximation(®).

(") For O* = 10~ or 10~* one may find z( = 2.25 or 2.61, respectively, and the number 7 in Inegs. (7.1)
and (7.2) is replaced by the number 5 or 4, respectively.

(®) Let us note in addition, that the perturbing heat pulse is assumed to be instantaneous, therefore the
observation time has to be much longer than the time of duration of the real physical pulse.
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If the criterion expressed by Ineq. (7.1) (or (7.2)) is satisfied, then the sum in
the brackets in Eq. (4.1); can be approximated by its first two terms only, which
is decreasing from 1 to about 0.4 as 7 is increasing from 0 to Tyhort = 7-1072,

Thus, if the criteria expressed by Inegs. (7.1) (or (7.2)) and (6.1) are satisfied,
then the sum in the brackets in Eq.(4.1); can be truncated after the second
term, and the functions ¢ can be ignored (the total relative error of this double
approximation does not exceed (1 + 0*)? — 1  20~). In this approximation, the
function /4, and therefore also (/, D, and [ are linear functions of /7:

Unax = Unax(0) (1 " \/i; ﬁ).

o J(2)'+ - (5] - )

- (5] - ).

1 4 4
Dl = & =2 V(0 (1 e, 4 T).
I -/“u "(QJ' ( ) ﬁ \/_

where the superscript u and the upper sign refer to the upper surface of the plate,
and the subscript / and the lower sign — to the lower surface,

! (2) (ot
(2hY? 7 v ooc,

['u

(7.5)
U

]

Umax(0) := 3a

The deflection angle

; , Urnas 0) r 4
7.6 ¢t = F 2 arctan [2 = - (l - — TH
(7.6) l I ro "o N VT

{“'mv‘,_x(()) (i ( 4 )
=714 — (1= —= /T
b 0 o ﬁ f

is a linear function of /7 only in the paraxial optics approximation (the approxi-
mated part of Eq.(7.6)), which holds (with an accuracy to O~), if (cf. Ineq. (2.2))

i 72 r 2( 4 )2 3()* o~ *
4 (2) (- ) ¢ 20 w0

(the total relative error of this triple approximation does not exceed (1 + O*)> —
1 & 30),

Thus, the short-time approximation seems to be realistic (except for very thin
plates with the best temperature conductors) and offering simple interpretation
of the time evolution of the optical properties of the mirror considered.

o

http://rcin.org.pl
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8. Long-time regime

Although the short-time regime, discussed in the previous section, seems to
be sufficient for use and interpretation of the results obtained earlier, we will
discuss shortly the opposite regime — the long-time one for the completeness of
the picture. For this purpose it is more convenient to use the second version of
the solution of the thermal problem (Eq.(3.2);), and therefore — also the second
version of the function My (Eq.(4.1)3).

The idea of the long-time approximation is similar to that used previously in
the case of the short-time approximation. We have to find criteria, which allow us
to simplify the expression for the function M7 as far as possible (the assumption,
that the functions ¢ can be ignored, will also be used).

For sufficiently long time, the series in Eq. (4.1); can be approximated by its
first term only with an accuracy to an assumed small number O*. For this purpose
it is sufficient to require:

e the second term of the series to be much smaller than the first one in the
following sense:

éexp[—&rzr] <090,
e and the (k£+1)-th term, £ > 2, to be not larger than 0.1 of the £-th term:
2k + 1)2
2k-1/

These inequalities are satisfied if, respectively:

exp[-8km?7] < 0.1 (

» 5 #[- In 8.107],

1 2k —1\?
T2 82k i [10 (2A: + 1)

The latter inequality is the strongest one for ;& = 2, therefore we have:

T > Ty = In 8.107],

1
sr2 1
1
Tor2 |
Because 75/ = 735 for O* = 6.5-1072, therefore for O* < 6.5:1072 the first
of theseztwo conditions is stronger than the second one, and inversely for O* >

6.5.107~=.
Assuming (as previously) O = 0.01 we have(®):

T 2 Ty i= In3.6=8.1.107°.

(8.1) T 2 Tiang = Topy ¥ 3.24107%;

(*) For O* = 10=? or 10~* the number 3.2 in Inegs. (8.1) and (8.2) is replaced by the number 6.1 or 9.0,
respectively.
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assuming also (as previously) x = (1077 — 10~%) m?/s, we rewrite criterion ex-
pressed by Ineq.(8.1) in the dimensional form:

320107 —~ 0% s, for 2h=10"m

8.2 t > tiong =1
(8:2) long = '2/1 = {3_2 «(10 - 107%) s, for 2h =10"2m.

Let us note by the way, comparing Inegs. (8.1) [(8.2)] and (7.4), that the latter
one is always fulfilled in the long-time regime.

If the criterion expressed by Ineq. (8.1) (or (8.2)) is satisfied, then the series
in Eq.(4.1)3 can be approximated by its first term only, which for 7 = 7, =
3.2.107% is equal to about 0.59, whereas the whole series for 7 = 0 is equal to
unity (see [4]).

Thus, if the criteria expressed by Inegs. (8.1) (or (8.2)) and (6.1) are satis-
fied, then the series in Eq.(4.1); reduces to the first term, and the functions 6
in Egs. (5.1) and (5.3) are neglected (the total relative error of this double ap-
proximation does not exceed (1 + O*)* — 1 = 20*). Then the quantity Upax, and
therefore also the functions /¥ — U“(r = 0), U/;, D and f - depend on time
exponentially:

Umax(o) L2 exp[—7r2 T,

Umax =
7 2/ r\2] 8
U* = Unax(0 ){ ( L) 1- (a> } = exp[Hrr2 T]},
. \2] 8
U = =Umax(0) [1 - (;fg) l = exp[—72 7],
Df = jil = F 42{/,,,&,‘(0) — exp[— 21,
{ Ty

where the superscript v and the upper sign refer to the upper surface of the
plate, and the subscript / and the lower sign — to the lower surface, and Upax(0)
is defined by the equation following Egs. (7.5). The deflection angle

mdx(()) r

(8.4) g/ = F2 arctan
o To

;5 exp[—~ T]

32 [/mdx(()) .l

2 ry T

1

— exp[-7 T]

depends exponentially on time only in the paraxial optics approximation (the
approximated part of Eq.(8.4)), which holds (with an accuracy to O%), if (cf.
Ineq. (2.2))

256 U2,.(0) / r\? 5 30" ,
I - __2‘ < E‘ *
™ 2 (,-0) expl=2mr] < s =30
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(the total relative error of this triple approximation does not exceed (1 + O*)? —
1230

Let us note by the way, that 7 can not be too large. The plate is assumed to be
adiabatically insulated on all its surfaces. This assumption can be violated, after
sufficiently long time, at least by the radiation heat exchange between the plate
and its surroundings. The (dimensionless) relaxation time for the latter process
Trad (in the time scale applied in the paper) may be estimated as follows. We start
from the heat conduction equation with no heat sources, assuming the boundary
conditions in the form (see Footnote 3):

90 (. 1 SRt 90 (. 1\ _ 1
al(t=3)=-mefe=3), F(=-3)=a9(c=3).

where /4, (4 stand for (dimensionless) coefficients of surface losses (assumed to
be constants). The solution of the heat conduction equation with these boundary
conditions (as obtained using the Fourier method of separating the independent
variables) has the form:

- : sl . o 5
Z ~ g T ["1/; COS [i) (g 4 E) + By, sin jy, (g + 5)] :

where 3 Ay = i By, coeflicients A (or ;) are (in principle) determinable
from an initial condition, and g stands for positive solutions of the following
characteristic equation:

(B + Br)

N ,HZ — Jldz ‘

For small surface losses (/3;, [} < 1) one may obtain (in the linear approxima-
tion):

tan p

o8 1 4
Hi = km + T (,’31 + [32),
therefore:
exp[— 2 7] = exp[— k1 T] exp[-2(51 + 1) T].
Thus, the (dimensionless) relaxation time connected with the surface losses is

1
2(,")’1 + ,:')'2) '

Trel =
If the plate loses its energy through its surfaces by thermal radiation only, then

using the linearized Stefan - Boltzmann law one may write:

2h 4b gsB Tg

K 00C)

1'_}1 = ﬁz =
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where o stands for the Stefan - Boltzmann constant, b — for a correction factor
for a real body as compared with the perfectly black one, and 7j - for the initial
temperature (before the perturbation); thus,
K 20Cp
2h 8bosp T3

The thermal radiation losses can be therefore neglected, if the observation
time 7 is much shorter than 7,,4:

Trad =

" « K 20C
& Traay 2= O Tiard = o e
'S T Trad O 2h 8[) OsSB TC:’S

where (O* stands for an assumed small number.
Assuming (in addition to the assumptions of this kind adopted previously):
e b=0.1,
o osp ¥ 5.67-1078J/(m*s K,
o Ty =3.10%K,
we have (in dimensionless and in dimensional forms):

’ 4.1 -10%, for 2h =107%m,
T < Tmax =
s =™ 1401071 - 107, for 2h =1072m,
3)
b d 40s, for 2h =10"3m,
=M 4010%s, for 2h=10"%m.

This criterion restricts the applicability of the theory presented, however there
still remains a relatively large field for application of the long-time regime (as it is
seen by comparison of Inegs. (8.5) with (8.1) [(8.2)]). Thus, the long-time regime
seems to be a realistic and useful supplement to the short-time regime(1?). It starts
relatively quickly. The values of [/, at the beginning of this regime are only a
dozen percent lower than the initial value of /.. By comparing Inegs. (8.1) and
(7.1) one may see, that for O* = 0.01 both regimes — the short- and the long-time
ones — cover the full time range from 7., tO Tmax (for smaller O* the situation
is not so comfortable — see Footnotes 7 and 9).

9. Estimations for possible experiments
9.1. Introductory remarks

In principle, the thermal mirror considered may be experimentally studied by
investigating the functions: [/, and [. Each of these quantities can be experi-
mentally investigated and interpreted using the theoretical scheme presented, if
some conditions are fulfilled.

(*") Supplement only, because of the restriction mentioned in Subsec.9.2 (see also estimations given in
Subsecs. 9.3, 9.4, 9.5, and cf. Ineq. (9.1) and Inegs. (9.3), (9.4), (9.5)).
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9.2. General conditions

Some general conditions, which should be taken into account in any experi-
ment, were discussed earlier. Here the last such a condition will be mentioned.
It follows from the requirement that the heat perturbation can not significantly
change the properties of the material. Assuming the perturbation region to be a
layer of thickness A/, and the temperature not to exceed some critical value 7,
we can write this requirement in the form:

Qrot € Qmax := pocp T Ah 7r7'3.

Assuming (in addition to the assumptions of this kind adopted previously):
o T*=210%K,
o Ah =0.05-(2h),

we have:
. [187, for 2h =10"m,
< (. —
- Gor £ Qe {1.5-1041, for 2h =10"2m,
9.1
Quot _ Omax 5:10*7/m?, for 2h=10"°m,
rrg = wry | 5-10°7/m?, for 2h=10"%m.

Comparing the conditions expressed by Inegs.(9.1) and (6.2) one may see,
that the latter is weaker than the former one, i.e. if Ineq.(9.1) is satisfied, then
the functions ¢ can be neglected in all the previous formulae.

9.3. Observability conditions for U

According to Egs.(7.5) and (8.3) (for the short- and the long-time regimes,
respectively), the condition for the minimum pulse energy ()i allowing U to be
observable on the level at least of [/* can be written in the form:

] * g Cp T ] /
Quot 2 Qftin 1= U" = 2 @0 3 ——— %(7),

e it
ro
where
4 -1

[l - — \/?] in the short-time regime,
(9.2) byl VT -

m 2 = » .

3 exp[r“T] in the long-time regime,

and the contribution of Ny to {/* was neglected.
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Assuming (in addition to the assumptions of this kind adopted previously):
o U"=10"m

e I << ]-01
o 7=7-1072 (see Inegs. (7.1) and (8.1))
we have:
1.3 for 2A=10"%m
Quot > Qi = 8 )
2:01 < min { 102 J, for 2h= 10_2m9
(9.3) U
Qtozt > min 2 4.103]/m?
mrh Ty

(cf. Inegs. (9.1), (9.4) and (9.5)).
9.4. Observability conditions for =

According to Egs.(7.6) and (8.4) (for the short- and the long-time regimes,
respectively) the condition for the minimum pulse energy ()i allowing ¢ to be
observable on the level at least of ¢* can be written in the form:

" . Doc 1 7rd
Qrot > Qrpin := € Tp (2h)y? 1 TQ U(7),

where 1»(7) is given by Eq.(9.2).
Assuming (in addition to the assumptions of this kind adopted previously):

o * =10""%rad,
e = Iy
we have:
, . (310711, for 2h=10"7m
Qo 2 Qrin = {3-1021, for 2h=10"2m
(9.4)

ot 5 Q; - {103J/m2_ for 2h =10 3m,

min
% 10*J/m2, for 2h =10"%m

rrr% TG
(cf. Inegs. (9.1), (9.3) and (9.5)).
9.5. Observability conditions for f

According to Egs.(7.5) and (8.3) (for the short- and the long-time regimes,
respectively), the minimum pulse energy (Jyo; allowing f to be observable on the
level not higher than [* can be written in the form:

1 opc,
Qtot me = / 0(! (2/) 12 7'100”(7')

where the function () is given by Eq.(9.2).
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Assuming (in addition to the assumptions of this kind adopted previously)

o ["=40m
we have:
0.87 for 2h=103m
C S Cf -~ 3 3
Qtot = gmm {8'1031. for 2h = 102 m,
(9.5)
Qui , @by - [310°)/m?, for 2h=10"m,
wrd T m‘% a 3:10°J/m?, for 2h =102 m

(cf. Inegs. (9.1), (9.3) and (9.4)).

10. Possible applications for determining the temperature conductivity (and the
surface losses coefficients)

As it is seen from the suitable formulae given above (after coming back to di-
mensional time ¢ = 7 (2h)?/x), the time evolution of the thermal mirror depends,
among others, on temperature conductivity £ of the material. Measuring suitable
properties of the mirror it is therefore possible to determine . However, as it
is seen from the formulae mentioned, such a procedure performed in arbitrary
conditions may require some additional information (which should be known or
measured), and may prove to be complicated for interpretation.

The problem simplifies in the short-time and the long-time regimes. In fact,
as it follows from Egs.(7.5) and (7.6), in the short-time regime the quantities:
[/, tan(=/2), and f are linear functions of v/f with coefficient (at v/#) equal to
4/ /(2h+/7). Measuring the evolution of these quantities one may therefore
determine this coefficient and, knowing it and the plate thickness 2/ of the plate
— find » of a given material.

Analogously, as it follows from Egs. (8.3) and (8.4), logarithms of the following
quantities: {/“(r = 0) — UU"(r), ||, | tan(c/2)| and | f]| in the long-time regime
are linear functions of time ¢ with the coefficient (at ) equal to 72 /(2h)%.
Measuring the evolution of these quantities one may therefore determine this
coefficient, and knowing it and the plate thickness 2/ — determine  of a given
material.

By the way let us note shortly, that one may think also on applying the thermal
mirrors considered for experimental determining the surface losses coefficients
/31, or 3 (see the end of Sec.8), if the temperature conductivity » of a given
material is known. Using equations given at the end of Sec. 8 for @ and suitable
equations for the optical characteristics of the mirror, and applying the same
argumentation as it was used for specification the long-time regime, one may
conclude that for sufficiently long time the suitable optical characteristics /' of
the mirror are simply proportional to exp[ -/} 7]. From measurements of the time
evolution of In|/’| one may therefore determine the quantity s¢;. Then from the
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characteristic equation for ;2 one may determine: 3, = y tanjuy, if 5y = 0 (an
ideal thermal insulation on the perturbed surface); 3, = ji; tan 4, if 52 = 0 (an
ideal thermal insulation on the opposite surface); 3 = —uy/ tan py, if Fp =
(ideal losses on the opposite surface, realized for instance by a thermostate).

11. Remark on distortion of properties of optical mirrors

Absorption of light by mirrors in high power optical systems causes thermal
deformation of the mirrors, and therefore changes their optical properties. The
theory presented may be useful for estimations of such effects in light-pulse optical
systems. In particular, the criteria given in Subsecs. 9.3, 9.4 and 9.5 may be useful
(in reversed form) for estimation of the maximum allowable energy of light pulse,
which do not distort optical properties of the mirrors over an assumed level.

12. Conclusions

The thermal mirrors created on the surfaces of a thin plate of an isotropic
thermoelastic solid material by a heat pulse, which is applied to one of the plate
surface and is homogeneous across this surface, is — within the approximations
applied in the paper — an ideal (aberration-free) optical mirror. These mirror ef-
fects are relatively very small, however they may be studied experimentally using
high precision optics. The variations of the optical properties of the mirror con-
sidered are comparable with those of the half-space thermal mirror [5], however,
because the thin-plate thermal mirror is free of aberrations, therefore it seems
to be easier for experimental research.

In general, the time dependence of the thin-plate thermal mirror is compli-
cated. However, there exist two regimes: the short-time and the long-time ones,
in which this dependence becomes much simpler and easy for interpretation. In
these conditions the thermal mirror considered may be, in principle, used for
experimental determination of the temperature conductivity of a material.

Appendix. Detailed criteria for neglecting the functions ¢
A.l. Criterion for neglecting 4“ in the formula for (/“

The relative error of neglecting the function ¢* in Eq. (4.2); does not exceed
()%, if the following criterion is satisfied:
2 r T 2
r Ny ‘ N r
— ] =0 (14 —+ "2+ <O" (14 - | —
[("(l> ( Ii‘lmux)} ( )= ( El max) (’U) ]

(LY [0 +8“Q@+ 8] < 0" (1 + 6" (1 L. ) |

0] E Uspax

or

http://rcin.org.pl
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Three cases should be considered to analyze this criterion. If

2
T ]VT
—) <O (14 ——
&) =0 (o)
then the criterion considered is always satisfied for an arbitrary ¢, i.e. — for
sufficiently small » the function 6* can be always neglected in Eq. (4.2);.

If
* ‘]\""7' 71 2 *NT
o (1+ EUm) < ("o) . (” EUmax)’

then the criterion considered is satisfied for

S < (L) v 1— O*
0 r 2 . NT
\/(E> -0 (14 =)

N
* u\2 I
(L)2<O (1+48%) (1+EUmax>
" O & 642 + 6%

-1

or

If, in particular,
1
6[1 o * .
< 5 '@,

then the latter inequality is satisfied for
( r )2 1
- < = .
) =z
w5 3 Ny
— ) > 14+ =
("O) a ( E Umu) '

then there exists no function 6" satisfying the criterion considered, i.e. — for
sufficiently large » the function §" can not be neglected in Eq.(4.2); (however,
this case may have only symbolical meaning, because of the approximation applied
for solving the thermoelasticity equation, as it was mentioned at the beginning of
Sec. 4).

If

A.2. Criterion for neglecting &; in the formula for U/,

Because the function 0; decreases from 2a7.. to —a'll,, as 7 varies from 0
to o (see Sec.6), therefore the criterion for neglecting the function ¢, in the
formula for {/; should be examined separately for 6, > 0 and ¢; < 0.
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A.2.1. The case of & > 0. The relative error of neglecting the function 6; > 0 in
Eq.(4.2), does not exceed O, if the following criterion is satisfied.

() vose-w<orfi-(]

( )2 [0+ 62— 6] < 0" (1 62

r
o

or

If r = 0, then this criterion is satisfied for an arbitrary ;.
If » # 0, then the criterion considered is satisfied for(!)

§<1-.1 vV1i+ 0~

T 2
R ORG
0

(7_,)2< O*(l_éz)z
70 -0+ 6[(2 — b[) '

or

If, in particular,
1
&4 =01,
<507,

then the latter inequality is satisfied for

1 2
ry?2 1(]‘50) 1
<_) S3 1. T3
[ -
y B
8()

(exactly: for O* = 0.01, 0.001, 0.0001 the double right-hand side of this inequal-
ity is equal to 0.99126, 0.999125, 0.9999125, respectively).

A.2.2. The case of & < 0. The discussion and the conclusion in this case are exactly
the same as in the case examined in Subsec. A.1 with N = 0 and 6" replaced
by [64].

A.3. Criterion for neglecting 6" in the formula for "

The relative error of neglecting the function ¢ in Eq.(5.1) for ¢* does not
exceed O, if the following criterion is satisfied:

Wi T p R 1
arctan [ﬂ —| £ (@ + 07) arctan | —= — il
ro 1o o To (1 + 6”)
(') This is a very fair condition in case of small ». If, for instance, » = 0.1rg and O* = (.01, then this

inequality reads: & < 0.2893 (see Sec.6 and cf. Sec.A.1).
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Because «x arctany < arctan zy for @ < 1, y < 1, therefore this criterion may be
replaced by the following stronger one:

(611)2_*_2511_0* SO-»
which is satisfied for i
g 1+O*—1%§O*

(exactly: for O* = 0.01, 0.001, 0.00001 the double right-hand side of this in-
equality divided by O~ is 0.9975, 0.99975, 0.99997, respectively).

A.4. Criterion for neglecting &; in the formula for ;

The relative error of neglecting the function ¢; > 0 in Eq. (5.1) for £; does not
exceed O, if the following criterion is satisfied:

2Umax T & 2Umax 7 1
o P > _ < )
arctan [ - 7'0] > (1 - O) arctan ooty

Because « arctan y > arctan xy for @ > 1, y < 1, therefore this criterion may be
replaced by the following stronger one:

(6%)? — 26 + O* > 0,

which is satisfied for
é"l( <

<0 <1-VI-0",
The discussion and the conclusion in the case of ¢; < 0 are exactly the same
as in the case examined in Subsec. A.3 with only 6" replaced by |¢,|.

A.5. Criteria for neglecting & in the formulae for D = 1/f
The relative error of neglecting the functions & in Egs. (5.3) does not exceed
O, if the following criteria are satisfied:
82 +26-0* <0, §= g & >0
67 — 260+ O* > 0, o > 0,

for the upper surface and the lower one, respectively. These inequalities are
satisfied for

agm+0n4e%0. §=6"  —6>0,
mg%w§1_m70a § >0

(see and cf. Subsecs. A.3, A4).
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A.6. Conclusion

The criteria for neglecting the functions ¢ in the suitable formulae are different
in various cases. In order to discuss this problem in a uniform way for all the
cases, one needs a common criterion, which will be satisfied in all the cases. Such
a criterion is proposed in Sec. 6 (see Ineq. (6.1)).
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