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A nonexistence theorem of small periodic traveling 
wave solutions to the generalized Boussinesq equation 

Y. CHEN (FAYETTEVILLE) 

THE GENERALIZED Boussinesq equation, u11 - Un + [f(u))n + Unn = 0, and its 
periodic traveling wave solutions are considered. Using t he transform z = x - wt, 
the equation is converted to a nonlinear ordinary differential equation with peri-
odic boundary conditions. An equivalent relation between the ordinary differential 
equation and a Hammerstein-type integral equation is then established by using 
the Green's function method. This integral equation generates compact operators in 
( c2T, 11 ·11), a Banach space of real-valued continuous periodic functions with a given 
period 2T. We prove that for small T > 0, there exists an r > 0 such that there is no 
nontrivial solution to the integral equation in the ball B(O, r) ｾ＠ C2r- And hence, the 
generalized Boussinesq equation has no 2T-periodic traveling wave solutions having 
amplitude less than r. 

1. Introduction 

IN THE 1870's, Boussinesq derived some model equations for the propagation of 
small amplitude long wave on the surface of water [1]. These equations possess 
special traveli ng wave solutions called solitary waves. Boussinesq's theory was 
the first to give a satisfactory and scientific explanation of the phenomenon of 
solitary waves discovered by Scott Russell in his experimental observation of 
shallow water propagation some thirty years earlier [2]. 

The original equation due to Boussinesq is not t he only mathematical model 
for small amplitude planar long waves on the surface of shall ow water. Different 
choices of the independent variables and the possibili ty of modify ing lower order 
terms by the use of the leading order relationships can lead to a whole range 
of equations, all of which have the same formal vali d ity [3]. All of these models 
possess one obvious characteristic, however, which is that they are perturbations 
of the linear wave equation that takes account of small effects of nonlinearity 
and dispersion. 

In this paper, we consider a generalized Boussinesq equation of the form 

(1.1) Utt - Uxx + [f(u)]xx + Uxxxx = 0, 

where u = u(t, x) and f (u) is a C1 function in its argument. 
We shall prove a nonexistence theorem of periodic t raveling wave solut ions to 

this equation following the idea of Lru and PAO [4], SoEWONO [5], and CHEN and 
HE [6]. Of course, this does not establish the nonexistence of periodic traveling 
wave solutions to the generali zed Boussinesq equation. We merely prove t hat 
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for a given small T > 0, under certain conditions, 2T-periodic traveling wave 
solutions with small amplitude to the generalized Boussinesq equation do not 
exist. There is no doubt about the existence of periodic traveling wave solutions 
to the generalized Boussinesq equation when f(u) = un for some positive integer 
n . It is well known that the periodic cnoidal wave solutions exist and can be 
representable as infinite sums of solitons when f(u) = un and n = 1, 2 [7, 8, 9]. 

The plan of this paper is as follows. In Sec. 2, the generalized Boussinesq equa-
tion is transformed to an ordinary differential equation with periodic boundary 
conditions. We then apply the Green's function method to derive a nonlinear in-
tegral equation equivalent to the ordinary differential equation. The nonexistence 
of small periodic solutions to the integral equation is proved in Sec. 3. Therefore, 
the nonexistence of small 2T-periodic traveling wave solutions to the generalized 
Boussinesq equation is established. 

2. Formulation of the problem 

We start from the generalized Boussinesq equation of the form 

(2.1) Utt- Uxx + [f(u)]xx + Uxxxx = 0, 

where the function f is C1 in its argument. We are interested in the periodic 
traveling wave solutions of the form u(x, t) = U(z) = U(x- wt) , where w > 0 is 
the wave speed and z = x - wt is the characteristic variable. Substitution of the 
U(z) into Eq. (2.1) then leads to the fourth order nonlinear ordinary differential 
equation 

(2.2) U(4l(z) = CU"(z) - [f(U(z)) ]" , 

where C = (1 - w2) . To obtain periodic solutions, we impose the following 
boundary conditions 

(2.3) n = 0, 1, 2, 3, 

where T is a preassigned positive number. To eliminate nontrivial constant solu-
tions to the ordinary differential equation (2.2), another condition is introduced 

(2.4) 

2T 

j U(z) dz = 0. 

0 

It is obvious that any solution U(z ) of the boundary value problem consisting of 
Eqs. (2.2)-(2.4) can be extended to a 2T-periodic traveling wave solution to the 
original evolut ion equation (2.1). 
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Integrating both sides ofEq. (2.2) with respect to z twice and using Eqs. (2.3), 
(2.4) yield 

(2.5) 

(2.6) 

where 

U" (z) - CU(z) = E- f(U (z)), 

u(n) (0) = u(n) (2T), 

2T 

E = I f (U(z)) dz/ (2T). 
0 

n = 0,1, 

Conversely, integrating both sides of Eq. (2.5) from 0 to 2T and using Eqs. (2.6) 
will give us Eq. (2.4), and direct differentiat ions of Eq.(2.5) wi ll give us Eqs. (2.2), 
(2.3). Therefore, we have proved the foll owing theorem. 

THEOREM 1. Suppose C ¥ 0, a function U(z) is a 2T-periodic traveling 
wave solution to Eq. (2.1) satisfying the boundary conditions Eqs. (2.3), (2.4) if 
and only if it is a solution to the boundary value problem consisting of Eqs. 
(2.5), (2.6). 

From now on we only consider the two cases: 1. C > 0 and 2. C < 0 but 
- C ::j; (br/T)2 with k being any integer. Treating the right-hand side ofEq. (2.5) 
as a forcing term and using the Green's function method [4, 10], the boundary 
value problem Eqs. (2.5), (2.6) can be converted to a nonlinear integral equation 
of the form 

(2.7) 

2T 

U(z) =I Ki (z, s)f(U(s)) ds, 
0 

'rf z E [0, 2T], 

where the kernels Ki, i = 1, 2, are defined as follows: 

1. When C > 0, we denote )q =VC, then 

(2.8) }( ( ) 
_ cosh>.1(T - lz- si) _ _ 1_ 

1 z, s - . , 2T' 2>.1 smh >.1T 2"'1 
'rfz, sE [0, 2T]. 

2. When C < 0 but -C ::j; (k1rjT) 2 with k being any integer, let >.2 = FC, 
then 

} :r2
(z s) = cos >.2(T- lz- si) __ 1_ (2.9) \. , 2 , 'rfz, s E [0, 2T]. 

2>.2 sin>.2T 2>.2T 

LEMMA 1. The kernels K 1 and K 2 have the following properties: 

Ki(O, s) = Ki(2T, s), 

Ki(z,2T-s) = Ki(2T- z,s), 
2T I Ki (z,s)ds = 0, 
0 

'rfsE[0,2T], i= 1,2, 

'rfz, sE [0, 2T], i = 1, 2, 

'rfz E [0, 2T], i = 1, 2. 
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P r o o f. Straightforward computations based on the definit ions of the 
K1(z,s) and K2(z,s) given in Eqs. (2.8), (2.9). 

0 

THEOREM 2. A function U(z) is a solution of the boundary value problem 
consisting of Eqs. (2.5), (2.6) if and only if it is a solution of the integral equa-
tion (2.7). 

P r o o f. The "if ' part can be proved by direct differentiations of Eq. (2.7) 
and the "only if ' part is based on the Green's function method by treating the 
right-hand side of Eq. (2.5) as a nonhomogeneous term. 

0 

3. Nonexistence theorem 

It is seen from the Theorem 1 and 2 that U(z ) is a solution to the integral 
equation (2.7) if and only if it is a solution to Eq. (2.1) satisfying the bound-
ary conditions Eqs. (2.3), (2.4). Therefore, to show the nonexistence of small 
2T-periodic traveling wave solutions to Eq. (2.1) with the boundary conditions 
Eqs. (2.3), (2.4), it is sufficient to show that small solut ion to Eq. (2.7) does not 
exist. 

To this end we define c2T as a collect ion of real- valued continuous functions, 
v(z ), on [0, 2T] such that v(O) = v(2T). Equip C2r with the sup norm 11 ·11 as 
llvll = supo<z<2rlv(z)i , for each v E C2r , then (C2r, ll · ll ) becomes a Banach 
space and llvris the amplitude of v . 

We now define the operators A , i = 1, 2, on c2T as 

(3.1) 

2T 

A v(z ) = J Ki(z, s)f (v(s)) ds, 

0 

where the kernels Ki , i = 1, 2, are defin ed in Eqs. (2.8), (2.9). Notice that the 
operator A depends on T and Ai, i = 1, 2. 

We shall show that for any given small T > 0, there exists an r > 0 such that 
II Avll < llvll for any nontrivial funct ion v E B (O, r ) ｾ＠ C2r, i = 1, 2. This implies 
that the equation A v = v has no nontrivial solution wi th amplit ude smaller than 
r. And hence, the nonexistence of non trivi al small solut ion to the boundary value 
problem Eqs. (2.4), (2.5) is establi shed. This, in turn, leads to the nonexistence 
of small 2T-periodic traveling wave solution U(z) to the generalized Boussinesq 
equation satisfy ing the boundary conditions Eqs. (2.3), (2.4). 

A consequence of Lemma 1 can be stated now. 

LEMMA 2. Let v be an element of C2T· If v(z ) = v(2T - z ) for z E [0, 2Tj, 
then A v(z ) = A v(2T - z), i = 1, 2. 
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Let r > 0 and B(O, r) be a bounded ball in C2r, we then have the following 
theorem. 

THEOREM 3. ｾ＠ : C2T ----+ C2r, i = 1, 2, is compact and ｾｾ ｾ ｶｬｬ＠ < livl i for 
all nontrivial v E B ( 0, r) when T is small enough, i = 1, 2. 

p r 0 0 f. First we show Ai : c2T ----+ c2T, i = 1, 2. Since it is obvious from 
Lemma 1 that ｾｶＨｏＩ＠ = ｾｶＨＲｔＩ＠ for each V E c2T, i = 1, 2, it suffi ces to show 
that ｾｶ Ｌ＠ i = 1, 2, is continuous on [0, 2T]. 

Let V be an element in c2T, we have 

(3.2) 

(3.3) 

z 
dA1v(z) - 1 I . 
｟ ＺＺＮＮ｟ＮＺＮＮＮ ｾ＠ = . smh.X1(T- z + s)f(v(s)) ds 

dz 2smh.X1T 
0 

z 

2T 

+ . ｾａ＠ TlsinhAl(T+z - s)f (v(s))ds, 
2sm 1 

z 

dA2v(z) 1 I . 
d = . AT smA2(T- z +s)f(v(s))ds 
z 2sm 2 

0 

2T 
- 1 I + . A T sinA2(T + z - s)f (v(s)) ds. 

2sm 2 
z 

The existence of dA1 vI dz and dA2v I dz implies that both A1 v and A2v are 
continuous on [0, 2T], and hence, we have ーｲｯｶ･､ｾ＠ : C2T----+ C2r, i = 1, 2. 

Let S be any bounded subset of C2r, i.e., there exists an Lo > 0 such that 
llvll ｾ＠ L0 for all v E S. Then since f is C1 in its argument, there exists an Mo > 0 
such that 

ilf(v)il = sup if(v(z))i ｾ＠ sup lf (w) l ｾ＠ Mo , 
ｏ ｾ ｺ ｾ Ｒ ｔ＠ Ｍ ｌ ｯｾ ｷ ｾ ｌｯ＠

Since sin A2T f:. 0 and 

2T 

max I IKi( z , s)i ds ｾ＠ 21 Af, 
O<z<2T 

i = 1,2, 
- - 0 

we obtain from Eqs. (3.1) - (3.3) 

2Mo 
ｬｬｾｶｬｬ ｾＷ Ｇ＠

l 

TMo 
ｩｬ､ｾｶｬ､ ｺ ｬｩ＠ ｾ＠ -, 

Ti 

Vv E S, i = 1, 2, 

Vv E S, i = 1, 2, 

Vv E S. 
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where T1 = 1 and T2 = I sin .X2Tj. Thus, ｾｓ Ｌ＠ i = 1, 2, is uniformly bounded 
and equi- continuous, and by the Ascoli - Arzela Theorem both A1 and A2 are 
compact operators from C2T into C2T. 

From the defini t ion of Ki, Eqs. (2.8), (2.9), we see that for any fix ed z E 
(0,2T), the graph of Ki (z,s), i = 1,2, is just a translation of the graph of 
Ki(O, s), i = 1, 2. Therefore, we have the following inequalities [5, 6] 

2T 2T 

(3.4) I jK 1(z, s)j ds = I IK1 (0, s)j ds :S :f ( 1- ｳ ｩｮｾｾｾ Ｑ ｔＩ Ｌ＠
0 0 
2T 2T 

(3.5) I IK2(z,s)jds = I IK 2(0,s)j ds ::; Ｚｾ＠ ｣ｩｾ｜Ｚｔ＠ - 1). 
0 0 

It should be noticed that T is small and the right-hand sides of the above two 
inequalities (3.4), (3.5) vanish when T goes to zero. 

Let v be a nontrivial function in B (O, r). We define 

I = {v(s) : v E B(O,r) , 0::; s ::; 2T}. 

It is obvious that I ｾ＠ [ - 1·, r] and 0 E I , since otherwise the equation ｾｶ＠ = v 
has no solution in B(O, r) because of the condition Eq. (2.4) and we are done. 
Using the Mean Value Theorem, we then have 

f(v(s)) = f (O) + /'(c)v(s), Vs E [0, 2T], 

where c = c(s) E I. Hence, since f' is continuous in i ts argument, there exists 
an N > 0 such that 

11 /' (c)ll ::; sup 1/'(v(s))j ::; sup 1/' (w) J::; N. 
ｏ ｾ ｳ ｾ Ｒｔ＠ Ｍ ｲ ｾ ｷ ｾ ｲ＠

From the Lemma 1, we know 

Therefore, we have 

2T 

I Ki( z, s)f (O) ds = 0. 
0 

2T 

II A1vjj = sup IK1(z,s)j(v(s))ds , 
O<z<2T - - 0 

2T 

= sup IK1 (z,s)[ f (O) + f'( c)v(s)]ds , 
O<z<2T - - 0 
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2T 

= sup I K1 (z, s)f'(c)v(s)ds , 
O<z< 2T - - 0 

2T 

ｾ＠ sup I IK1 (z, s)lll f' (c)llllv(s)ll ds, 
O< z<2T 

- - 0 

2T 

ｾ＠ Nllvll sup I IK1 (z, s)l ds, 
O< z< 2T 

- - 0 

2N ( A.1T ) 
ｾ＠ A.i llvll 1 - sinhA.lT ' Vv E B(O, T) . 

It can be seen that when T is small enough we shall have 

(3.6) - 1 - < 1 2N ( A.1T ) 
A. i sinhA.1T · 

703 

Therefore, we proved that when T is small enough, we shall have IIA1 vll < llvll 
for all nontrivial v E B (0, r) . Similarly, we can also prove that when T is small 
enough, 

(3.7) 

and hence, IIA2vll < llvll for all nontrivial v E B(O,r ). 
0 

By Theorem 3, we see that the equation ｾｶ＠ = v , i = 1, 2, has no nontriv-
ial solut ion in B(O, r) when the inequaliti es (3.6), (3.7) hold. T his implies that 
Eq. (2.7) has no nont rivial solut ion in B(O, r) when C > 0 and 

or when C < 0 but - C/(aa2
) -:j; (br/T)2 with k being any integer and 

Therefore, we proved the foll owing nonexistence theorem for small 2T-periodic 
t raveling wave solutions to the generali zed Boussinesq equation. 

THEOREM 4. For any given small T > 0, there exist an r > 0 and N > 0 
such that llf'(v) ll ｾ＠ N when llvll ｾ＠ r. Thus to Eq. (2.1) with the boundary 
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conditions Eqs. (2.3), (2.4), there is no 2T-periodic traveling wave solution U(z ) 
with amplitude less than r if (1) C > 0 and 

2N ( ..\1T ) 
.Xr 1

- sinh..\1T < 1' 

or (2) C < 0 but -Cj(aa2 ) ::f. (krr/T)2 with k being any integer, and 
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