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A nonexistence theorem of small periodic traveling
wave solutions to the generalized Boussinesq equation

Y. CHEN (FAYETTEVILLE)

THE GENERALIZED Boussinesq equation, uy — Uzz + [f(u)]zz + Uzzzz = 0, and its
periodic traveling wave solutions are considered. Using the transform z = = — wt,
the equation is converted to a nonlinear ordinary differential equation with peri-
odic boundary conditions. An equivalent relation between the ordinary differential
equation and a Hammerstein-type integral equation is then established by using
the Green’s function method. This integral equation generates compact operators in
(Car,||-|l), a Banach space of real-valued continuous periodic functions with a given
period 27". We prove that for small 7' > 0, there exists an r > 0 such that there is no
nontrivial solution to the integral equation in the ball B(0,7) C Car. And hence, the
generalized Boussinesq equation has no 2T-periodic traveling wave solutions having
amplitude less than r.

1. Introduction

IN THE 1870’s, Boussinesq derived some model equations for the propagation of
small amplitude long wave on the surface of water [1]. These equations possess
special traveling wave solutions called solitary waves. Boussinesq’s theory was
the first to give a satisfactory and scientific explanation of the phenomenon of
solitary waves discovered by Scott Russell in his experimental observation of
shallow water propagation some thirty years earlier [2].

The original equation due to Boussinesq is not the only mathematical model
for small amplitude planar long waves on the surface of shallow water. Different
choices of the independent variables and the possibility of modifying lower order
terms by the use of the leading order relationships can lead to a whole range
of equations, all of which have the same formal validity [3]. All of these models
possess one obvious characteristic, however, which is that they are perturbations
of the linear wave equation that takes account of small effects of nonlinearity
and dispersion.

In this paper, we consider a generalized Boussinesq equation of the form

(1-1) Ut — Ugg + [f(u)]r:t + Uzzezr = 0,

where u = u(t,z) and f(u) is a C' function in its argument.

We shall prove a nonexistence theorem of periodic traveling wave solutions to
this equation following the idea of L1u and PAo [4], SOEWONO [5], and CHEN and
HE [6]. Of course, this does not establish the nonexistence of periodic traveling
wave solutions to the generalized Boussinesq equation. We merely prove that
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for a given small T' > 0, under certain conditions, 27-periodic traveling wave
solutions with small amplitude to the generalized Boussinesq equation do not
exist. There is no doubt about the existence of periodic traveling wave solutions
to the generalized Boussinesq equation when f(u) = u™ for some positive integer
n. It is well known that the periodic cnoidal wave solutions exist and can be
representable as infinite sums of solitons when f(u) = u" and n =1, 2 [7, 8, 9].

The plan of this paper is as follows. In Sec. 2, the generalized Boussinesq equa-
tion is transformed to an ordinary differential equation with periodic boundary
conditions. We then apply the Green’s function method to derive a nonlinear in-
tegral equation equivalent to the ordinary differential equation. The nonexistence
of small periodic solutions to the integral equation is proved in Sec. 3. Therefore,
the nonexistence of small 27-periodic traveling wave solutions to the generalized
Boussinesq equation is established.

2. Formulation of the problem

We start from the generalized Boussinesq equation of the form

(2-1) Ut — Ugz + [f(u)]:c:c + Ugzzz = 0,

where the function f is C' in its argument. We are interested in the periodic
traveling wave solutions of the form u(z,t) = U(z) = U(z — wt), where w > 0 is
the wave speed and z = x — wt is the characteristic variable. Substitution of the
U(z) into Eq. (2.1) then leads to the fourth order nonlinear ordinary differential
equation

(2.2) UW(z) = CU"(2) - [f(U(2))]",

where C = (1 — w?). To obtain periodic solutions, we impose the following
boundary conditions

(2.3) u™) =u™©er), n=01,23,

where T is a preassigned positive number. To eliminate nontrivial constant solu-
tions to the ordinary differential equation (2.2), another condition is introduced

20"
(24) U(z)dz = 0.
/

It is obvious that any solution U(z) of the boundary value problem consisting of
Egs. (2.2) - (2.4) can be extended to a 2T-periodic traveling wave solution to the
original evolution equation (2.1).
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Integrating both sides of Eq. (2.2) with respect to z twice and using Egs. (2.3),
(2.4) yield

(2.5) U"(z) - CU(2) = E - f(U(2)),
(2.6) um) = u™er), n=01,
where

2T
E = [ f(U(2)) dz/(2T).
0

Conversely, integrating both sides of Eq. (2.5) from 0 to 27" and using Eqgs. (2.6)
will give us Eq. (2.4), and direct differentiations of Eq.(2.5) will give us Egs. (2.2),
(2.3). Therefore, we have proved the following theorem.

THEOREM 1. Suppose C # 0, a function U(z) is a 2T -pertodic traveling
wave solution to Eq. (2.1) satisfying the boundary conditions Eqs. (2.3), (2.4) if
and only if it is a solution to the boundary value problem consisting of Egs.
(2.5), (2.6).

From now on we only consider the two cases: 1. C > 0 and 2. C < 0 but
—C # (km/T)? with k being any integer. Treating the right-hand side of Eq. (2.5)
as a forcing term and using the Green’s function method [4, 10], the boundary

value problem Egs. (2.5), (2.6) can be converted to a nonlinear integral equation
of the form

27
(2.7) Ula} = fKi(z,s)f(U(s))ds, vz € [0,2T],
0
where the kernels K;, i = 1,2, are defined as follows:
1. When C > 0, we denote A\; = +/C, then
cosh A\ (T — |z — s|) 1
2\ sinh T 2X3T

2. When C < 0 but —C # (kn/T)? with k being any integer, let Ay = /—C,
then

(2.8)  Ki(z,s) =

vz, s € [0,27).

cos A\o(T — |z — s]) 1

2. K = - Vz 0, 2T.
Rl 2ae) = st 29T e R
LEMMA 1. The kernels K; and K5 have the following properties:
K;(0,s) = K;(2T,s), Vs €[0,27), i=1,2,

Ki(z,2T — s) = K;(2T — z,s), Vz,5 € [0,2T], i=1,2,

T
/K,-(z,s)ds =}, Yz € [0,27]; i=12
0
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P r o o f Straightforward computations based on the definitions of the
Ki(z,s) and K»(z, s) given in Egs. (2.8), (2.9).
a

THEOREM 2. A function U(2) is a solution of the boundary value problem
consisting of Eqs. (2.5), (2.6) if and only if it 1s a solution of the integral equa-
tion (2.7).

Proof The “if” part can be proved by direct differentiations of Eq. (2.7)
and the “only if” part is based on the Green’s function method by treating the
right-hand side of Eq. (2.5) as a nonhomogeneous term.

a

3. Nonexistence theorem

It is seen from the Theorem 1 and 2 that U(z) is a solution to the integral
equation (2.7) if and only if it is a solution to Eq.(2.1) satisfying the bound-
ary conditions Eqs. (2.3), (2.4). Therefore, to show the nonexistence of small
2T-periodic traveling wave solutions to Eq.(2.1) with the boundary conditions
Egs. (2.3), (2.4), it is sufficient to show that small solution to Eq. (2.7) does not
exist.

To this end we define Ca7 as a collection of real-valued continuous functions,
v(z), on [0,27] such that v(0) = v(2T). Equip Cor with the sup norm [|-|| as
[lv]| = supg<,<or [v(2)|, for each v € Car, then (Cor,||:||) becomes a Banach
space and ||v| is the amplitude of v.

We now define the operators A;, i = 1,2, on Cyp as

27
(3.1) Ails) = /K,-(z,s)f(v(s))ds, Vo € Car,
0

where the kernels K;, 1 = 1,2, are defined in Egs. (2.8), (2.9). Notice that the
operator A; depends on T and A;, 1 = 1,2.

We shall show that for any given small 7' > 0, there exists an 7 > 0 such that
|l 4;v|| < ||v|| for any nontrivial function v € B(0,r) C Car, i = 1, 2. This implies
that the equation A;v = v has no nontrivial solution with amplitude smaller than
r. And hence, the nonexistence of nontrivial small solution to the boundary value
problem Egs. (2.4), (2.5) is established. This, in turn, leads to the nonexistence
of small 27-periodic traveling wave solution U(z) to the generalized Boussinesq
equation satisfying the boundary conditions Eqs. (2.3), (2.4).

A consequence of Lemma 1 can be stated now.

LEMMA 2. Let v be an element of Cor. If v(2) = v(2T — z) for z € [0, 271,
then Ajv(z) = Aw(2T — 2),1=1,2.
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Let r > 0 and B(0,7) be a bounded ball in Car, we then have the following
theorem.

THEOREM 3. A; : Cor — Cor, i = 1,2, is compact and || A;v| < ||v]| for
all nontriviel v € B(0,r) when T is small enough, i = 1,2.

Proof First we show A; : Cor — Cap, 1 = 1,2. Since it is obvious from
Lemma 1 that 4;v(0) = A;v(2T) for each v € Cop, i = 1,2, it suffices to show
that A;v, ¢ = 1,2, is continuous on [0, 2T').

Let v be an element in Cyr, we have

d
(3.2) A;‘;(z) - ZSmh o [ sinh Ay (T — z + s) f(v(s)) ds
+ z*suil}ﬁ fsinh/\l(T +2— s flule)) da,
dAsv(z
(33) AZZ( ) _ zsmAzT [ sin (T — z + 8) f (v(s)) ds

s AZT /smA2 (T +2 — s fluta)) da

The existence of dAjv/dz and dAjzv/dz implies that both A;v and Azv are
continuous on [0,27'], and hence, we have proved A; : Cor — Cor, i = 1,2.

Let S be any bounded subset of Car, i.e., there exists an Ly > 0 such that
|lv|| < Lo for all v € S. Then since f is C! in its argument, there exists an My > 0
such that

If@)l = sup [f(v(z))] < sup [f(w)| <M, VvES.

0<z<2T —Lo<w<Lg
Since sin AT # 0 and

0< <2T

/|K(z Alds <208,  i=13

we obtain from Egs. (3.1) - (3.3)

2M,
Il < —5=,  WweS, i=12,

TMO

Ti

|dAiv/dz|| < YweS, i=1,2
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where 71 = 1 and 75 = |sin A2T'|. Thus, A;S, ¢ = 1,2, is uniformly bounded
and equi-continuous, and by the Ascoli-Arzela Theorem both A; and A, are
compact operators from Cor into Cor.

From the definition of K;, Egs.(2.8), (2.9), we see that for any fixed z €
(0,2T), the graph of K;(z,s), i = 1,2, is just a translation of the graph of
K;(0,s), i = 1, 2. Therefore, we have the following inequalities [5, 6]

ST 2T 9 MT
1
: = < — 1 = T w N
(3 4) f[Kl(Z,S)'dS /|K1(0>3)|ds = )‘% ( SiIlh/\lT) ?
0 0
o T 2 [ AT
2
. = K < ] . r
(35) 0/ Koz, 5)] ds 0/ K0, 905 < 37 (57 —1)

It should be noticed that T' is small and the right-hand sides of the above two
inequalities (3.4), (3.5) vanish when T goes to zero.
Let v be a nontrivial function in B(0,r). We define

I={v(s): ve B(0,r), 0<s<2T}.

It is obvious that I C [—7r,r] and 0 € I, since otherwise the equation A;v = v
has no solution in B(0,r) because of the condition Eq.(2.4) and we are done.
Using the Mean Value Theorem, we then have

flu(s)) = f£(0) + f'(c)u(s), Vs €[0,2T],

where ¢ = ¢(s) € I. Hence, since f' is continuous in its argument, there exists
an N > 0 such that

IF@I < sup [F(os)] < sup |f'(w)| < N.
0<s<2T —r<w<r

From the Lemma 1, we know

2T

fKi(z,s)f(O) iy =1l

0

Therefore, we have

b 4

2T
lel = sup | [ Ka(z9)f(u(s) ds
0

0<z<2T

?

0<z<2T

2T
= sup le(z,s)[f(O) + f'(e)v(s)] ds
0
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= sup
0<z<2T

7

b of B
/ Ki(z, 8)f'(c)v(s)ds
ir

IA

sup | |Ki(z,8)| £ () llv(s)]l ds,

0<z<2T
="=""0
2T
N||v|| sup /|K1(z,s)|ds,
osz<oT

IA

IA

9N b &
)\—%“‘U“ (1 — m) 5 Yo & B(O,T)

It can be seen that when T is small enough we shall have

N MT
. o L P
(&:6) Y; ( sinhAlT) .

Therefore, we proved that when 7 is small enough, we shall have || Ajv| < ||v||
for all nontrivial v € B(0,r). Similarly, we can also prove that when T is small
enough,

2N [ AT
(37) Tg—' (Sin,\zT = 1) < 1

and hence, || Azv|| < ||v| for all nontrivial v € B(0,r).
a

By Theorem 3, we see that the equation A;v = v, 1 = 1,2, has no nontriv-
ial solution in B(0,r) when the inequalities (3.6), (3.7) hold. This implies that
Eq. (2.7) has no nontrivial solution in B(0,r) when C' > 0 and

v (, wT )
22 sinh T/ S
or when C < 0 but —C/(@a?) # (kw/T)? with k being any integer and

2N AT
—_— | —— =1 1.
X (sin)\gT ) =

Therefore, we proved the following nonexistence theorem for small 27-periodic

traveling wave solutions to the generalized Boussinesq equation.

THEOREM 4. For any given small T > 0, there exist anrt > 0 and N > 0
such that ||f'(v)|| < N when ||v]| < r. Thus to Eq.(2.1) with the boundary
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conditions Eqs. (2.3), (2.4), there is no 2T -periodic traveling wave solution U(z)
with amplitude less than r if (1) C > 0 and

2N MT
Yl (1 - sinh)\lT) <L

or (2) C <0 but —C/(aa?) # (kn/T)? with k being any integer, and

2N AT
—_— | —— -1 1L
X (sin)«gT ) =
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