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Uniqueness in nonlinear theory of porous elastic materials

R. QUINTANILLA (BARCELONA)

THIS NOTE is concerned with static deformations in a nonlinear theory of elastic materials with
voids. First we extend some conservation laws to the nonlinear theory. A uniqueness result is
presented under a condition related to the quasi-convexity assumptions.

1. Introduction

In [1], KNOPs AND STUART proved the uniqueness of the solutions to certain
displacement boundary-value problems in the context of the nonlinear theory of
homogeneous hyperelasticity for a body occupying a star-shaped bounded region.
Recently, this result has been extended to the theory of interacting continua [22].
In this paper we extend some of these results to the theory of nonlinear elastic
materials with voids.

The theory of elastic materials with voids is a recent extension of the classical
theory of elasticity. The nonlinear theory has been established by Nunziato and
Cowin [2]. In this theory the bulk density is the product of two scalar fields, the
matrix material density and the volume fraction field. An intensive work on this
kind of materials is developing currently [3-9]. An extensive review on elastic
materials with voids has been presented in [10].

Existence and uniqueness results in the statical linear theory of an elastic
material with voids have been presented [10, 11]; meanwhile many other theorems
have been presented for the dynamic case [12-14], and in [15] for the dynamical
nonlinear problem. We remark that in [10] CIARLETTA and IESAN have obtained
a uniqueness and existence theorem for the static equations of porous elastic
materials, but the authors noted that their results apply the one-dimensional case
only.

We consider the homogeneous deformation (x, ) : X — (M X + b, 1), where
M is a fixed regular square matrix such that det(M) > 0, b is a fixed vector,
0 < vy < 1is a constant number and X represents the material point. We suppose
that this deformation is a solution to the equilibrium problem with boundary
conditions (x,») : X — (MX + b, 1j). For star-shaped elastic materials we will
prove, under suitable assumptions concerning the energy function ¥, that there
is no other solution satisfying these boundary conditions.

The method follows the ideas of [1]. We first extend a conservation law estab-
lished by GREEN [16] in the case of hyperelasticity.

Following the method used in [1], we impose start with a basic assumption on
the energy to obtain our result. We suppose that the energy satisfies a condition
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related with the quasi-convexity, an assumption introduced by Morrey [17] and
employed in the classical works of BALL [18-20]. Nevertheless, in this paper we
are not concerned with the problem of existence of solutions.

In Sec.2 we state the basic equations and the assumptions. We also extend
some conservation laws to the nonlinear theory of elastic materials with voids.
The uniqueness result is presented in Sec. 3.

2. Preliminaries

We consider a body which occupies a bounded regular region 5 of the Eu-
clidean n-dimensional space with the boundary surface 9 5. We assume that B is
star-shaped and that J B is sufficiently regular to ensure the validity of the usual
laws of transformation of surface integrals.

Throughout this paper we employ the usual summation and differentiation
conventions: subscripts preceded by a comma denote partial differentiation with
respect to the corresponding Cartesian coordinate; V is the gradient operator
with respect to the position X. We let N4 be the components of the outward unit
normal to J B and denote the scalar product of two tensors by an interposed dot.
By a ¢ b we denote the tensor product of the vectors a and b.

We assume that /3 is occupied by an elastic material with voids. A deformation
in B is described by the spatial position field x and the volume fraction field ».
The deformations determine the deformation gradient F = Vx, and the gradient
of the volume fraction G = Vr. By M* we denote the set of all real square
matrices F of order n such that det(F) > 0. As usual, we suppose that F € M*
and 0 < v < 1 for all deformations.

We also assume that the material possesses internal energy ¥ per unit initial
volume. We denote by T the first Piola - Kirchhoff stress tensor, S the equilibrated
stress and by ¢ the equilibrated body force per unit volume. In what follows, oc-
casionally it will be convenient to write various expressions in component form
and to represent the vector and tensor fields by their components referred to
the considered system of Cartesian axes. Thus, the components of the deforma-
tion (x, ) will be denoted by (z,, ), while the components of the deformation
gradient fields F and G will be denoted by /4 and (i 4, respectively.

A deformation (x, ~) in f3, defined for all X in /3, is a smooth equilibrium
solution provided x;, v € C3(B, R")n C''(B, R™) and the equilibrium equations
(see, e.g. [10])

Tain = 0,

(1) )
odatg=0,

are satisfied.
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The material at the point X is characterized by the constitutive relations

¥*(F, G, v), T = T*(F, G, v),
S = §*(F,G, ), g = 9*(F,G,»),

\
24

(2)

where X7, T*, S8*, ¢” are smooth functions.
We suppose that the Piola - Kirchhoff stress tensor, the equilibrated stress and
equilibrated body force are related to the energy in the following manner:

gz " T\’ Jx
= () s=() . =w

We recall that equalities (3) are used in the analysis of elastic materials with voids
in the absence of dissipation (see [10]).

Let us assume that M is a fixed regular square matrix in M*, b is a fixed
vector and 0 < vy < 1 is a constant number. In this paper we suppose that the
motion

(4) x=MX+b, v=uvy in B,

is a solution of the problem determined by the equilibrium equations (1) and the
boundary conditions

(5) x =MX + b, v=1y in JB.
It is clear that the equality

6 UEMO =0
() m( ,.I/())— .

is the necessary and sufficient condition for the energy function ¥ to ensure that
the deformation (4) is a solution to the problem determined by the equilibrium
equations (1) and the boundary conditions (§).

Let us also note for later use that the divergence theorem applied to the
equilibrium equations gives

7) /T-N(/s =0, and /S-N(]s +/gdz,' -

9B B B
In order to obtain the uniqueness result, we will introduce some assumptions on
the energy function. We suppose that

(i) ¥ is rank-one convex at (M, 0, 1), i.e. the following inequality holds
(8) B al a, 1) > ¥( ) _@V( vp)a ———0\“( 0, vp)a
8 YM+awd,a, Y(M, 0, + —(M, 0, @d+ ==(M,0, ry)a,
g = il JF 2 ()G E

for all a, d, a in an n-dimensional Euclidean space, and

http://rcin.org.pl
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(ii) ¥ satisfies the inequality

O [[50n+ Tox), o), 00 + 1)
D
~LO% M+ o), V), 10+ (X)) 1] do

> Y(M,0,19) volume (D).

for all non-empty bounded subsets [ and for all Lipschitz-continuous vectorial
fields 7, ¢ and » which vanish on the boundary of D, such that M+ V¢ (X) € M*
for all X € B and Vi = V. Furthermore we suppose that equality holds only
when 7 = ¢ = 0 and ¢ = 0.

We remark that the last condition is related to a quasi-convexity assumption.
The rank-one convexity and quasi-convexity assumptions are usual in the studies
of nonlinear elasticity [1, 18-21]. One expects that the energetic condition:

(i) ¥ satisfies the inequality

J IS0+ V6(X), V(%) v + (X)) do > S(M,0,15) volume (D)
D
and (i) could be sufficient to allow our uniqueness result, but our analysis does
not guarantee it.
We can obtain a family of functions satisfying (i) and (ii). Let W (F, G, v) be
a function satifying (i) and (ii") and OW/0v(M, 0, vy) = 0, and let ¥(F, G, v) be
the solution of the equation

nY + (i — v)oL/dv = W.

Then ¥ satisfies conditions (i) and (ii). An easy quadrature shows that

Vi
S, G v) = (v = 10)" | W(E,G,E)E - vo) D de.

v

We finish this section by stating a Lemma on equalities of the conservation
type.

LEmMA 1. Let (x, ) be a solution to the equations of equilibrium (1). Then
the following equalities are satisfied:

(i) (Taivi+ Sav)a = Taxia+ Sav.a — gv,

(i) Ex=Taizix +Savk)a,

(iii) nY — qv + (,\-1\‘ (Itqi-l'z‘,f\' + 54 U‘[\'))_,g = (.\:[\'E)‘]\' + (:[‘.45.1?1- + SA!/)_A ;
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P roof. The first equality follows from multiplying the first equation (1) by
r; and the second by v. After addition we have

0="T4 a2+ (Saa+ 9= (Taix;+ Sav) s — {Taivia+ Sav.a — gv}.

Thus, the first equality is proved.
To obtain the second equality we proceed in a similar way, but multiply by
x; i and p -, respectively, to obtain

0="Taavix +(Sa4+ 9k
= (Taizikx + Savg)a — (Taiziax + Savka — gv.i),
which on using (3), becomes
0= Taixix + Saiyir)a— LK,

and the second equality is proved.
The third equality is obtained from the second one by multiplying by X . We
have

0= Xg {(Taizix + Savig)a— Lk}
= (Xg(Taizix + Savk)) 4 + nZ — (Taizia + Sava) — (X Z) k-

From the equality (i), we finally obtain

0= (”E l .(/l/) + (‘X']{(T'h;rij\' + S!&”i,[\'))y,@ - (‘\:1\'3),1\’ - (T.-”l-ilri * SAV),A s
which implies (iii).
3. The uniqueness result

In this section we obtain a uniqueness theorem to the problem determined
by the equilibrium equations (1) and the boundary conditions (5). To this end, it
will be useful to introduce the function

(10) J(x,v) = _/Edu = ;1;/_(/1/ dv.
B B

Throughout this section, we suppose that /3 is an open bounded domain of the
three-dimensional Euclidean space and that B is star-shaped with respect the
origin which is located in B. It is clear that

(11) XN >0, forall X e dB.

We have the following result:
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LemMa 2. Let B be defined as above. Let (x, ) be a smooth equilibrium
solution to the system (1). Then

(12) nJ(x,v) = f {(N-X)S +TT. [N ® (X = 7%)]

B ‘
+ST. [N ® (u - rdl)] } ds,
ar

P r o o f. The proof follows by application of the divergence theorem to
equality (iii) and use of the identities r(dx/dr) = X+ Vxand r(dv/dr) = X« V.

Our uniqueness theorem follows by considering the difference between two
solutions and using the function 7.

Let (x, ») and (X, ) be two solutions to the equilibrium equations (1) satisfying
the same boundary conditions (5). Then we have

where r = (X X)1/2.

(T x, v) - T 7)) = / (N-X) {E(Vx, Vv, v) — £(VX, V7, 7)) ds
s

+ / (TT(Vx, Vi, v). [N ® (x - fg—T)J

9B

— T'(VX, V7, 7)> [N ® (i - ig%—‘)D ds

+ / (ST(VX. Vv, v). [N ® (i/ - rg—;/”
4B
v
~ ST(VX, VI, 7). {N ® (17 - ’%)D ds.
Now, on dF the two solutions (x, ) and (X, ) coincide, so that
X=X=MX+b and v=v=1, on 0B
and we deduce
T dx T rere e (0%
T (Vx,Vv,v)-|IN® (x— )'F ~-T(VX, V7, 1)« IN® (X —r—
= :
B g
=TT (Vx, Vi, v)- [N ® (r(x_. 'dxﬂ

+ [TT (Vx, Vv, v) - TN (VX, V7, ”)} : {N ® (i 'y ’_)]
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and
= ST(Vx, Vv, ) [N ® ( ()”T()V”

+ {ST (Vx, Vv, v) - 8T(VX, V7, l/)} . [N ® (17 - 70)—7)} :

ar

We also recall the following identities on J B (see [1])

_ J(X —x) A(X - x) ()(u V) - v)
Jr =X ON 7 ar =N X) ON
and
vx_Vx+Vx—Vx—Vx+a(’; N o,
Vv =Vvr+Vv-Vv=Vv+ a(UC)N V) ® N.
From the previous equalities we deduce
(13) n(Jx,v)-JEX 1)) = /(N-X){S(Vx, Vi, v)
ox—0x _ ov — dv _
(\_’ + ()N (03] N, Vi + T & N, l/)
D OxX —dx v ]
. T(Vx.\_//,u)-[ N2 } + S(VX, Vv, v). [()—N ® Nj|}([h

+ {2, v, -6 7)oN]

+ [S(Vx, Vv, v)X - §(VX, V7, v)] - [(u - 7%) N}}da.

Now, we may state:

Lemma 3. Let B be defined as above and let (x, ) be a smooth solution to
the equilibrium system (1) such that boundary conditions (5) are satisfied. Let us
suppose that ¥ satisfies the condition (8). Then

(14) J(x,v)+ %fg dv < J (X, 7),
B

where (X.7) is a solution defined by (4).
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Proof We apply the inequalities (8) and (11) to the first integrand on the
right-hand side of equality (13) to conclude that

(15)  n(J(x,v) - JX,7))
< / {[T(Vx,Vu, v) - T(VX, V7, v)] [(sz— rg—f) ® N]

3B
+ [S(Vx, Vi, v) — S(VX, VT, )] [(V - g:) ® N] } ds.
On the other hand, from (4), we have VX = M for all X € B. Then it follows
that _ oy
r X = v
x—TW:b and II—T‘—a—T‘=l/07

and inequality (15) therefore yields

n(Jx,v)—JEX7v)) < ] [T(Vx,Vv,v)—T(VX, Vi, 7)] «[b® N] ds
OB
+ [S(Vx, Vi, 1) — S(VX, VT, 19)] +[vo @ N] ds.

Inequality (14) follows from (7) on recalling that b and v are constants.
Now, we may state the uniqueness result:

THEOREM 1. Let B, (x,r), (X, 7)., M and vy be as in the previous Lemma, and
let the energy X satisfy the condition (9). Then (x, v) is a solution defined by (4).

Proof. Let ussuppose that (x, ») # (X,7) = (MX+b, ). Then assumption
(9) implies

T®7) < T(0)+ / gdi,
B
which contradicts Lemma 3. Hence (x, ) = (X,7) for all X € 5.
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