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Uniqueness in nonlinear theory of porous elastic materials 

R. QUINTANTLLA (BARCELONA) 

THIS NOTE is concerned with static deformations in a nonlinear theory of elastic materials with 
voids. First we extend some conservation laws to the nonlinear theory. A uniqueness result is 
presented under a condition related to the quasi-convexity assumptions. 

l. Introduction 

IN [1 ], KNoPs AND STUART proved the uniqueness of the solutions to certain 
displacement boundary-value problems in the context of the nonlinear theory of 
homogeneous hyperelasticity for a body occupying a star-shaped bounded region. 
Recently, this result has been extended to the theory of interacting continua [22]. 
In this paper we extend some of these results to the theory of nonlinear elastic 
materials with voids. 

The theory of elastic materials with voids is a recent extension of the classical 
theory of elasticity. The nonlinear theory has been established by NUNZIATO and 
CowrN [2]. In this theory the bulk density is the product of two scalar fields, the 
matrix material density and the volume fraction field . An intensive work on this 
kind of materials is developing currently [3 -9]. An extensive review on elastic 
materials with voids has been presented in [10] . 

Existence and uniqueness results in the statical linear theory of an elastic 
material with voids have been presented [10, 11]; meanwhile many other theorems 
have been presented for the dynamic case [12-14], and in [15] for the dynamical 
nonlinear problem. We remark that in [10] ClARLETTA and ｉ ｾａｎ＠ have obtained 
a uniqueness and existence theorem for the static equations of porous elastic 
materials, but the authors noted that their results apply the one-dimensional case 
only. 

We consider the homogeneous deformation (x, v): X -. (M X+ b, vo), where 
M is a fixed regular square matrix such that det(M) > 0, b is a fixed vector, 
0 < 110 ｾ＠ 1 is a constant number and X represents the material point. We suppose 
that this deformation is a solution to the equilibrium problem with boundary 
conditio ns (x, v) : X - (M X + b, v0). For star-shaped elastic materials we wi ll 
prove, under suitable assumptions concerning the energy function ｾＮ＠ that there 
is no other solution satisfying these boundaty conditions. 

The method follows the ideas of [1]. We fir st extend a conservation law estab-
lished by GREEN [16] in the case of hyperelasticity. 

Foll owing the method used in [1 ], we impose start with a basic assumption on 
the energy to obtain our result. We suppose that the energy satisfi es a condition 
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related with the quasi-convexity, an assumption introduced by MORREY [17] and 
employed in the classical works of BALL [18-20]. Nevertheless, in this paper we 
are not concerned with the problem of existence of solutions. 

In Sec. 2 we state the basic equations and the assumptions. We also extend 
some consetvation laws to the nonlinear theory of elastic materials with voids. 
The uniqueness result is presented in Sec. 3. 

2. Preliminaries 

We consider a body which occupies a bounded regular region B of the Eu-
clidean n-dimensional space with the boundary surface aB. We assume that B is 
star-shaped and that aB is sufficiently regular to ensure the validity of the usual 
laws of transformation of surface integrals. 

Throughout this paper we employ the usual summation and differentiation 
conventions: subscripts preceded by a comma denote partial differentiation with 
respect to the corresponding Cartesian coordinate; \1 is the gradient operator 
with respect to the position X. We let N A be the components of the outward unit 
normal to dB and denote the scalar product of two tensors by an interposed dot. 
By a (>) b we denote the tensor product of the vectors a and b. 

We as ume that B is occupied by an elastic material with voids. A deformation 
in 8 is described by the spati al position field x and the volume fraction fi eld v. 
The deformations determine the deformation gradient F = \lx, and the gradient 
of the volume fraction G = \111. By M + we denote the set of all real square 
matrices F of order n such that det(F) > 0. As 'usual, we suppose that F E ;\..1 + 
and 0 < 11 ::; 1 fo r all deformatio ns. 

We also assume that the materia l possesses internal energy ｾ＠ per unit initi al 
volume. We denote by T the fir st Piola - Kirchhofi stress tensor, S the equilibrated 
stress and by g the equilibrated body force per unit volume. In what follows, oc-
casio nall y it will be convenient to write various expressions in component form 
and to represent the vector and tensor fi elds by their components referred to 
the considered system of Cartesian axes. Thus, the components of the deforma-
tion (x. 11) will be denoted by (J·;, 11), while the components of the deformation 
gradient fi elds F and G will be denoted by ｊ ｾ ａ＠ and G A, respectively. 

A deformation (x. 11) in B, defin ed for all X in B, is a smooth equili brium 
solution provided .J:i, 11 E C'2( 8 , Rn) n C' 1 (13, R11

) and the equili brium equatio ns 
(see, e.g. [10]) 

(1) 

are sati sfi ed. 

TAi ,A = 0, 

• 'A,A + g = 0, 
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The material at the point X is characterized by the constitutive relations 

(2) 
ｾ＠ = ｾＪ Ｈｆ Ｌ＠ G, v), 

s = S"(F, G, IJ), 

where 2..."', T*, S", g* are smooth functions. 

T = T'"(F , G, v) , 

g = g"(F, G, v) , 

69 

We suppose that the Piola- Kirchhoff stress tensor, the equilibrated stress and 
equili brated body force are related to the energy in the fo ll owing manner: 

(3) (0-')T 
T = oF 

EJr, 
g = - 01/ 0 

We recall that equalities (3) are used in the analysis of elastic materials with voids 
in the absence of dissipation (see [10]). 

Let us assume that M is a fixed regular square matrix in M +, b is a fixed 
vector and 0 < 110 ::; 1 is a constant number. In this paper we suppose that the 
motion 

(4) X= MX + b, v = vo in B , 

is a solution of the problem determined by the equili brium equations (1) and the 
boundary conditions 

(5) X= MX + b, v = vo in EJB. 

It is clear that the equali ty 

(6) 
ＰＭＭｾ＠
ｾ Ｈ ｍ Ｌ＠ 0, ,;0) = 0, 
Ull 

is the necessary and sufficient conditi on for the energy function L to ensure that 
the deformation (4) is a solution to the problem determined by the equilibrium 
equations (1) and the boundary conditions (5). 

Let us also note for later use that the divergence theorem applied to the 
equilibri um equations gives 

(7) j T·Nds = 0. 

i'I H 

and Js·Nds+j gdv = O. 
o B B 

In order to obtain the uniqueness result, we will introduce some assumptions on 
the energy function. We suppose that 

(i) ｾ＠ is rank-one convex at (M, 0 11o), i.e. the fo ll owing inequali ty holds 

(8) ｾ Ｈｍ＠ +a 0 d. a, v0) ｾ＠ 2...(M , 0, IJo) + ｾ ［Ｈｍ Ｌ＠ 0, v0)a ® d + ｾ ｾＨ ｍ Ｌ＠ 0, v0)a, 

for all a, d, a in an n -dimensional Euclidean space, and 
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(ii) E satisfies the inequality 

(9) j [E(M + 'V cp(X) , 'VV; (X) , tlo + 17(X)) 
D 

1 8E ] - -:;; av (M+ 'V cp(X) , \17/;(X) , Vo + 1J(X)) •1J(X) dv 

2:: E(M , 0, vo) volume (D) . 

for all non-empty bounded subsets D and for all Lipschitz-continuous vectorial 
fields 1J, cp and V; which vanish on the boundary of D, such that M+ 'V </J(X) E A1 + 
for all X E B and 'V 1J = 'V V; . Furthermore we suppose that equality holds only 
when r; = V; = 0 and cp = 0. 

We remark that the last condition is related to a quasi-convexity assumption. 
The rank-one convexity and quasi-convexity assumptions are usual in the studies 
of nonlinear elasticity [1 , 18-21 ]. One expects that the energetic condition: 

(ii' ) E satisfies the inequality 

j [E(M + 'V cp(X) , 'V 1f-!{ X) , v0 + 17(X))] dv 2:: E(M , 0, tlo) volume (D) 
D 

and (i) could be sufficient to allow our uniqueness result, but our analysis does 
not guarantee it. 

We can obtain a family of functions satisfying (i) and (ii). Let vli(F, G, v) be 
a function satifying (i) and (ii ' ) and 8W / Oti (M , 0, 11o) = 0, and let E(F, G, v) be 
the solution of the equation 

nE + (v0 - t; )aE/ 0 11 = lill. 

Then L satisfi es conditions (i ) and (ii). An easy quadrature shows that 

vo 

ｾＨ ｆ Ｌ＠ G, v ) = (v- vor j W (F, G, Ｐ Ｈ ｾＭ vo)-(n+l) ､ｾＮ＠
V 

We fini sh this section by stating a Lemma on equaliti es of the conservation 
type. 

LEMMA 1. Let (x, v) be a solution to the equations of equilibrium (1). Then 
the fo ll owing equaliti es are satisfi ed: 

(i ) (TAi:""Ci + S'Av),A = TAi·""Ci, A + S'Ati ,A - 911, 

(ii) E ,1\· = (TAiXi ,f\. + S'Av,f\'),A, 

(iii) nE - 911 + (XJ\·(TAiXi ,r\· + SAvF)),A = (Xr\·E)F + (TAiXi + ｓ［ｾｶ Ｉ Ｌ ａＮ＠
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P r o o f. The first equality follows from multiplying the first equation (1) by 
.r:; and the second by v. After addition we have 

0 = TAi,A:t; + (S'A,A + g)v = (TA;X; + SAv),A- {TAiXi,A + SAv,A-gv} . 

Thus, the first equality is proved. 
To obtain the second equality we proceed in a similar way, but multiply by 

Xi,f,- and ;.t,J,-, respectively, to obtain 

which on using (3), becomes 

and the second equality is proved. 
The third equality is obtained from the second one by multiplying by X K. We 

have 

0 =X[,- {(TA;X;,J,- + SAII }\") ,A- L: ,J\} 

= (X ,,- (T4;X; ,J,· + SAv,x )),A + nL:- (1AiXi,A + SAv,A)- (XJ{L: ),I,· . 

From the equality (i) , we finally obtain 

0 = Ｈ ｮｾＭ gv) + (Xx(TAiXi ,J\ + SAVi,!,-)),A- (X f,-<-J ),K - (TA;X; + SAv),A, 

which implies (iii ). 

3. The uniqueness result 

In this sectio n we obtain a uniqueness theorem to the problem determined 
by the equilibrium equations (1) and the boundary conditions (5). To this end, it 
will be useful to introduce the function 

(10) J (x, v) = j L: clv - ｾ＠ j gl/ clv. 
B B 

Throughout this section, we suppose that B is an open bounded domain of the 
three-dimensional Euclidean space and that B is star-shaped with respect the 
origin which is located in B . It is clear that 

(11) X·N ｾ＠ 0, for all X E oB. 

We have the following result: 
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LEMMA 2. Let B be defined as above. Let (x, v) be a smooth equilibrium 
solution to the system (1). Then 

(12) nJ(x, 1; )= J ｻ Ｈｎ ﾷ ｘＩ ｅ Ｋｔ ｔ ﾷ｛ｎ ﾮ Ｈ ｸ Ｍｔｾ ［ Ｉ｝＠
8B 

where T = (X· X) 112. 

P r o o f. The proof follows by appli cation of the divergence theorem to 
equali ty (iii) and use of the identities T(oxjfh-) =X· \7x and T(fJvjfJ1·) = X· \7v. 

Our uniqueness theorem fo ll ows by considering the difference between two 
solutions and using the function J. 

Let (x, v) and (x, v ) be two solutions to the equilibrium equations (1) sati sfying 
the same boundary conditi o ns (5). Then we have 

n(J(x, v) - J (x, v)) = j (N ·X) { (Vx , \7v, v)- E(Vx, \71/, v)} ds 
8 B 

+ j ( TT(\7x, \7v,v)·[N ® Ｈ ｸ Ｍ Ｗﾷｾ［Ｉ｝＠
BB 

- TT (Vx, \71/ v) · [ N @ ( x - T ｾｾＩ ｝ Ｉ＠ ds 

+ j ( s T(\7x,\7v,v)·[N ® Ｈｶ Ｍｔｾｾ Ｉ｝＠
DB 

- s T (Vx, vv, V) · [N 0 (v - 1· ｾｾＩ｝Ｉ＠ ､ｾＮ＠

Now, o n f) 8 the two solutions (x, 1;) and (x, v ) coincide, so that 

x=x=MX+b and IJ = v = IJo, on oB 

and we deduce 
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and 

ST(V x, VIJ, l!) · [N 0 ｣ｾＭｲｾｾＩ ｝＠ - ST(Vx, VI7, v)·[N 0 ＨｶＭｲｾＺＩ ｊ＠

= s T (vx, V!J, v) . [N 0 (T' ov Br ov) ] 

+ [s T(v x,vv,v) - ST(vx, vi7, !;)] · [N 0 ＨｶＭｔｾＺ Ｉｊ Ｎ＠

We also recall the foll owing identities on oB (see [1]) 

T o(x - x) = (N. X)o(x - x) 
or oN ' 

ro(v - v) = (N·X)o(v- v) 
or oN 

and 

o(x - x) 
vx = vx + Vx- v x = Vx + oN 0 N, 

o(v- v) 
vv = v v + vv - v // = v v + oN 0 N. 

Fro m the previous equaliti es we deduce 

(l3) n(J (x, //) - J (x, 17)) = J (N. x){ ｾ Ｈ ｶ ｸ Ｌ＠ VIJ, 11) 
C!B 

( 
ox - ox av - a 1/ ) 

- ｾ＠ Vx + oN 0 N, Vt1 + oN 0 N, 1J 

+ T(vx, 'VII , 11)· [ f)xo-Nox 0 N] + S(vx, V/7, 11) · ｛ ＰＱＷ Ｐ ｾ
Ｐ ＱＯ＠ 0 N] } cls 

+ J { [T(V x, V v , 11) - T(Vx, V/7, 11)] • [ ( x- T ｾｾＩ＠ 0 N] 
oB 

+ [S(vx, V//, v)X- S(vx, V/7, 11)] • [ (v - 1' ｾＺＩ＠ 0 N] } ds. 

Now, we may state: 

L EMMA 3. Let B be defin ed as above and let (x , 1J) be a smooth solution to 
the equilibrium system (1) such that boundary conditions (5) are sati sfi ed. Let us 
suppose tha t ｾ＠ sati sfi es the condition (8). Then 

(14) J (x, 1J) + ｾ＠ j g clv ｾ＠ J (x, v), 
8 

where (x. 11) is a solution defin ed by (4). 



http://rcin.org.pl

74 R. Q U!NTANILLA 

P r o o f. We apply the inequalities (8) and (11) to the first integrand on the 
right-hand side of equality (13) to conclude that 

(15) n (J (x, v) - J (x, v)) 

ｾ＠ j { [T( \l x, \l v, 11) - T(\lx, \7i7, v)] o [ ( x - 1· ｾｾ Ｉ＠ ® NJ 
oB 

+ [S(\lx, \11J, 11) - S(\lx, \lv, v)] o [ ( v- 7' ｾＺＩ＠ ® NJ} ds . 

On the other hand, from (4), we have \l x = M for all X E B. Then it follows 
that 

8x x- r - = b 
81· 

and inequality (15) therefore yields 

and 
av v- r - = v0 8r ' 

n(.J(x, 11) - J (x, v)) ｾ＠ j [T(\lx , \l JJ, v) - T(\lx , \lv , v)] o [b ® N] ds 

oB 
+ [S(\lx, \7 v, IJo) - S(\lx, \lv , v0)] o [1;0 ® N] ds . 

Inequality (14) follows from (7) on recalling that b and vo are constants. 
Now, we may state the uniqueness result: 

T HEOREM 1. Let B , (x, v ) (X, v ), M and vo be as in the previous Lemma, and 
let the energy E satisfy the condition (9). Then (x, v) is a solution defined by ( 4). 

Proo f. Let us suppose that (x, 11) ::f (x, v ) = (M X+ b, v0). Then assumption 
(9) implies 

J (x, v) < J (x, v) + ｾ＠ j g dv , 
B 

which contradicts Lemma 3. Hence (x , 11) = (x, v) for all X E B . 
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