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Rigorous bounds on the asymptotic expansions 
of effective transport coefficients of two-phase media 

S. TOKARZEWSKI, A. GALKA (WARSZAWA) 
and G. STARUSHENKO (DNEPROPETROVSK) 

THE FUNDAMENTAL inequali t ies for two-point Pade approximants corresponding to 
two asymptotic expansions of the effective transport coefficients >... (x)/>11 , x = 
>..2/ >..1 - 1 have been derived, where >..1 and >..2 denote t he transport moduli of the 
composite components. The inequalities achieved constitute the new bounds on the 
values of ;,.(x)/>..1- the best with respect to the given number of coeffici ents of the 
asymptotic expansions of >...(x)/>..1 at x = 0 and x = oo. For the particular cases, 
our two-point Pade bounds reduce to the classical estimations of Ae (x )/ >..1 avail able 
in lit erature [7, 9, 17, 24]. 

1. Introduction 

PREDICTION of the macroscopic behaviour of a composite from the known physi-
cal and geometrical properties of the components is one of the basic problems 
of mechanics of inhomogeneous media. Most of the papers which have appeared 
in recent years dealt with the estimations of the effective transport coefficients 
>-e(x), x = >-2/ >.1 - 1 such as thermal and electrical conductiviti es, magnetic 
permeability , diffusion coefficient, filtration coefficients and many others. Here 
>.1 and >.2 denote the moduli of the components of an investigated composite, cf. 
[6, 7, 9, 17, 23, 24]. 

WIENER [34] derived optimal bounds on >-e(x) with prescribed volume frac-
tions. These bounds are known as the arithmetic and harmonic mean bounds. 
For isotropic materials HASHIN and SHTRIKMAN [17] improved Wiener's bounds 
using variational principles. BERGMAN [4, 5, 6] introduced a method for obtain-
ing bounds on >-e ( x), which does not rely on variational principles. Instead it 
exploits the properties of the effective parameters being analytic functions of the 
components moduli. The method of Bergman was studied in more detail and 
applied to several physical problems by MILTO N [23, 24]. A rigorous justifi cation 
of Bergman's approach was given by GOLDEN and PAPANICOLAOU [14]. Recently 
special continued fraction techniques for evaluation of the bounds on >-e ( x) have 
been used by BERGMAN [7] for three-dimensional, and CLARK and MILTON [9] 
- for two-dimensional systems. Both MILTON [24] and BERGMAN [7] have incor-
porated into the bounds the power expansion of >-e(x) at x = 0 and the discrete 
values of >-e(x ) given by >-e(xl), >-e(X2) , ... , >-e(XI< ) only. 

The present paper incorporates into bounds on >-e(x) two formal power ex-
pansions of >-e(x) available at x = 0 and x = oo. That incorporation problem has 
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been studied recently in the contexts of the estimation of Stieltj es functions [11, 
25, 27, 28] and the bounds on the effective conducti vity of regular composi tes 
[26, 29- 32]. However, the estimations derived in [11, 28, 29] are valid for x > 0 
only. Consequent ly they are not the best possible bounds on >-e(x). 

The main aim of this paper is to establish new bounds on real-valued moduli 
>-e(x) of two-phase media, the best with respect to the avail able coeffi cients of 
the power expansions of >-e(x ) at x = 0 and x = oo. 

This paper is organized as follows: In Sec. 2 we introduce the basic defini t ions, 
notations and assumptions dealing with a St ieltjes function xfl (x) and two-point 
Pade approximants of the types 2PAs and 2PAs constructed for xfl (x) . In 
Sec. 3 we recall the relevant results for one-point Pade approximants. In Sec. 4 
we propose special continued fr action representations for 2P As and 2P As. The 
fundamental inequalities for 2P As and 2P As to x h ( x) have been deri ved in 
Sec. 5 and 6. In Sec. 7 the effective conductivi ty of a square array of cylinders 
has been investigated in terms of low order 2P As and 2P As bounds. The results 
achieved are summarized in Sec. 8. 

2. Preliminaries 

Let us consider the effecti ve conductivity Ae(x) of a two-phase medium for 
the case, where the conductivit y coeffi cients >.1 and >.2 of both components are 
real, x = (>.2/ >.I) - 1. The bulk conductivi ty Ae(x) is defined by the li near 

-t 

relationship between the volume-averaged gradient temperature <VT> and the 
volume-averaged heat flux < q > 

-t 

(2.1) < q >= Ae(x) <V T > . 

For the sake of simplicity, the averaging is performed over the unit cell of 
a periodic composi te, where T denotes the temperature. In general, Ae is a 
second-rank symmetr ic tensor , even when >.1 and >.2 are both scalars. Our study 
will be focused upon one of t he diagonal values of Ae denoted by >-e. The re-
maining diagonals can be studied analogously. 

The analytic propert ies of the bulk conductivi ty coeffi cient >-e(>-1 , >.2) were 
examined by B ERGMAN in [4]. He noticed that >-e(>-1, >.2)/ >.1 = >-e(1, >.2/ >.1) is 
an analytical function in the complex plane except on the negative par t of the real 
axis. GOLDEN and PAPANICOLAOU [14] rigorously proved that Ae(x), X= h - 1, 
h = >.2/ >.1 has a St ieltj es-integral representation of the type: 

(2.2) 

1 

>-e(x) _ 1 = xfl (x) = x j d11(u), 
>.1 1 + xu 

0 

- l <x<oo. 

For composites consisting of non-touching inclusions of modulus >.2 embedded in 
a matrix material of modulus >.1, the function xfl (x) obeys the following physical 
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restriction, cf. [4- 7], 

(2.3) lim X h (X) ｾ＠ - 1. 
ｸｾＭＱＫ＠

The spectrum -n(u) appearing in (2.2) is a real, bounded and non-decreasing 
function defined on 0 ::::; u ::::; 1. Consider the power expansion of x h ( x) at x = 0, 
cf. (2.2), 

(2.4) 

Here the coefficients 

(2.5) 

00 

xfi(x) = 2: ｣ｾｬ Ｑ ＩｸｮＮ＠
n = l 

1 

｣ｾＱ Ｉ＠ = (- 1)n+1 I un- 1 d-n(u) 

0 

are real and finite. Note that on account of (2.2), the power series (2.4) has a 
radius of convergence at least equal 1. The power series expansion of x h ( x) at 
x = oo takes the form, cf. (2.2), 

00 

(2.6) xh(x) = 2: ｃｾ Ｑ ＩｳｮＬ＠
n =O 

where the moments 

(2.7) 
1 

｣ｾｬＩ＠ = ( - 1)n I u- 1- n d-n (u), 

0 

s = 1/x, 

n = 0, 1, 2, ... 

are assumed to be finite for any fixed n . Two-point Pade approximants of the 
type [k/M] and [k /M] to series (2.4) and (2.6) are given by the following rational 
functions 

(2.8) 

(2.9) 

alkx + a2kx2 + · · · + aMkXM 

[k/M] = 1 + blkx + b2kx2 + · · · + bMkXM ' 

alkX + · · · + a(M+ <lok)kX(M+Ook) 
[ k I M] = --=---------'---""=----:-:--

1 + blkx + · · · + bMkXM 
Ook = 

Consider the power expansions of (2.8) and (2.9) at x = 0: 

00 00 

(2.10) [k/M] = 2: CnkXn, [k/M] = 2: CnkXn, 
n = 1 n = l 

{ 
1, 

0, 

if k = 0, 

if k > 0. 
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and at x = oo 

00 00 

(2.11) [kiM] = L CnkSn, [kiM] = L CnkSn, s = 1l x . 
n = O n =O 

Now we are in a position to introduce the definitions of two-point Pade approxi-
mants of the types 2P As and 2P As to x h ( x): 

DEFINITION 1. The rational function [k l M] given by (2.8) is a 2P As {two-
point Pade approximant) to xh(x), if 

(2.12) 

and 

(2.13) 

for n = 1, 2, ... ,p , p = 2M - k 

for n = 0, 1, ... , k - 2, (1) 
c(k- 1)k = ck- 1· 

Note that for k = 0 and k = 2M, the rational functions [ k I M] stand for one-point 
Pade approximants (1PAs), cf. [1, 2]. 0 

DEFINITION 2. The rational function [kl M] given by (2.9) is a 2PAs to 
xh(x), if 

(2.14) 

and 

(2.15) 

for n = 1, 2, ... ,p, p = 2M - k , 

- (1) 
Cnk = Cn 

[kiMJ = - 1 

for n=0,1, ... ,k - 2, 

for x = -1. 0 

Throughout this paper the parameter p (0 ::; p ::; 2M) will denote a number 
of the available coefficients of the power series (2.4), while k (0 ::; k ::; 2M) -
a number of relations given by (2.13) if we deal with [k i M ], or by (2.15) if we 
study [kiM]. The parameters p, k and M are interrelated by p + k = 2M. 

3. One-point Pade approximants 

We start our discussion by recalling some results for one-point Pade approxi-
mants [OI M] to xh (x ), indispensable for our further investigations. Those results 
may be summarized as follows: 

1. [0 I M] has the continued fraction representation of the type S [1-3] 

(3.1) [OIM] = xe1 xe2 

1 + 1 + .. . + 1 + 1 
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2. The coefficients of the continued fraction (3.1) are positive 

(3.2) en > 0, n=1, 2, ... ,2M. 

3. For x > - 1 the Pade approximants [0/ M] to power series (2.4) converge 
to the Stieltjes function (2.2), cf. [1 , Th.16.2] 

(3.3) lim [0/M] = xfl(x). 
M -too 

4. If x /j ( x ) is a Stieltjes function 

(3.4) 

1 

xf·(x) =x I d''tj(u) , 
J 1 + xu 

0 

then the function x fi+ 1 ( x) is also a Stieltjes function 

(3.5) 

provided t hat 

(3.6) 

1 

f ( ) I dri+ 1(u) 
X j+1 X =X , 

1 + xu 
0 

/j (O) 
/j(x) = 1 + xfj+1(x)' 

cf. [1, Lemma 15.3] and [1, p. 235]. If the expansion of xfj(x) at x = oo is given by 

00 

(3.7) xfj(x) = L ｃｾＯｬＨＱ Ｏ ｸｴＬ＠ cUJ > o 0 , 

n = O 

then on account of (3.6), the expansion of x f j+1(x), also at x = oo, takes the 
form 

00 

(3.8) X/j+1(x) = cU+1)x + L c!;+2)(1/xt, 
n = O 

Consequently we have the following relations 

(3.9) 

where 

(3.10) 

1 

! · 2(x) = I drj+2(u) 
J+ 1 + xu 

0 

C(j+1) = /j(O) > 0 
cUl . 

0 
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is a Stieltj es function. The relations (3. 7) - (3.10) permit us to formulate the 
following remark: 

R EMARK 1. If x /j ( x) is a Stieltjes function 

(3.11) 
1 00 

x f ·(x) =X I drj (u) = " cU)sn 
J • 1 + xu L

0 
n ' 

0 n = 

s = 1/x, 

then x / j+2 ( x) is also a St ieltjes function 

(3.12) 

provided that 

(3.13) 

1 

f ( ) I dr i+2 (u) 
X j+2 X = X , 

1 + xu 
0 

C(j+ 1) = / j(O) 
cUl . 

0 

Note that by inserting x = 1/ s into (3.4) we obtain the identity 

(3.14) 

1 00 

x f ·(x) = s- 1 I drj (u) = <p ·(s) =I d/3j( r ), 
J S + U J 1 + ST 

0 1 

where 

(3.15) 

D 

R EMARK 2. If x f j(x) is a Stieltjes function with respect to a variable x , then 
<pj(s) = x f j(x) is a Stieltj es function with respect to s, provided x = 1/ s , cf. 
(3.14) - (3.15). D 

The fractional transformations (3.6) and (3.13) and the identity (3.14) will 
be used for the construction of a specia l continued fraction representations for 
Pade approximants [k/ M] and [k/ M ], cf. (2.8) - (2.15). 

4. Continued fractions for 2P As and 2P As 

Let us apply the fractional transformation (3.13) to xfi (x) k t imes. Thus we 
obtain a T-continued fraction to x fi(x) , cf. [15, 20], 

( 4.1) f ( ) 
_ xG1 xG3 xG2k- 1 

X 1 X - · 
1 +xG2 + 1+xG4 + . . . + 1+xG2k+xh k+ 1(x) 
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Here the parameters Gn are uniquely determined by the initial k coefficients of 
a power series (2.4) and (2.6). On account of Remark 2, for s = 1/ x we have 
xhk+I(x) = <p2k+l(s), where xh k+l (x) and <p2k+l(s) are Stieltjes functions. By 
employing the transformation (3.6) (p - k) times to the function xhk+1(x), if 
p > k and (k- p) times to <p2k+l(s) , if k > p we arrive at 

{ 

X92k+l X92k+2 X9p+k 
1 + 1 + ... + 1 + x fp+k+l(x) ' 

xhk+l(x) = d2p+1 d2p+2 d2p+3 dp+k 

1 + x + 1 + ... +x +xtp+k+ 1(x)' 

(4.2) 
k "2. p. 

Note that functions /p+k+ 1(x) and tp+k+l(x) appearing in (4.2) are also Stielt-
jes functions of the type (2.2). The substitution of (4.2) into (4.1) yields the 
continued fraction representations for Pade approximants [k/M], [2M- pjM] 

[k /M] = 
xG1 xG2k- l X92k+l X92M 

1 + xG2 + + 1 + xG2k + 1 + . . . + 1 

(4.3) [2M -pjM] = 
xG1 xG2p-1 d2p+l d2p+2 

1 + xG2 + + 1 + xG2p + 1 + X 
d2p+3 d2M 

+ 1 + . . . + X 

and [k / M], [2M - pjM] 

(4.4) 

[k / M] = xG1 . . . xG2k- 1 
1 + xG2 + + 1 + xG2k + 

X92M 
+ .. . + 1 + 

[2M - pjM] = xGl xG2p- 1 d2p+l d2p+2 
+ X 1 + xG2 + + 1 + xG2p + 1 

d2M 
+ ... + X + 

On account of Def. 2, V2M +l and T2M+l satisfy the relations 

(4.5) 

xG2k- l 

+ 1 + xG2k + 
X92M 

+ ... + 1 

xV2M+l = _1 + 1 , 

xG2p-1 d2p+l d2p+2 d2M 

+ 1 + xG2p + 1 + X + ... + X 

xT2M+l = _ 1 + 1 , 

if X= -1, 

if X= - 1. 
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For k > 0 the parameters p, k, M are interrelated by 

( 4.6) p+k = 2M, 0 < k < 2M, 0 < p < 2M. 

The coefficients Gn (n = 1, 2, ... , 2k), 92k+j (j = 1, 2, ... ,p - k), V2M+b d2k+j 
(j = 1, 2, ... , k- p) and T2M+l appearing in (4.3) - (4.4) are positive, i.e., 

Gn > 0, n = 1, 2, ... , 2k; 

(4.7) 
92k+j > 0, j = 1, 2, ... ,p-k ｾ＠ 0; v2M+l > o, 

Gn > 0, n = 1, 2, ... , 2p; 

d2k+j > 0, j=1,2, ... Ｌ ｫＭｰ ｾ ｏ ［＠ T2M+l > 0. 

Now we are in a position to study the convergence of [k i M] (k fixed) and [2M -
piM] (p fixed) to xh(x), when M goes to infinity. Due to nonzero radius of 
convergence of the power expansion (4.2) we infer, cf. [2, Th. 16.2], 

lim X92k+l X92k+2 X92M 
-1 <X< 00, 

(4.8) 
M--+oo 1 + 1 + ... + - 1- = xhk+l(x), 

d2p+l d2p+2 d2p+3 d2M lim - = xhk+l(x), - 1 <X< 00. 
M--+oo 1 + X + 1 + .. . + X 

Consequently the relation ( 4.1) yields 

(4.9) lim [kiM] = lim [2M- piM] = xfi(x), 
M--+oo M--+oo 

- 1 <X< 00. 

From (4.3) and (4.4), it follows: Ik7MJ = [kiM], if V2M+1 = 0; [kiM] 
[k - 1IM - 1], if V2M+1 = oo; [2M - pi M] = [2M - pi M], if T2M+l = 0; 
[2M- piM] = [2M- p- 1IM- 1hM-p-1, if T2M+l = oo. For x E (O,oo) 
[kiM] and [2M - pi M] are monotonic functions of the parameters V2M+l ｾ＠ 0 
and T2M+1 ｾ＠ 0, respectively. Hence for fix ed x E (0, oo), [k iM ] takes values 
within [kiM] and [k- 1IM - 1], while [2M - piM] within [2M- pi M] and 
[2M- p - 1IM- 1]. On account of that and due to (4.9) we obtain 

(4.10) lim [k i M] = lim [2M- piM] = xfl(x), 
M--+oo M--+oo 

0 <X< 00. 

The Pade approximants [ k I M] and [2M - pI M] are analytical functions for - 1 < 
x < oo (their poles lie on the real axis at -oo < x $ - 1 only). Hence the 
convergence relations given by (4.10) holds for - 1 < x $ 0 as well. Consequently 
we can write 

(4.11) lim [kiM] = lim [2M - piM] = xfi(x), 
M--+oo M--+oo 

-1 <X< 00. 

REMARK 3. For fixed k (k = 0, ... , 2M) the approximants [ki M] and Ik7MJ, 
while for fixed p (p = 0, ... , 2M) the approximants [2M- pi M] and [2M- pi M] 
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converge to the Stieltjes function xh(x) for - 1 < x < oo, as M goes to infinity, 
cf. (4.9), (4.10) and (4.11). 0 

In the next section the properties of the convergence of [ k /M], [ k /M], [2M -
p /M], and [2M - p j MhM -p will be investigated. To this end the continued frac-
tions (4.3) and (4.4), the restrictions (2.3) and (4.7), and the convergence rela-
tions (4.9)- (4.11) will be used. 

5. Two-point Pade bounds on xfi(x) 

For simultaneous representation of the sequences [ k /M], [M + T /M], [2M -
pjM] {[k /M ], [M + riM], [2M- pjM]} it is convenient to introduce the nota-
tion [IM / M] {[IM/M]}, where IM = k, M+ r, 2M- p. Now we are prepared 
to formulate the fundamental theorem establishing 2P As and 2P As bounds on 
xh (x) = >..e(x)/ >..1 - 1, cf. (2.2): 

THEOREM 1. For IM = k, M +r, 2M -p (0 :S IM :S 2M, ｍ ｾ＠ lrl) the Pade 
approximants [I M I M] and [I M I M] (cf. Defs. 1 and 2)) to the power expansions 
ofxh(x) at x = 0 and x = oo (cf. (2.4) and (2.6)) obey the following inequalities, 
where xh(x) stands for the limit of[IM/M] and [IM / M], as M tends to infinity: 

(i) If -1 < x < 0 then 

(5.1) [IM / M] - [IM+I/M + 1] > 0, 

(5.2) 

(5.3) 

[IM/M]- [IM+I/M + 1] < 0, 

[IM/M] > xfi(x) > [IM/M]. 

( ii) If 0 < x < oo then 

(5.4) ( - 1)1M+I [IM+IIM + 1]- ( -1)1M [IM /M] > 0, 

(5.5) ( - 1)1M+I [IM+IfM + 1] - ( -1)1M [IM /M] < 0, 

(5.6) ( - 1)1M [IM/M] < ( - 1)1M xfi(x) < ( -1)IM.,-[I_M_,_/M-.,.]. 

The inequalities (5.1)- (5.2) and (5.4)- (5.5) have a consequence that the bounds 
[I M/ M] {[I M/ M]} are the best with respect to the given coefficients p of the 
power series (2.4) and terms k of the power expansion (2.6), and that the use of 
additional input data (higher p and k) improves the bounds on x h ( x). 

P r o o f. As an example, the inequality (5.2), IM = 2M- p will be proved 
only. The remaining inequalities one can prove in a similar manner. Let us start 
from the continued fractions ( 4.3) 

[2M- p jM] = xG1 xTzM+I 

1 + xGz + ... + 1 
(5.7) 

xG1 dzM+I d2M+2 xTzM+J 
[2M + 2 - p jM + 1] = 

1 + xGz + ... + 1 + X + 1 
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Of interest is the difference J(x) given by (see (5.7)) 

(5.8) J(x) = d2M+1 d2M+2 
1 + X + 

xT2M+3 
1 

On the basis of ( 4. 5) and ( 4. 7) we have 

(5.9) 

if X = - 1, 

if - 1 < X< 00. 

The relations (5.9), the restrictions (4.7) and the recurrence formula for the 
continued fractions (5.7) lead immediately to the inequalit y (5.2), IM = 2M -
p. The remaining inequalit ies, namely (5.1), (5.2), IM = k , M+ r / M , (5.4) 
and (5.5), can be proved analogously. The relations (5.3) and (5.6) are direct 
consequence of (4.9), (4.11), (5.1) - (5.2) and (5.4) - (5.5). 

Now we are prepared to prove that, wi th respect to a given number of co-
effi cients of power series (2.4) and (2.6), the 2P As and 2P As provide the best 
estimations for xfi(x). Assume that [ki/MI] { [k2/M2]} is determined by PI {P2} 
coeffi cients of (2.4) and ki {k 2} coeffi cients of (2.6), where PI + ki = 2MI , 
P2 + k2 = 2M2, PI ｾ＠ P2 and k1 ｾ＠ k2. Of interest is the following scheme of 
transition of [ki/M I] to [k2/M2]: 

where MI ｾ ｍＧ＠ ｾ＠ M 2. By applying_ the inequali ties (5.1) - (5.3) and (5.4) - (5.6) 
successively to the above transit ion scheme, we arri ve at 

(5.10) 

Analogously we obtain 

(5.11) 

From (5.10) - (5.11), it follows tha t for P2 2: p1 and k2 > ki the estimations 
[k2/M2], [k2/M2] of x fi( x ) are better than [ki/MI ], [ki/MI]· 0 
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For a better understanding of Th. 1 it is convenient to arrange Pade approx-
imants [ k /M] and [ k j M] in the following triangular array 

0/3 

0/ 2 1/ 3 

0/ 1 1/2 2/ 3 

(5.12) 0/ 0 1/ 1 2/2 3/ 3 

2/ 1 3/ 2 4/ 3 

4/ 2 5/ 3 

6/3 

called 2P As-table if k / M = [ k /M], or 2P As-table, if k / M = [ k /M] . The se-
quence M/M is named the main row. Besides M/M one finds the sequences 
M+ rjM, k jM and 2M - pfM constituting the r-th rows, the diagonals go-
ing up and the diagonals going down. Note that the sequences 0/ M and 1/M 
represent the classical Milton 's estimations of xfi(x), cf. [24], while 0/1 are the 
well known Hashin- Shtrikman bounds on x fi ( x), cf. [1 7]. The remaining bounds 
appearing in (5.12) are new. 

6. General power expansions of x h ( x) 

The most general input data for evaluation of the 2PAs and 2PAs to xfi(x) 
are given by: 

00 

xfi(x) = L ｣ｾ Ｑ ＩｸｮＬ＠

(6.1) 
n = l 

00 

xfi(x) = :L ｣ｾｾｳｾＬ＠ S11 = 1/ (x- v). 
n=O 

Here v is an arbitrary, non-negative number. Since (6.1)1 coincides with (2.4), 
of interest is the expansion (6.1)2 only. From (2.6) and (6.1)2 we have 

(6.2) 

00 00 

xfi(x) = :L ｣ｾｬ Ｉ ｳｮ＠ = :L ｣ｾｾｳｾ Ｌ＠
n=O n=O 

1 
s = - , 

X 

1 
Sv=--, 

x-v 

s 
Sv = --. 

1 - sv 

Equality (6.2) provides the following recurrence formulae interrelating the coef-

ficients ｃｾ Ｑ Ｉ＠ and ｃｫｾＺ＠

(6.3) c(l ) - c(l) 
0 - Ov ' 

c(ll - c{ll 
1 - 111 , 
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n 

(6.4) " vn-k Akc(ll 
L..J n kv • n = 2, 3, ... , 
k=1 

where 

r if k = 1, 

(6.5) Ak = Ak-1 + Ak if k = 2, 3, ... , n- 1, n n-1 n - 1' 

1, if k = n . 

From (6.3)-(6.5) it follows: 

R EMARK 4. Any power expansions of xfi(x) at x = 0 and x = oo given by 
(6.1), (v > 0) can always be reduced to the standard ones (6.1), (v = 0), cf. (2.4) 
and (2.6). It means that 2PAs and 2PAs to power series (6.1), (v 2: 0) do not 
depend on v. 

7. Physical example 

Y2 

r<J------ --

y, 

FIG. 1. Unit cell for a square array of cylinders. 

In this section we evaluate low order Pade bounds [k / M] and [k /M] on the 
effective conductivity >..e(x )/ >..1 of a composite material consisting of equall y-sized 
cylinders embedded in an infinite matrix, cf. Fig. 1. To this end we set: <P = 1re2 

- volume fraction of inclusions, e - the radius of cylinders, >..1, >..2 conductivity 
of the matrix and inclusions, x = (>..2/>..1)-1 - normalized physical properties 
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of the composite components. Two coeffi cients of the expansion of >..e(x)l>..1 at 
x = 0 are reported in [4], 

>-e(x) (1) (1) 2 3 
X fi (X) = ｾ＠ - 1 = c1 X + c2 X + 0 ( X ) , 

ci1) = cp = nrl , ｣ｾ Ｑ Ｉ＠ = ｾ＠ = - 0.5cp(1 - cp), 
(7.1) 

while at x = oo in [22] 

xfi( x) = >.e(x) - 1 = cdl) + ｃｾｉＩＮＡ｟＠ + 0 (.!.) 2' 
A1 X X 

(7.2) ｃｾ Ｑ Ｉ＠ = A = [n(w- 1)- 1], 

cp) = B = - 2nw(w- 1) ln(w) , w = J n I ( 1r - 4c/J) . 

Low order 2PAs and 2PAs bounds corresponding to (7.1) and (7.2) are given by: 

(7.3) 

where 

(7.4) 

(7.5) 

[OI O] = 1, 

[OI 1
] = 1 + ＰＮＵ ｾｾＭ cp)x ' 

cpx 
[111] = 1 + (c/JI A)x ' 

(A2 I B )x 
[2/ 1] = -1 - (AI B)x ' 

[OI O] = x, 

cpx + 0.5cpx2 

[OI 1] = 1 + x - 0.5cpx ' 

-- cpx 
[111] = 1 + (1 - cp)x ' 

-- Ax 
[211] = 1 +A+ X ' 

G1x + G1G4x2 

[
2
1
2
] = 1 + (G2 + G3 + G4)x + G2G4x2 ' 

[2l 2] = G1x + G1(G4 + Vs)x
2 

1 + (G2 + G3 + G4 + Vs)x + G2(G4 + Vs)x2 ' 

cp 
G1 = cp, G2 = A , 

cp2 Ｋａｾ＠ A 
G4 = A2 + cpB cp ' 

For cp = 0.7853 2P As and 2P As given by (7.3) are depicted in Figs. 2 and 3. It 
foll ows that for x > 0 the upper Pade estimation 1 + [212] of >-e(x)l >. l provides 
the significant improvement over the upper Hashin - Shtrikman bound 1 + [0 I 1]. 
Moreover, for x -7 oo the Pade bound 1 + [212] takes fin ite values, while the 
Hashin- Shtrikman bound 1 + [011] goes to infinity. We have to add that in our 
previous papers the only 2P As bounds on x fi ( x) have been invest igated [28, 
29]. The two-point Pade bounds of the type 2PAs, used in this paper , are new. 



ｾ＠
c< 
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0 
(f) 
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FIG. 2. Low order 2PAs and 2PAs bounds on the effective conductivity >..e(x)/>..1 
of a square array of densely spaced cylinders - a comparison with Hashin- Sthrikman 

estimations 1 + [0/ 1] and 1 + [0/ l]; 4> = 0.7853, h < 1. 
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FIG. 3. Low order 2PAs and 2PAs bounds on the effective conductivity Ae(x)/>..1 
of a square array of densely spaced cylinders - a comparison with Hashin- Sthrikman 

estimations 1 + [0/ 1] and 1 + [0/ 1]; 4> = 0.7853, h > 1. 
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8. Conclusions 

The main result of this paper, formulated as Th. 1 establishes, in terms of 
two-point Pade approximants 2P As and 2P As, t he new bounds on the real-
valued moduli >..e(x)l>..1 of two-phase media. T he bounds achieved are the best 
possible with respect to the given number of coefficients of the power expansions 
of Ae ( x) I >..1 at x = 0 and x = oo. Moreover , for x > 0 they provide a significant 
improvement over the corresponding ones reported in the li terature, cf. [24]. 

If the orientation of the principal axis of a composite does not depend on 
the properties of components, 2P As and 2P As can be used for estimation of 
the principal values of a second-rank tensors, i.e. for bounding the anisotropic 
transport coefficients. 

For a power expansion of Ae ( x) I >.. 1 available at x = 0 only, 2P As and 2P As 
to >..e(x)l >..1 reduce to the classical bounds on Ae(x)l >..1 originally derived by 
MILTON in [24]. 

The 2PAs and 2PAs bounds on >..e(x)l >..1 can be improved by incorporating 
the additional information about the composite such as the Keller identity for 
two-dimensional system or the Schulgasser inequali ty for three-dimensional ones, 
cf. [7] and [9]. The Kell er's and Schulgasser's restrictions and their infl uence on 
the Pade bounds on Ae ( x) I >..1 will be investigated in a separate paper. 
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