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Application of the Fourier cosine series
to the approximation of solutions to initial
non-Dirichlet boundary-value problems

Z. TUREK (WARSZAWA)

THE PAPER deals with an application of the Fourier cosine series to the determination
of an approximate solution to some one-dimensional initial boundary-value problems.
With the new approach one can approximate solutions of many equations of engi-
neering and physics, without solving the eigenvalue problems. It has been found out
that the new method can successfully be used for linear partial differential equations
with non-Dirichlet boundary conditions. The heat equation and the wave equation
with constant coefficients have been solved using the method described. The solu-
tions have been compared to those obtained by means of the method of seperation
of variables. The numerical results show that the new solutions approximate well
the classical solutions. For the heat equation, even the boundary conditions at the
initial instant of time are satisfied. This does not occur, however, in the case of the
wave equation, since the initial displacement of the rod does not satisfy prescribed
boundary conditions.

1. Introduction

THERE ARE some useful methods of solving linear initial boundary-value prob-
lems of partial differential equations. One of them is the method of seperation of
variables, called the Fourier method [1]. It consists first in finding solutions of the
corresponding eigenvalue problem for functions of spatial variables and next, in
solving the set of decoupled ordinary differential equations for functions of time
variable only. Finally the solution to the boundary-value problem is represented
by an infinite series of these functions.

In [5] presenting the solution of the heat conduction equation it has been
shown, that the solution to the problem can be represented, with an arbitrary
accuracy, by the Fourier cosine series whose spatial components do not satisfy the
boundary conditions given. In [6] the approach was applied to many other differ-
ential equations, both ordinary and partial. Many initial and boundary-value
problems of linear and nonlinear ordinary differential equations were solved.
Many cases with variable parameters were treated with this method as well.

In the present paper we prove that the Fourier cosine series is the “weak”
solution to the heat conduction problem and to the wave equation, which is
the solution to the so-called Integro-Differential-Boundary Equations (IDBE) [5]
derived for the corresponding equation. The Fourier coefficients are calculated
from the corresponding Infinite Set of Ordinary Differential Equations (ISODE)
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using the Runge - Kutta method. The way how to get the IDBE and ISODE is
shown in Secs. 3 and 4 of the paper, as well as in [5, 6].

In this paper, using the Fourier cosine series we solve two initial boundary-
value problems with non-Dirichlet boundary conditions without solving the eigen-
value problems. The new approach has been applied to the equation describing
the heat conduction subject to non-Dirichlet boundary conditions, and for the
wave equation describing the vibrations of a rod also subject to non-Dirichlet
boundary conditions. Solving the corresponding ISODE truncated at N, = 10
for the heat equation and at IV, = 15 for the wave equation, a satisfactory ap-
proximation of the solutions obtained by means of the method of seperation of
variables (called classical solutions), truncated at N, = 5 for the heat equation
and at IV, = 10 for the wave equation, have been achieved. Analysis of the bound-
ary conditions has shown that for the heat conduction equation with prescribed
initial condition, the boundary conditions at ¢ = 0 are satisfied with an error de-
creasing as the number of components of the Fourier cosine series N, increases.
Analysing the boundary conditions of the wave equation for a given initial dis-
placement of the rod, we have derived formulas for the boundary conditions at
t = 0. They are expressed as convergent series of the Fourier cosine coefficients
¢x(0) but they do not tend to zero, which means that the new method of solu-
tion does not satisfy the prescribed boundary conditions at t = 0. The classical
solution to the wave equation (derived by the method of separation of variables)
is a generalized solution [2] and does not satisfy the prescribed boundary con-
ditions either, since the initial condition ug for the problem does not satisfy the
boundary conditions given [2].

2. Description of the method

Let us consider two second-order linear partial differential equations of the
form:

ou o*U ou

e e P R = L 0,2.);
o~ Poez ~R3-—QU =0 for (z,1) € (0,L) x (0,te)

o*U o*U U

W = PW —Ra—m = QU =0 for (.’E,t) =5 (O,L) X (O,te),

with the boundary conditions

(2.1)

aU+ﬁg—Z=0 for z=0,

7U+56—U=0 for z=1L
Ox

for t € [0,t.), and the initial conditions

(2.2)

(2:3) U(z,0) = up(x), (?9—[:(:5,0) = vp(z), for z€[0,L].
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P, @, R in (2.1) are constants or functions of ¢ only, , 3, v and § in (2.2)
are constants and ug and vg in (2.3) are given functions of z € [0, L].
We assume that

(2.4) B8 # 0.
Let ¢, with n =0,1,2, ..., denote functions of one space variable which form an
orthogonal set on £2[0, L] and let ¢! = —u2 ¢, for each n, where the double prime

denotes the second derivative. Upon multiplying (2.1) by ¢,, and integrating over
the interval (0, L), we see that

(2.5) dt'/U:ctqbn(x)dx P/82(It¢n d.r—R[ (z,t)pn(z) dz

L

- Q[ Uz, t)pn(w)dz =0,

0

where ¢ = 1 corresponds to Eq. (2.1); and i = 2 corresponds to Eq. (2.1),. Putting
the following

L
ZU(m Dbnlz)dz = ()0, 0} ~ [Ule, 06 (z) da

0
L AT I

0

L
fgg‘ (2, )dn(z) dz = dul2)
0

L

i [ U, )n(2) da

0

into (2.5), we obtain the Integro-Differential-Boundary Equations [5] for the
problems

L
= [ Uz, én(z) dz + (Pt - Q) 0[ U(a,t)én(z) dz

L
+ R/ U(z, t)g,(z) dz = Fy,
(2.6) 0

Fy = U(0,4) (P¢;(0) + (P% - R) ¢n(0))
~U(L,t) (P¢n( i g (P% —R) ¢,,(L)), = 0, 1, Bpwee «
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On the right-hand side of F,, boundary conditions (2.2) have been taken into
account. The functions F,, do not describe the case with Dirichlet boundary
conditions. They are valid only for 36 # 0 (non-Dirichlet boundary conditions).

3. “Weak” solutions to some boundary value problems

Let us consider the IDBE (2.6) with R =0
di 47 L
& [ V@ On(@)ds + (Pud - Q) [ U@, )gn(a) dz = P,
0 0

(31)  F.=U(0,1) (¢:,(0) + g¢n(o>) P

—U(L,t) (¢;,(L) + %gbn(L)) P, n=012,...

and introduce
DEFINITION. A function
u(+,+):[0,L] x [0,t) = R
is a “weak” solution to the boundary-value problem (2.1)1, (2.2) or (2.1)9, (2.2)

(for R = 0) with initial conditions (2.3); or (2.3), respectively, if it satlisfies the
IDBE (3.1), that is the function u is a solution to

L

. i
2 /u(m,t)qﬁn(m) dz + (P p2 - Q)/u(ﬂ:,t)gbn(m) de=F,,

dti
0 0

(62)  Fa=u(0,0) (6,0 + gmm) P

e (qb;,(L) + %%(L)) B nesL..,

with i = 1 for the heat equation and i = 2 for the wave equation.

This definition differs from the definition known from the literature [3]; that
is why we put it in quotes and name it “weak”.

Now we shall prove the following

PROPOSITION. The “weak” solution to the boundary-value problem (2.1);,
(2.2) or (2.1)2, (2.2) (for R = 0) with initial conditions (2.3); or (2.3), respect-
ively, can be represented by the Fourier cosine series

(3.3) u(z,t) ~ COT(t) -+ ni::l cn(t) cos (n—ga:),

whose coefficients satisfy an Infinite Set of Ordinary Differential Equations
(ISODE):
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d i )
en+ (PU2 = Q)en = 2 Fn,
F, = (u(O, 52 — u(L,t)i(—n“) P,
B )
(3.4) .
2 nm )
ca(0) = Z/uo(m) cos (—L—z) dzr for i=1,2,
0
" £
en(0) = E-/vo(a:)cos (n—gz) dz for =2 only,
0
n=0,12,...,

where p, = nxw/L.

Proof Letu(z,t) represented by (3.3) be the solution to (3.2). For this
representation, ¢, = cos(nmz/L) for n = 0,1,2,..., constitute the orthogonal
bases in £2[0, L], with p, = nn/L and the Fourier cosine series coefficients of
the solution (3.3) can be calculated from

L
2
(3.5) ealt) = I /u(z,t) cos (%x) dz, =0, 1,3 .
0

If we now multiply (3.2); by 2/L then we simply come to ISODEs (3.4);2 for
coefficients c,. The initial conditions (3.4)3 4 for the ISODEs follow from (3.5).

4. Main results

We shall consider two initial boundary value problems with non-Dirichlet
boundary conditions:

e the heat conduction problem

2
U _ o =0 for (z,t) € (0,L) x (0,t.)

(1) ot  0z?

with boundary conditions

au

a——BiUzO for 2z =40,
(4.2) 35

— +BiU =0 for z=1L

oz

for t € [0,¢t.), where Bi is the Biot number,
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and the initial condition
(4.3) Ulz,0) =uol(z), for z€[0,L],

and
e the problem of vibration of a rod

U U
(44) "5?5" e '(%5 = 0 for (m,t) = (O, L) X (0, te)
with the boundary conditions
Z—U =1 for z=0,
(4.5) a7 v
—+gU =0 for z=1L
oz

for t € [0,t.), where g is constant,
and the initial conditions

(4.6) U(z,0) = up(z), %g(a:,()) = vo(zx), for x€[0,L].

4.1. The heat conduction problem

The corresponding ISODE for the problem is the following one:

& i ey + 2B (@u FED+ S a4 (—1)'“(—1)“1) ~ o,
=1

E
(4.7)

L
ck(0) = %/uo(x) cos (l%r-a:) dzx, k=018 :
0

The calculations were carried out for ug(z) = 1+sin[2n(z—L/4)/L], L = 1 with
the Biot number Bi = 0.185. The solution :

A
(4.8) Ua(z,t) == co(t)/2 + Z cx(t) cos(kmz /L)
k=1

for N, = 10 and its spatial derivatives for N, = 30 evaluated for some time
instants for every section of the layer, are presented in Figs. 1 and 2, respectively.
The new results have been compared to the corresponding results of the classical
solution

(4.9) Uez,t) = Y ag exp(—wj )¢ (),

k=1
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U( ',f)
] t=0.0
t=0.01
15 t=0.02
=003
1 L
0.5F
- : . - — X
0.2 0.4 0.6 0.8 1

F1G. 1. Solution of the heat equation for some values of Z, for new solution (4.8) and
for classical solution (4.9) (they cannot be distinguished).

s

o b t=0.01

al —_— new
t=0.02 i

.......... classical

t=0.03

2 L
t=0.05
‘ ; , " 5. X

0.2 0.4 - ().
) ) i
4}

F1G. 2. Spatial derivative of the solution of the heat equation for some values of .

where N, = 5 components of the series (4.9) were taken, and
P(x) = wy cos(wgz) + Bi sin(wyz)

are the eigenfunctions of the problem (4.1)-(4.3), with eigenvalues calculated
from the equation

w? — Bi?

ctg(wl) = ol
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and "
o = [ wo(2) Pk (x) da /| ()|
0

From the figures presented one can see that the new solution and the classical
solution cannot be distinguished even at the boundaries. This shows how the
new solution converges well to the classical one. The spatial derivative of the
new solution calculated for N, = 30 does not approximate so well the spatial
derivative of the classical solution as it happens in the case of the solutions
themselves. This is true especially at the boundaries. The error is the largest for
t = 0. One can show, however, that the error at t = 0 tends to 0 as the number
N, increases (see Fig. 3).

S

9U(0,1) - BiU(0,1)

e
‘o,
AXTY
See,
AL TP
AL LTV
.
v uno.ooul-no.-a
| LL LT TR
LIT T

" - }N‘
10 20 30 40 50 60 70

PRPeY L iadd aed eessssscs
poreey L i sesseees
e

. %(L,z) +BiU(L,1)

F1c. 3. Boundary conditions for the heat conduction at ¢ = 0 according to the new
approach.

4.2. Vibrations of a rod

For the vibrations of a rod we solved the following ISODE

% Sploy + [~ )”(“";) 2 en(t)(— 1))

()

cos( )d:c, b=0,L2.::: s

(4.10) cx(0) =

l i

°"-.:~ °\t«

ck(0) = %

The calculations were carried out for wo(z) = a(z — L), vo(z) = 0, g = 2,
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a = —0.01. The solution

Niz=15
(4.11) Ua(z,t) = co(t)/2 + Z cx(t) cos(kmz /L)
k=1

for some time instants for every cross-section of the rod is presented in Fig. 4,
but the solution for chosen cross-sections of the rod in the given time period are
shown in Fig. 5. The new results have been compared with the classical solutions

U(z,t)
0.01 —_— new
t=0.0 )
0.0075F 0TS, mmmmmmm——- classical
0.005
t=1
0.0025

-0.0025

-0.005

-0.0075

F1G. 4. Solution of the wave equation for some values of t.

of the problem (4.4) - (4.6),

o2}

(4.12) Ul )= Z[ak cos(wg t) + by sin(wy t)] cos(wix),
k=1

with N, = 10 components of the series (4.12) taken, and with eigenvalues calcu-
lated from the equation
wtan(wl) =g

and

L
ap = /ug(m)cos(wkz)da:/ncos(wkx)l|2,
0

L
wik vo (@) cos(wgz) dz /|| cos(wyz)||* = 0.

by

Il

From Figs.4 and 5 one can see that the new solution approximates well the
classical solution, although the curves are quite complicated.
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a)  U(%.t1)
0.01 ——— IEW

0.0075F \. emmeeemmeeee classical
0.005

0.0025 +

-0.0025
-0.005
-0.0075

b) Uz

> Bl
o~
5

— new
0004 ——/ N\ = --mmmmmmmee- classical

0.002

-0.002

-0.004

-0.006

F1G. 5. Solution of the wave equation for some values of 7.

From the boundary conditions of the problem considered, using Theorem 6
from [6], one can derive the following formulas for the boundary conditions at

b=
o0
a+zék(0)=0 for z=0,
(4.13) . =
a—g%é+’§[Ek(0)+gck(0)](—l)k =0 for z=L,
where
2,(0) = 200 3 1 k=12

?E (2k)? - (27 - 1)?
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and
dal

ck(0) = ok — 1)2n2” k=119....
The left-hand sides of (4.13) are covergent series but they do not equal 0. Their
value is a for both z = 0 and z = L. Therefore the boundary conditions for this
initial condition are not satisfied in the new approach. The conditions are not
satisfied in the classical approach as well, as the classical solution (4.12), for this
initial condition wug is in a generalized form [2].

5. Remarks

The results obtained in the paper have revealed that the new method can
succesfully be used for the solution to other boundary value problems with
non-Dirichlet boundary conditions. The experience gained also shows that the
new approach can be used for other boundary conditions (e.g. Dirichlet condi-
tions) [6] and for other BVPs that cannot be solved by the method of seperation
of variables (e.g. boundary value problems with mixed derivatives).
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