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Dynamics of turbulent helium 11, 
limits of the Vinen model 

T . LIPNIACKI (WARSZAWA) 

T HE DYNAM ICS of superfiuid helium is considered within the framework of the Vinen 
model. According to Vinen equation, counterfi ow (the relative velocity of the two 
helium components) gives rise to quantum turbulence. The mutual fr iction force, ex-
erted on the vortex tangle by the normal component, couples it with the superfiui d 
component. The system of 3 ordinary equations is numericall y solved to calculate 
the characteristic entrainment t ime in which the counterfl ow ceases. For t he typical 
velocities of order 1 cmjs, t he entrainment t ime is found to be much small er than 
the vorticity diffusion time for the length scale of 1 cm. It suggests that in the typ-
ical spin-up experiments the quantum turbulence plays a key role coupli ng t he two 
components. Unfortunately the Vinen model appli ed to spin-up turned out to be in-
consistent; the vortex line density calculated from the superfluid component vorticity 
was found to be much larger than that predicted by t he Vinen equation. 

1. Introduction 

T HE LANDAU'S two-flu id theory [1] has proved to be indispensable for under-
standing of the peculiar flow properties of 4He below the >.-point. In t he two-fluid 
theory He II (superflui d 4He) is a sum of the Bose condensate (superflui d com-
ponent) and the gas of thermal excitation (normal component). Densit ies of su-
perflu id and normal components (25 , en respectively, are temperature-dependent 
and satisfy 

(1.1) e = en+ f2s, 

where e denotes the total mass density of the li quid. 
The theory was later improved by ONSAGER [2] and FEYNMAN [3] who 

found that Landau's assumption of rotationless flow of the superfl uid compo-
nent was violated on one-dimensional singularities call ed now quantum vortices. 
T he circulation of the superfluid velocity about these lines remains constant, 
"' = h/mHe = 9.97 ·10- 4 cm2 /s, where h is Planck's constant, and mHe is the 
mass of heli um atom. T he interaction between the vort ices and the elementary 
excitation couples the normal and superfl uid components. Wit hin the li mits of 
that de facto three-fl uid theory, two main models were proposed: 

1) the VINEN model [4] which describes helium in the state of a superflu id 
turbulence, when the quantum vortices form an irregular tangle, and 

2) the Hall - Vinen - Bekarevich - Khalatnikov [5] (HVBK) model concerning 
the case when moving vortices form a regular pattern of parallel orientation 
(superfl.ui d laminar flow). 
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When the magnitude of relative velocity Vns = IVn- Vs I gets sufficiently large, 
superfluid laminar flow develops into superfluid turbulent flow. It significantly 
restri cts the usage of the HVBK model. 

The easiest way of generating a sizable Vns is to seal one end of the channel 
and place a heater there. The normal fluid produced by the heater flows out of the 
channel with an average velocity V,1 proportional to the heat input to the channel. 
The normal fluid moving away from the heater is replaced by a superflui d flowing 
in the opposite direction, the superfluid velocity Vs being determined by the 
condition of zero mass transport es Vs +en Vn = 0. 

Because there is a variety of observations on superflui d turbulence caused by 
heat flows in a counterfl ow channel, the Vinen model has been usually connected 
with the problems of the heat t ransport. In fact not only the heat transfer may 
cause the counterflow . 

For example the viscous forces in a rotating cylinder or a moving channel may 
give rise to the difference in the components velocities. The calculations show 
that even the relative velocity of order 1 cm/s may cause the quantum turbulence 
strong enough to influence the dynamics of the two components. 

To study this problem in more detail, we recall basic facts of the Vinen model 
according to the approach developed by SCHWARZ [6, 7]. We use the modified 
vortex-line-length density Lm 

(1.2) 

where L is the total line-length density (i.e. the length of vortices per unit of vol-
ume). (!

11
- C£11) is a coeffi cient describing vortex tangle anisotropy and is equal 

to 2/3 for isotropic tangle. The modified density was introduced by Schwarz as 
a quantity which can be directly measured in thermal-counterfl.ow experiments. 

The time evolut ion of the modifi ed vortex-line-length density is governed by 
Vinen-type equation 

(1.3) dLm = I (v. £3/2 _ _f!_L2) 
dt a lm ns m m ' 

C£m 

where Itm, CLm are temperature-dependent dimensionless coefficients, a is the 
friction coefficient, and {3 is defined by 

(1.4) {3 = ｾ＠ ln ( c ) 
471' ao < s" > 

where "' is the quantum of circulation, c is a constant of order one, < s" > 
is the average curvature of the vorti ces in the tangle and ao := 1.3 ·10- 8 cm is 
the effective core radius of a quantized vortex. Although {3 has the logarithmic 
dependence on the tangle density since < s" > increases as the tangle density in-
creases, it can usuall y be treated as a constant. For the typical tangle densities we 
can replace everywhere {3 by "-· T he values of the dimensionless parameters used 
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in that paper, based on numerical simulations by ScHWARZ [6] (from G EURST 

and B EELEN [8]), are presented in the Table 1. T he thermal excitation (phonons 
and rotons) exerts the force on the quantized vortices of a vortex tangle, what 
gives rise to the fr iction force between the two components. The density of t hat 
force is F ns 

(1.5) 

Table 1. Values of dimensionless parameters [8] and kinematic viscosity Vn [cm2 /s] . 

Temp. 1.07 1.26 1.62 2.01 2.15 

l2n/e 0.013 0.039 0.174 0.576 0.886 

a 0.010 0.030 0.100 0.300 1.00 

111 - cLI 1 0.70 0.72 0.71 0.77 0.85 

l lm 0.51 0.52 0.54 0.52 0.39 

CL m 0.031 0.062 0.11 0.19 0.26 

CJ 0.061 0.12 0.20 0.36 0.67 

Vn 1.5 . 10- 2 3.0 . 10- 3 5.1. 10- 4 1.8. 10- 4 1.7. 10- 4 

In incompressible approximation div Vn = div Vs = 0, the dynamical equa-
tions are [9] 

(1.6) 

where 

(1.7) p Qnf..L 
Pn= ---

Qn Qs 

and p , vn, f..L are pressure, kinematic viscosity of the normal component and 
chemical potent ial, correspondingly. 

We illu strate the applications of Vinen model solving 3 simple problems. 

2. Thermal-counterflow 

The switched on heater power gives rise to a counterflow of the prescribed 
velocity Vns (the inert ia forces are neglected). According to Eq. (1.3), the coun-
terfl ow makes the vortex line-length density to start growing from the initial 
value L 0 to the asymptoti c one L f 

(2.1) LJ = ｣ ｾｭ＠ r v;s. 
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Then at the given time, the heater power is switched off (Vns = 0) and the vortex 
line-length density sharply decreases. The solution Lm(t ) to equation (1.3) is 
shown in the Fig. 1. The characteristic tangle production time Tprod in which the 
vortex line-density reaches half of its asymptotic value is 

(2.2) Tprod = 

L tf2 

I dl 

( £3/ 2 K. 2 ) Lo o11m Vns m - --Lm 
C£m 

2 

12.0 
,....,. 
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FIG. 1. Rise and decrease of vortex tangle density. At the time t = 0 heater power is 
switched on causing the thermal-counterflow of value 1 cmj s, then at the time t = 8 s 

heater power is switched off and the vortex line-length density sharply decreases. 
Temp. = 1.62° K. 

The tangle production time is inversely proportional to the root of the ini tial 
vortex line-density, which can be small if the helium was left in peace for a 
long time, but even after very long time some remnant vort ices are present. The 
minimum line-density observed value was 10 cm- 2 , while the typical value for 
the superfluid turbulence is 103 "' 107 [cm- 2] . 

3. Entrainment Problem (1) 

Here we restri ct ourselves to the case in which the component velocities and 
the line-length density are only time-dependent. Let us assume that in the ini-
tial state the normal component is moving wi th the uniform velocity Vo , while 
the superfluid component remains at rest. The initial line-length density Lo is 
assumed to be small when compared to the asymptotic value Lt for the steady 
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counterftow Vns = Vo. The system is described by the set of 3 ordinary equations 

dVn {?5 KaLm(Vn-Vs) 

dt l?n 

(3.1) 
dVs dt = KaLm(Vn-V5 ), 

dLm _ ( 3/2 K 2 ) -d- - altm IVn - VsiLm - - Lm . 
t CLm 

To rewrite the equations in the dimensionless form we introduce new variables 

(3.2) Vn 
Vn = Vo, 

where Lt is the asymptotic value for the steady counterftow Vns = Vo g1ven 
in Eq. (2. 1). 

Then we have 

dvn 1 l(vn - Vs)Os 
= 

dt Tns On 
dv5 1 
-d = r:y:;-Lm(Vn- Vs), 

t .J.ns 
(3.3) 

dl = _!_z3/2 (lv - v I - z1/2) 
dt Tt n s ' 

where Tns, Tt are the characteristic times defined as follows: 

(3.4) 
rp - 1 -2 v; -2 
.J. ns = Ka C Lm 0 > 

rp - 1 - 1 v;- 21 
.J.I = Ka C Lm 0 I m · 

T1 is the characteristic time scale of line density changes (when the density is of 
order L 1) and should not be confused with Tprod which is the time scale for the 
line-length density growth from a small initial value. 

Introducing the new time r = t/Tt we obtain 

dvn l(vn - Vs)Os 
- = -CJ 
dr On 

(3.5) 
dv5 d; = ql(vn-Vs), 

:! = [3/
2 (lvn - Vsl-11

/
2
), 

where 

Tz CLm 
CJ = - = --

Tns Izm 
(3.6) 

is the dimensionless temperature-dependent parameter. 
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The problem can be fur ther reduced to the set of two equations 

(3.7) 

with Vns = Vn- V8 and C = CJ(Qn + Q8 ) / Qn· Multiplying Eq. (3.7)1 by Vns one 
can see that ｶｾｳ＠ is not growing, so Vns may not change the sign. It is enough to 
consider the case Vns 2: 0 since the case Vns ::; 0 is identical. The points (l = 0, 
Vns - arbitrary) are invariant points to the set of Eq. (3. 7). Although the case 
l = 0 is unphysical since some remnant vortices are always present, it may be still 
interesting to see if the manifold l = 0 is stable. Since dl / dT > 0 for 0 < l < ｶ ｾ Ｘ＠
all the points (l = 0, Vns > 0) are unstable. The point (l = 0, Vns = 0) is stable, 
moreover all trajectories starting from points (l j. 0) tend to it. To prove the 
last fact it is enough to solve the following equations re_sult ing from Eq. (3. 7) 

(3.8) _!!!__ = K (-l- -zl/2) , 
dVns Vns 

with K = 1/ C . Its solution is 

(3.9) l = ( )K Vns + C 
(

K ( )(1- K/ 2) ) 
2 

Vns K _ 2 0 

Now from Eq. (3.7)1 we see that for positive l, Vns tends to zero, and from 
Eq. (3.9) that l tends to zero with Vns tending to zero. The last solution can be 
put into Eq. (3.7)1 and then the equation is integrated. 

The solutions to Eqs. (3.5) for 3 various temperatures and Vo = 1 cm /s, Lo = 
100 cm -2 are presented in Figs. 2 - 4. One can see that due to the initial relative 
velocity, the vortex line-length density grows up. Then the friction force (Fns) 

makes the relative velocity decrease and may not sustain the vortex tangle, so the 
vortex line density decreases. The characteristic time Tent in which the relative 
velocity Vns is reduced e t imes from its initial value to Vo/ e, decreases with 
increasing temperature. It is also worth to notice that since 

(3.10) 

hence 

(3.11) 
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FIG. 2. Numerical solutions for the entrainment problem equations with the initial 
values Vo = 1 cm/s, £0 = lOO cm- 2 . Temp.= 1.26° K. 
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FIG. 4. Numerical solutions for the entrainment problem equations with the ini t ial 
values Vo = lcmjs, Lo = lOOcm-2 . Temp.= 2.01° K. 

4. Entrainment problem (2) 

Another interesting problem arises when the normal component velocity V5 is 
fix ed in time (for example by strong viscous forces). Then the problem reduces 
to the set of two equations 

dv5 -;;;;: = CJl(1 - V5 ), 

Ｚｾ＠ = z3/2 (11 - Vsl - zl/2). 
(4.1) 

Putting Vns = 1- v 5 we get the same equations as (3.7) but with C =Cf. Now, 
for the same temperature the entrainment time (Tend is longer. The difference 
between Tent and Tent is especially great for low temperatures when f2s » f2n · 

The solution to Eqs. ( 4.1) is given in Fig. 5, while Table 2 presents times Tent and 
Tent, and gives values of L f for the thermal-counterfiow problem. 
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FIG. 5. Numerical solutions for the entrainment problem (2) equations with the initial 
values V0 = l cm/s, L0 = lOOcm- 2 . Temp= 1.62° K. 

When considering the hydrodynamics of superfluid helium it is important to 
compare the entrainment times Tent and Tent with the characteristic vorticity 
diffusion time scale 

(4.2) 

where Vn = 1Jn / f2n is the viscosity of the normal component and Ro is the charac-
teristic length. In Table 2 the entrainment and the diffusion characteristic time 
scales are compared for various temperatures. When the characteristic relative 
velocity Vns = 1 cm/sand the characteristic size of a helium container Ro = 1 cm, 
the diffusion time is much longer than the entrainment time, especially in a higher 
temperature. Whereas in very low temperatures, when the normal component is 
less abundant but more viscous, the two time scales are comparable. 

For higher velocities and larger containers the Td/Tent ratio is even greater. 
It means that in the larger scale motions, helium II will behave almost like a 
classical fluid with the overall viscosity v = 1Jn / (2 . In the finer scale however , 
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Table 2. Characteristic times [s] (T ent and T ent - numerical results 
for La = 100cm- 2

) and the asymptotic line density [cm- 2] . 

All values are given for Vo, Vns = 1 cm/s, w = 1/ s, Ro = 1 cm, 
while appropriate scaling is given in last column. 

Temp. 1.07 1.26 1.62 2.01 

T ent 11.5 8.0 4.3 1.60 -
T ent 310 35 6.3 1.70 

T, 6.4 1.04 0.17 0.034 

Tns 104 8.8 0.84 0.092 

T prod 39 12.8 3.7 1.28 

Td 67 330 1960 5550 
-
Td 5150 8540 11260 9640 

q 0.64 37.8 530 4340 

2.15 

0.63 

0.63 

0.010 

0.015 

0.51 

5880 

6640 

11530 

L! 9.5 . 102 3.7 . 103 1.2 . 104 3.6 . 104 6.8. 104 

T . LI PNIACK I 

scaling 

,...., v - 2 

,...., v-2 
,...., v - 2 

,...., v - 2 

,...., v - 1 
,...., R2 

,...., R2 

,...., R4w2 

,...., v 2 

when the diffusion time is shorter and the small er velocity may not sustain the 
quantum turbulence, the two components may move separately. 

To see the problem in more detail we analyse the spin-up process focusing on 
the intermediate scale V rv 1 cmjs, R rv 1 cm. In the finer scale the Vinen (and 
any other continuum model) cannot be applied , just because few vortices are 
expected, and the spacing between the vorti ces is comparable with the length 
scale. 

5. Analysis of the spin-up in an infinitely long cylinder 

We consider here the problem of a spin-up in an infi nitely long circular cylin-
der being impulsively subjected to spinning about its axis of rotation. T he case 
of a finit e cylinder is much more complicated because usuall y the spin-up pro-
cess is dominated by a secondary fl ow which t ransports the vorticity from the 
boundaries to the center of the cylinder. The secondary flow arises because the 
fluid at the cylinder ends rotates with the velocity of the wall , and therefore is 
subject to centrifugal forces which drive it outwards. 

In an infinit ely long cylinder , the velocity is purely azimuthal and the spin-up 
of a classical fluid is described by linear equation 

(5.1) 

where v is the kinematic viscosity. 
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In our case of two fluids, the component velocities Vn(r, t ), V5 (r , t) and line 
length-density Lm(r, t) satisfy the set of 3 differential equations 

dVn _ LlV: _ l?sK:O'Lm(Vn- Vs) 
dt 

- 1/n n , 
l?n 

(5.2) 
dVs dt = K:O'Lm(Vn- V5 ) , 

dLm _ ( 3/ 2 11: 2 ) -d- - ail m IVn- VsiLm - -Lm , 
t 4m 

where 

(5.3) LlV: = a2
Vn !_ (Vn) 

n a 2 + a , r r r 

and Vn = rJn / l?n is the kinematic viscosity of the normal component. Let us 
assume that at time t = 0 the cylinder of radius Ro starts to spin about its axis 
of symmetry with the constant angular velocity w. The corresponding initi al and 
boundary condit ions are 

(5.4) 

Vn(r, 0) = 0, Vn(Ro, t ) = w 

V5 (r, 0) = 0 

Lm(r, 0) = Lo 

for r < Ro , t > 0, 

for r :::; Ro , 
for r :::; Ro. 

Again, to rewri te the equations in the dimensionless form we introduce the 
new variables 

(5.5) 
Vn 

Vn = Vo, 
Lm 

l =-, 
Lt 

where Vo 
Vns = Vo 

wR0 and L 1 is the asymptotic value for the steady counterflow 

(5.6) 

Then we have 

dvn = VnL1Vn - _1_ l (vn- Vs)l?s , 
dt Tns l?n 
dv5 1 
-d = -l(vn- V5 ), 

t Tns 
(5. 7) 

dl = 2._z3/2 (lv - v I - zl /2) 
dt Tl n 5 

' 

where Tns, Tl are the characteristic times defined as earlier (3.4). Now, let 
ｾ＠ = r / Ro. 
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Introducing the new time variable r = t /Td, where 

(5.8) 

is the characteristic diffusion time scale, we obtain 

(5.9) 

where 

(5.10) 

and 

(5.11) 
Tt C£m 

CJ = - = -
Tns ltm 

is defined as before. 
We should notice that while c1 depends on temperature only, parameter q 

depends on the "experimental conditions" i .e. on the angular velocity and the 
radius of the cylinder. 

When q » 1 i.e. when there is a strong coupling between the components, 
the fluid behaves like a classical one satisfying Eq. (5.1) with the overall viscosity 
v = Tin / (2. The velocity profil e for t he classical fluid with the viscosity equal 
to the overall helium viscosity at T = 1.62° K are reproduced as a reference in 
Fig. 6. 

The numerical solutions to the set of Eqs. (5.9) obtained for Ro = 1 cm, 
w = 1/s for 3 various temperatures are presented in Figs. 7 - 10. 

Figures 7 - 9 a , b show the velocity profiles of the normal and superfl.uid com-
ponents for various temperatures. The line-length density profil es are given in 
Fig. 10. Figures 7 - 9 c show the scaled angular momentum mn, m 5 of the two 
components as a function of time. 

(5.12) 
Ms 

ms= M , 
S f 
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FIG. 6. Evolut ion of velocity profil es. Classical fluid with viscosity equal to overall 
viscosity of helium II at 1.62° K. 

where the index f means the assymptotic value. Figures 7- 9 d compare the time 
evolut ions of the total angular momentum for the superfluid and t he classical 
fl uid having the same overall viscosity. One can see that for higher temperatures, 
the total angular momentum of the flu id grows almost as fast as in the classical 
case. 

Table 3. Values of spin-up time T spin for heliwn 11 and 
for classical fluid Tspin with the same overall viscosity. 
Tn and T. are spin-up times for normal and superfluid 
components, r espectively. 

Temp. 1.26 1.62 2.01 

T spin 450s 590 s 510s 
-

T sp in 820s 830s 480s 

T. 840s 910s 720s 

Tn 340s 510s 880s 

Let us define the spin-up t ime as a time in which the angular momentum of 
the fluid reaches 2/ 3 of its final value. Table 3 compares the spin-up time of the 
two component fluid with the spin-up time of the classical fluid with the same 
overall viscosity. The spin-up times of normal and superfluid components are 
also given for better reference. 
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of total angular momentum, dotted curve - classical fluid with the same overall viscosity. 
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6. Conclusions 

The presented mechanism of the spin-up process, based on the Vinen model, 
can be summed up as follows. When the cylinder starts moving, it drags the 
normal viscous component of helium II . Then according to Vinen equation (1.3), 
relative velocity of the two components gives rise to quantum turbulence. The 
mutual fri ct ion force caused by the turbulence couples the components, and 
the superfl.uid star ts spinning. After a suffi ciently long time both components 
will rotate as a ri gid body (with the same velociti es) and the turbulent vortex 
line-length density wi ll decrease (according to Vinen equation) to zero. This 
cannot be of course satisfi ed , because the spinning superfl.ui d component has to 
contain vort ices. Their minimum length density £ 11 (in the case when they are 
parallel) is 

(6.1) 
w 

£ 11 = ｾＭ

In the considered case the final value of £11 is 2000/cm2 Moreover one can see 
in Fig. 10 that the turbulent line-length density is much smaller than the "parallel 
vortex" li ne-length density calculated from superfluid velocity profi les. On the 
one hand, the large density of parall el vort ices is due to the fact t hat mutual 
fri ction force makes the superflui d velocity profil es very steep. On the other hand , 
the Vinen equation (1.3) does not explain how such number of vortices may arise. 

It can be clearly seen now that the Vinen model (in the present shape) cannot 
describe the turbulent fl ow which arises in t he spinning cylinder. However , the 
fir st 3 examples show that the spin-up process is dominated by quickly ari sing 
turbulence. It points that the more accurate model should be rather based on 
the Vinen model than on the HVBH one (the analysis of spin-up in the HBVK 
model may be found in [10]). 

T he modifi ed model should be related to the fo llowing facts: 

1. The parallel vortices cannot decay unless the net superfl. uid vorticity change. 
Hence the second term in Vinen Equation has to be modifi ed. The production 
of turbulent vorti ces due to the counterfl. ow (first term in Vinen Equation) may 
be also influenced be an array of parallel vor tices. 

2. When the superfl.uid is dragged by normal component and starts spinning, 
t he "turbulent vortices" have to change into locall y parall el vortices. This means 
the negative source of turbulent vortices. 

3. The Magnus force acting on the vortex tangle wi th a net vorticity makes 
that the vortex tangle moves across the counterfl.ow; in the considered case inward 
the cyli nder. 

P inning is the other important fenomena which may significant ly influence the 
spin-up process. Quantum vortices pinned to the vessel boundaries may transfer 
the angular momentum direct ly from the cylinder to the superfl.uid component 
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(see [11]). This may be especially impor tant in low temperatures when the normal 
component is less abundant. 

Coming back to the entrainment and spin-up problem, we recall that the en-
trainment time scale Tent "' V0-

2, where Vo is characteristic counterfl.ow veloci ty. 
This means that in experiments with larger velocities, the dynamics of helium II 
should be closer to the dynamics of classical flu id with the same overall viscosity. 

Acknowledgments 

Author is grateful to Prof. Z. PERADZYNSKI for helpful discussion. 

References 

1. L. LANDAU, J. Pbys., 5 , 71, 1941. 

2. L. ONSAGER, Nouovo Cimento, 6 , 249, 1949. 

3. R.P. FEYNMAN, (in:] Progress in Low Temperature Physics, Vol. I , p.17, C.J. GORTER 
(Ed .J North-Holland, Amsterdam 1955. 

4. W.F. VINEN, Proc. R . Soc. London, A 240, 114, (240, 128), (242, 493) 1957. 

5. I.L . BEKAREVICH and l.M. KHALATN IKOV, Sov. Phys. JETP, 1 3 , 643, 1961. 

6 . K.W. SCHWARZ, Phys. Rev., B 38, 2398, 1988. 

7. K.W. SCHWARZ and J.R. ROZEN, Phys. Rev., B 44, 7563, 1991. 

8. J.A. GEURST and H . VAN BEELEN, Pbysica, B 205, 209, 1995. 

9. S.K. NEMIROWSKII and D.W. ScHMIDT, (in:] Reflections on Some Problems Concerning 
t he Role of Superfluid Turbulence, Max-Planck-Institut fi.ir Stromungsforschung, Bericht 

8/1990. 

10. Z. PERADZYNSKI, S. FILIPKOWSKI and W . FISZDON, Eur. J. Mech., B/Fluids, 9 , 3, 259, 
1990. 

11. P.W. ADAMS, M. CIEPLAK and W.l. GLABERSON, Phys. Rev., B 32, 1, 171, 1985. 

POLISH ACADEMY OF SCIENCES 
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH 

e-mail: tl ipnia@ippt.gov.pl 

Received November 8, 1996. 


