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A gradient theory of finite viscoelasticity

K.C. VALANIS (VANCOUVER)

IN THIS PAPER we present a gradient theory of finite viscoelasticity. The theory is founded on the
concept of internal fields, in conjunction with a variational principle and the dissipation inequality.
The internal variables, which in local theories obey local evolution equations, have been replaced
by internal fields and their gradients, which arise from physical processes that involve non-affine
deformation. At variance with the local theory, these fields obey “internal” field equations and
appropriate boundary and initial conditions. As a result, uniform boundary tractions give rise to
inhomogeneous strain fields. This phenomenon is illustrated in one dimension, where it is shown
that the creep function, normally a function of time only, is a function of space as well as time,
even though the material domain is phenomenologically homogeneous.

1. Introduction

WE BEGIN with the experimental observation that macroscopically uniform ma-
terial domains, under uniform surface tractions, develop localized, i.e., non-uni-
form deformation fields — contrary to predictions of “local” theories. There are
other issues such as “regularization” whereby ill-posed boundary and/or initial
value problems are rectified by the introduction of gradients in the constitutive
parameters. Such issues are less clear and are often due to the inadequacy of the
constitutive theories, rather than the material behaviour itself.

Phenomenological theories with higher gradients in mass density began with
the work of Van der Waal. More recently we have witnessed the development of
elasticity (hyperelasticity) theories with higher deformation gradients. We men-
tion the papers of TouriN [1, 2], MINDLIN [3, 4] and GREEN and RivLIN [5] as
characteristic of that era. It is not our purpose to discuss these theories in detail
except to say that a more precise formulation of the constitutive response of an
elastic material was sought, in the light of the perceived long-range interaction ef-
fects, particularly when strong spatial variations in the boundary tractions and/or
displacements were present.

In the present paper, the phenomenon of localization of macroscopic defor-
mation was a motivating force for the development of continuum theories with
(higher) gradients in the constitutive variables. Their recent advocacy, AIFANTIS
[6-8], is due mainly to finer and more convincing experiments, pointing to the
need for including gradients of these variables in a constitutive equation.

Other contributions in this area were forthcoming. We note the work of
VARDOULAKIS and ATFANTIS [9] and VArRDOULAKIS and FRANTZISKONIS [10] in the
area of plasticity, where higher order plastic deformation gradients were intro-
duced. The field is still in its infancy with a large scope for development.
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Our object, in this paper, is to develop a gradient theory of viscoelasticity using
the notion of internal fields under isothermal conditions. The condition of uniform
temperature allows for the developmemt of the theory in a strictly mechanical set-
ting without a need for entropy arguments, even though such arguments have been
used before, successfully, in the context of local theories. See VALANIS [11-13]
and CoLEMAN and GURTIN [14].

2. Physical foundations

The basic premise of continuum mechanics is that the deformation of a ma-
terial region is given mathematically by a one-to-one and on-to mapping:

(2.1) T —y

in the usual notation. Both frames = and y are Euclidean or reducible to Eu-
clidean by a coordinate transformation. More importantly, the deformation of a
neighbourhood in z, this being a “sphere” of radius ||dz|| < 6, where parallel
bars denote the Euclidean norm and ¢ is a suitably small number, is given by
Eq.(2.1):

(2.2) dy; = Fia dz?,

where the deformation gradient F;, (dy;/dz*) is non-singular and constant
within the neighbourhood. More precisely, no matter how heterogeneous the
deformation is, a sufficiently small 6 can be found such that || F;,dz*| is of or-
der 4. A fundamental topological consequence of the above assertions, in terms
of the motion of discrete particles within a neighbourhood, is that the order of
disposition of the particles is invariant under deformation. Thus, a material line
contains always the same particles and in an order that remains unchanged with
deformation.

Furthermore, neighbourhoods that are disjoint sets of particles before defor-
mation, remain disjoint after deformation, i.e., no particle “diffusion” is allowed
and particle membership of the initial material neighbourhood is conserved in
the course of deformation. In short, the deformation of a neighbourhood given
by Eq.(2.2) is affine. However, the basic physical characteristic of inelastic defor-
mation is the non-affine motion of the particles either through the mechanism of
slip, dislocation motion or particle migration.

2.1. Non-affine deformation

We consider a neighbourhood N undergoing non-affine deformation. In this
case, at least one particle which, before deformation, occupied a position F in
N, now occupies a position P’ not in N. Note that this position P’ cannot be
described by Eq.(2.2). If a sufficiently large number of particles leave their orig-
inal neighbourhoods, one may regard these as constituting a “migratory phase”,
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ideally a continuous material sub-domain of particles whose material coordinates
are no longer z® but p/ (2, t). The functions p’ are posited to be continuous
and differentiable in #® and ¢; furthermore Det(dp™ /dx®) # 0. We call p** (z®),
or p(x) for short, the “migration map”.

To avoid repetition, lower Latin suffixes will denote vector (tensor) compo-
nents in the y-frame, upper Latin suffixes in the p-frame and upper Greek —
those in the x-frame. Furthermore any such suffixes following a comma, will
denote partial differentiation with respect to the corresponding coordinate.

Consider now the deformation of a domain whose particles initially at z°,
occupy points y; in a Euclidean spatial frame. Further, let a subset of these
particles, previously referred to as the migratory phase, occupy positions p™ (2, 1)
in the material reference frame. The deformation gradient of the affine phase,
i.e. the phase of particles that have not migrated, is dy; /0z®, symbolically y,, the
suffix  denoting differentiation, while the deformation gradient of the migratory
phase is dy;/dp" or y,. In a more general setting, n migratory phases could
exist, each with a different migration map p”(z).

RemaRrk. The particles that constitute the affine as well as the other phases,
are indistinguishable in the deformed configuration y. Their only signature lies in
the description of their motion relative to the z-frame. The motion of the ones
that deform affinely is given by the map x — y, while the motion of those in a
migratory phase is given by the map p” — y. Thus the position y in the deformed
configurations pertains to all particles, irrespective of phase, and similarly the
traction on the surface of the deformed domain bears on all the particles of a
neighbourhood of the deformed surface. The same argument applies in the case
of body forces (inertia forces included).

2.2. The free energy density

The physics that underlies the migration process is very complex. Here we
shall consider two simple, yet realistic models of this process with a view to
obtaining equations that are reasonably tractable. Because viscoelasticity applies
most naturally to polymeric materials, we shall consider models that pertain to
such materials.

MonpEL (z). This is an assembly of polymer networks that are not elastically in-
teractive with each other. However they impede each other’s motion in a resistive
sense, so that they are viscously interactive. Initially, particles of the networks are
identified by the material coordinate z“. In the course of deformation however,
the networks drift relative to each other, thus constituting migratory motion in
the sense discussed above. Thus each network is a phase and the particles within
the phase ineract between themselves elastically. We may thus posit a cross-linked
reference network that deforms affinely, relative to which the other phases (net-
works) suffer migratory motion. It is clear that in this model the (Helmholtz)
free energy density 1> of the whole is the sum of the free energy densities 1)" of
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its parts (r = 0,1,...,n), where ¢/ pertains to the affine phase. The following
equations, therefore, are applied

0 = P2(yia),
(2.3) P = 9 Wi k™) = P {Yiar® g},

b =Yy,
0

where, in Eq. (2.3), the chain rule of differentiation was used. Implicit in Egs. (2.3)
and (2.4) is the stipulation that the interactive forces among particles are of short
range. A general statement of Eq. (2.3); is Eq.(2.4):

(2.4) Y=Yz, Yp"), r=1,2,..:50

Of interest is the case where the phase drifts relative to the initial configu-
ration but maintains an elastic, albeit weak, connection with that configuration.
If this connection is modelled by means of an elastic spring, then there will be
an additional contribution to i by virtue of the term (p® — 6%,2%), ie., the
difference in position of the phase at time ¢ and at time zero. Thus now:

2.4 = Py a2 g pt — 65 Lz
Yi, Ko P

or

(2.4") Y = P(yz; Tp;p — 7).

MobkEL (22). This model is more complex and it represents a different physical
situation. Initially, all the networks are cross-linked and elastically interactive, so
that the material consists of one single cross-linked network udergoing affine
deformation. Thus, initially,

(2.5) P = Y(Yia)-

Since, however, the bonds have strength of statistical variability, one may conceive
a situation where at some critical free energy level 1) = 1)), one phase, say r = 1,
will become elastically detached, so that subsequently,

(25’) 11b = w*(yi,a) + tf/"l(yi,}\'(l))

and the domain consists of one affine and one migratory phase. We note paren-
thetically that 1)*, at the transition point, need not be equal to i, because of
the loss of elastic energy associated with the fracture of cross-links connecting
the migratory to the affine phase.
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In a similar fashion, when an energy level t(y is reached such that y* = 9y,
another phase becomes elastically detached so that two migratory phases are
operative. Now:

(2.5") b =™ + Py kD) + 2y D).

Thus, the difference between the first and second models is that, in the latter,
the migratory phases are not present ab initio and the onset of a migratory phase is
delayed until the free energy density of the affine phase has reached a “threshold”
value, in a manner reminiscent of a yield surface in plasticity. Other models are,
of course, also possible.

3. A variational principle

We begin with an integral form of a principle which is of purely mechanical
character, in that it avoids questions of entropy and temperature under conditions
of irreversibility (even though the question of existence of entropy was dealt with
by VaLanis [11, 12], in an earlier work). Furthermore, it is simple and leads to
direct results. The principle is in the form of the global statement that applies to

a dissipative continuous medium, in this case one with n migratory phases. If ¥
is the (virtual) rate of change of the stored energy ¥ (Helmholtz free enrgy in
thermodynamics) of such a medium in its reference configuration z, with domain
V' and surface S, then

3.1) W = S/ Tov; dS + vf fodV — v/ Ddv,

where v; is a virtual velocity field, 7} are the surface tractions and f; are the body
forces (including inertial forces), and D) is the internal dissipation density, which
is always non-negative, i.e.,

(3.2) D <0.

The internal dissipation density [) is due to the rate of work of the internal
forces (), acting on the migratory velocity fields v¥, where:

(3.3) ol = ph = apt/ot|,.
Thus

(3-4) D=3 Qu*>0,
where

ZQL’UL=ZQ¥)’U(LT), r=12,...,n.
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Hence, to summarize,

j = ;i dS vidy — Lav.
3.5) ¥ S/Tvdb+‘[fvdv V]QLU v

The physical foundations of this principle are given in Appendix II.

Equation (3.5) is a statement of the fact that, for all admissible virtual velocity
fields v; and v”, at constant T}, f; and Q;, the virtual rate of change of the free
energy of a region is equal to the virtual rate of work done by the external body
as well as surface forces, minus the virtual dissipation due to the virtual rate of
work done by the internal forces Q).

With regard to the admissibility of the velocity fields v; and v*, we point out
that while v; are completely arbitrary, v¥ must satisfy the dissipation inequality:

(3.6) Qrvt >0, if oY >0, ||QL]|>0

for all r, double bars denoting norms, i.e., ||Jvy||? = vpvL, so that equality (3.5)
may be written in terms of the Ineq. (3.7)

3.7) < S/ Tiv; dS + J frvidV

for all arbitrary virtual velocities v;, and vE, subject to the constraint that in V/,
@rvl > 0, with the proviso that the equality sign applies only in the case when
|QLl| = 0 and/or ||vE| = 0.

We complete the variational statement by stipulating that for all v7, these
being velocity vectors associated with virtual rigid body motion,

(3.8) =0, |l =0.

This is a constitutive statement. The fact, as we shall show, that this is also a
statement of (dynamic) equilibrium, raises philosophical questions as to whether
equilibrium is an independent law, or a form of constitutive law, (common to
all materials whose constitution is determined by the dependence of the free
energy density on the displacement and internal field gradients), that rests on the
stipulation that, under condition of (virtual) rigid body motion, the free energy
is invariant and the dissipation is zero, since in fact [[v”|| = 0.

For the purposes of the analysis we introduce, in the variational principle, the
Helmbholtz free energy density ¢, per unit undeformed volume, such that:

(3.9) = [dV
/
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assuming short-range interaction among particles. We thus have a variational
principle in terms of the following inequality:

(3.10) pdV < [ TowidS + [ fov;dV,
where 1) = (O 0t),.

4. Field equations in the presence of internal fields

We begin with the generic Eq.(2.4),, i.e.,

4.1) ¥ = YWis P* a3 q™),
where p* , is the inverse of = g, i.e.,
(4.2) 2 gpX 5 = 6%
and ¢X = pK — 6K,

Thus

(4.3) b = (BB i + (B[N YO o+ [ DgK K,

where

(4.4) vl = 9¢K [0t = p" /0t
(4.5) i, = (9p" o/0t)..

Hence

(4.6) b = Pvia + PK0K o + Prot,
where

@7 P =0/Oyia, POk = 0[P a, L =0¢p/0q"
We now use Eq.(4.5) in the variational inequality (3.10) to find:

(4.8) (Y% ivia + PP Lot p)dV < [ TividS + [ fividV.
/ [rese]

The left-hand side of Eq.(4.8) is now recast in surface and volume integrals
with the aid of the Green - Gauss theorem, and Eq. (4.9) is thereby obtained:

@9  [Wime = TyoidS = [ (" e+ flvidV
S 14

+ [ YPrngoldS — [ |(¥PL)s — | vidV <O.
3;/ Lngv J[ L).A L]U
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Discussion. Before we proceed with the consequences of Eq.(2.4) we note
that, generally, on a part of the surface S, namely S, tractions are applied,
while on its complement Sy displacements or velocities V; are applied instead.
Therefore, on St the virtual velocities v; are arbitrary while on Sy these are
zero. With regard to the boundary conditions of the migrating phases (and fol-
lowing the discussion at the end of Appendix II), the surface S is the sum of
the sub-surface Sy on which the velocities of the phases are unknown and thus
the virtual velocities are arbitrary, and the sub-surface Sp, which is impenetrable
to phase migration, and on which the migratory velocities V* = 0. No other
physical situation is possible (see discussion at the end of Appendix II). Thus on
Sy the virtual velocities v are arbitrary while on Sp:

(4.10) pK = 6K 2~

and the virtual velocities vZ are zero. In the interior both v; and v’ are arbitrary
except that v are admissible only if they satisfy the dissipation inequality.

With the above discussion in mind, let a set of admissible v” in V' be pre-
scribed, in the sense of Ineq.(2.1). The virtual velocity fields v; on St, v; in V
and v” on Sy, can be independently and arbitrarily prescribed. Thus setting these
equal to zero, and noting that v; are zero on Sy and vl are zero on Sp, one
finds in view of Ineq. (4.9), that

(4.11) / ((¥PL)5 — O/ Dg"] v dV > 0.

Vv

Now keeping v; in V' and V! on S null, one may prescribe v; on S7 in a manner
that violates Ineq. (4.9), if the bracket under the surface integral does not vanish.
Thus

(4.]2) @L’anﬂ, = T; on ST,
(4.13) v; =V, on Sy,

where V; are known functions of time and the surface coordinates. Repeating the
same argument for the other integrals one finds that

(4.14) W)+ fi=0 inV
and
(4.15) Ping=0 on Sy, vP=0 on Sp.

DiscussioN. Equation (4.14) replicates the equation of motion in continuum
mechanics when internal fields are absent. Here we show that the equation applies
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in the presence of internal fields. Therefore if f; contain inertia forces, as in the
dynamic case, then

(4.16) fi = gi — 000%yi(z®, 1)/ 012,

where g; are body forces other than inertia forces and py is the reference density
of the domain. We point out that to obtain Eq.(4.14) in the presence of inertia
forces, we choose a virtual velocity field which is accelerationless, i.e. V; is a
function of x“ only and independent of time.

REMARK. As noted above, the physics of the problem is such that tractions
are prescribed on S7 (< S) with full kinematic freedom of the particles on the
surface, while the deformation of the surface Sy (Sy < ) is prescribed by means
of a relation:

(4.17) yi® =55 (2%, ),

where y;° and 2°s denote the coordinates of the particles on the deformed and
undeformed surface, respectively. In the former case Eq.(4.12) applies. In the
latter case v; are prescribed on the surface since

(4.18) vi =V, = (0y:°/0t),

and Eq.(4.13) applies. With regard to the migratory boundary conditions, the
surface velocities V'~ are arbitrary on Sy while V'~ are zero on Sp.

5. Internal equations of motion

We begin by noting that Eqgs.(4.11), (4.12) and (4.13) in conjunction with
Egs.(3.5) and (3.9) lead to the following relation for the dissipative forces ¢,

(5.1) / {@71)5 - 09 /0q" - Qu}v"dV =0,
J

Since this equation must be true for all arbitrary (including infinitesimal) domains,
the local form of Eq.(5.1) results:

(5.2) {@Pr)5 — 0%/0q" - Q)" = 0.

Equation (5.2), however, cannot be satisfied for all admissible fields v¥ (see
Appendix I), unless:

(5.3) ®°L) s - 0V/dq" - QL =

Equation (5.3) is the equation of internal equilibrium that relates the dissipative
force (), to the divergence of the bi-vector z,!'.vf.
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At this point we recall Ineq. (3.6), i.e., Qrv” > 0, which is a constraint or
a requirement of positive dissipation in the presence of non-affine deformation.
The constraint demands that Q;, and V* should be related, otherwise they could
be prescribed independently and in a manner that would violate the inequality.
The most obvious relation is a linear one of the form:

(5.4) Qx = bxrv®,
where by, is a covariant “viscosity tensor”. Equation (5.4) is a statement to the
effect that the dissipative (resistive) force is a linear and homogeneous function
of the migratory velocity of a phase.

Equations (5.3) and (5.4) combine to give Eq.(5.5),
(5.5) 'l/)ﬂ;{‘ﬁ = ad)/aqh = b[{[,v[‘
which is the equation for the motion of the particles in a migratory phase.

The initial conditions

The initial conditions are obtained from the presumption that the material is
in a quiescent state at ¢ = 0. Thus

(5.6) yi(z*,0) = §;o2°, " (@@*,0)=0,
(5.7) vi(z®,0) = 0.

At this point we summarize the equations pertinent to the motion of the domain,
reference being made to the individual phases » = 1,2, ..., n.

Summary of equations

InV
(5.8) = Yp(dy:/Dx; P~ (043 g™),
(5.9) (W) + gi = 000%yi(2*, 1)/ O,
(5.10) Yk g — YK = bgrot.
On St
(5.11); Yoing =T,
On Sy
(5.11), y;% = y;5(xz%s,t) or v;=V,.
On 5
(5.11)3 Prng = 0.
On Sp
(5.11)4 vl =0.

The initial conditions are such as in Egs. (5.6) and (5.7).
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5.1. Invariance under rigid body motion

We restate the two conditions stated previously, to be satisfied under condi-
tions of (virtual) rigid body motion:

(5.12) =0, [of=0.

These conditions are fundamental in putting further restrictions on the form of
t and in identifying physically certain constitutive constraints.
To show this we employ Eq. (3.5), i.e.,

= Vi i - o
(5.13) 0 S/Tv dS+S/f dv V/QLU dv

which in the presence of rigid body motion then becomes:

(5.14) ! Tov; dS + V/ froidV = 0.

(i) Rigid body translation
In this case v; are constant in V. Thus, in view of Eq. (5.14),

(5.15) v,-{S]Tidm/fidv} = 0.

‘/
A set of three linearly independent vectors v; can be found for which Eq.(5.15)
must hold. This is possible iff
(5.16) /Ti ds + ffi dV = 0.
s v

Using the classical argument of applying Eq. (5.16) to a tetrahedron of vanishing
dimensions in the undeformed domain, one finds that

(517) To’ina = Ti,

where the tractions 7; are calculated in the z-frame and pertain to the unde-
formed area. We recognize 7'%; as the First Piola - Kirchhoff stress tensor. Fur-
thermore, in the light of Egs. (4.13) and (5.17),

(5.18) Te, = °;.

If we transform the domain of integration in Eq.(5.14) to that of the deformed
configuration and apply the same procedures, we find that

(519) Tij n; = T-’,

i
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where T;; is the Cauchy stress and the traction 77, where 7; = Det(y: )1/,
are calculated in the y-frame and pertain to the deformed area. The following
tangent transformations apply:

(5.20) Mo = Yiali, T =JTja%;, JTj=T%Yja-

(it) Rigid body rotation

Here, the virtual velocity v; is caused by a virfual angular velocity {2; brought
about by rotation of the spatial frame of reference y,. Therefore there are no
induced centrifugal forces as there would be, had (2; been actual, i.e., an angular
velocity of the domain itself. Thus ¥ does indeed remain invariant in the presence
of a virtual angular velocity field (2;.

We now begin Eq. (5.21):
(5.21) vi = €ijkf2; Yk,
where e is the permutation tensor and {2; is an arbitrary angular velocity vector,
brought about by rotation of the frame of reference y,. Again, transforming the

domain of integration in Eq.(5.14) to that of the deformed configuration and
applying classical arguments we find that:

(5.22) Ty =T
Thus, in view of Egs. (5.18), (5.20); and (5.22):
(5.23) ViYia = Y% ¥Yia

Eq.(5.23) is a restriction on the functional form of 1.

Further Invariance Considerations. We recall Eq. (5.8):
(5.24) Y = Y(iai P 0).

Virtual rigid body rotation leaves v as well as 2 x(") invariant. However, y; ,
is a bi-vector and represents in fact the three vectors: v, 1; ;2 ¥:3. A clasical
theorem in continuum mechanics (see for instance ERINGEN [17]), is that a scalar
function 1) of three vectors a, remains invariant under rotation of the frame of
reference iff it is a function of the inner products a,-a, and the determinant
|a;,|. Furthermore, if ¢ is centro-symmetric, i.e., invariant under reflection of the
frame of reference, as it must be since the choice of the spatial reference frame
is arbitrary, then ) must be an even function of |a;|, since |a;.| changes sign
upon reflection.

It follows, therefore, that a necessary and sufficient condition that ¢ be in-
variant under rigid body rotation and reflection of the spatial frame of reference
y; is that

(5.25) P = P(Caps P* 03 4°),

where C, is the Right Cauchy-Green tensor y,.” y,. One can verify that condi-
tion (5.23) is now trivially satisfied.
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5.2. Conditions of material isotropy

In strictly affine deformations, the mathematical definition of material isotropy
is invariance of a constitutive equation, or property, under rotation and inversion
of the material frame of reference z“. In the present case, however, the situation
is more complex and lends the theory a wider scope for material characterization.
For instance, a migratory phase may be isotropic initially but may evolve into an
anisotropic state as migration proceeds. We thus distinguish between two distinct
possibilities:

(1) Isotropy in the initial state whereby ) is invariant under rotation and inversion
of the material frame x*°

(ii) Isotropy of phase “r” in the migrated state in which event 1) remains invariant
under rotation and inversion of the frame p* (r)*

We note that in (ii) we have introduced a formal, rigorous definition of
“strain-induced anisotropy” in phase r, a lack of invariance if 1) under rotation
and inversion of the frame p” 5

Restrictions on 1

(i) Isotropy in the initial state

This means invariance of ¥ under rotation (and inversion) of the material
frame =®. We begin with Eq. (5.25) which we write in the form:

(5.26) ¥ = $(Cop; k3 %),

In the case 1) is an isotropic function of the tensor C,3, and the three vectors
% gt a=1,2,3. Thus

(5:27) = (Lo : Crr; Grriq™),

where Cp = Copr® k2P 1; G = 8apz® x2P 1, and I, are the three principal
invariants of C,4.

(ii) Isotropy in the initial state and migratory phase 1

In this case ¢ is an isotropic function of G e L, Cr W and ¢* but a general

function of the tensors G'gr.("), C}J)L and ¢\, r = 2,3,..., n. In other words, if
a phase remains isotropic during its migratory motion then > will be an isotropic
function of G'x1, Crz and ¢ of that particular phase.

Thus, more generally, specific material symmetries in the initial configuration x
involve invariance under appropriate rotations of frame x, while evolving Svmmernes
in a specific phase r involve invariance under appropriate rotations of frame p™* (r)-
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5.3. Linearization of the field equations

We complete this section by giving the linearized form of the field equations
and boundary conditions (5.8)—(5.11)4. The basis of the linearization scheme is
the premise of small deformation in the sense that:

(5.28) Yi = 0ia™ + nu;,
(5.29) p" = 6% a® + ng",

where 7 is a small real number. Equations (5.28) and (5.29) are then substituted in
Egs. (5.8)—(5.11)4, terms in 7 are retained, while terms in 7* and higher order are
neglected. Subsequently 7 is set equal to unity. Furthrmore since, ultimately, all
equations are referred to the reference frame z, following the analysis all indices
are replaced by small Latin letters. Note, parenthetically, that since the frame p
now collapses onto the frame x, there cannot be any evolution of anisotropy of
phase, if the phase is initially isotropic.
Thus, beginning with the relations:

(5.30) pra =850 +¢%,,

(5.31) Cop = bap + MEap,

(5.32) Ckrp = 0xp + 2nekr — 2ngkL,
(5.33) Grr = 0k — 219K L,

where ¢, is the strain tensor while 2¢x 1, = ¢x 1 + ¢k, the following equations
result for all r:

InV
(5.34) Y = (e 46,7, 47
or
(5.35) = (s, 4, 4i)
if the domain is initially isotropic. Also
(5.36) (D)0 [); + gi = %02,

(5.37) (/3¢ ;) ; — O[3g” = b;V0q, /Ot (r not summed).
On St

(5.38), (0 ) du; n; = Ty
on Sy

(5.38), (3¢ yn; = 0;
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on S,

(5.39) u; = Us;
on Sp

(5.39)2 i = 0.

Initial conditions

(5.40) wi(z,0) = (i)z,0)=0;  ¢"(z,0)=0.

6. A worked example

To illustrate the ramifications of the non-local theory, we present in this sec-
tion a worked example of simple quasi-static shearing in one dimension. Let a
half-space be infinite in directions = and z and semi-infinite in direction y. The
material domain is in a quiescent state when, at time ¢ = 0, a shearing traction
To(t) is applied in direction z on the surface y = 0. Let

(6.1) i = (1/2)Au? + Buyq, + (1/2)C4,

where u, = du/d,, ¢, = dq/0,, i.e., a subscript denotes differentiation. The
pertinent boundary conditions then are: At y = 0, T' = Ty(t); 0v/dq, = 0
At y = oo, all variables are bounded. At ¢t = 0, u = ¢ = 0. The equilibrium
condition, Eq. (5.27), gives:

(6.2) (0] duy), = 0
while the equation of motion for the internal variable ¢ is given by Eq.(6.3):
(6.3) (0¢/0qy)y = bq;.

In view of Eq.(6.2), the shear stress 7'(= d1/du,) is uniform in the domain as
in the local theory. However this is not true of the strain. Eqgs.(6.2) and (6.3)
combine to give the following (diffusion) equation for ¢:

(6.4) Chrgyy = 0q:,
where Cy = C' — B%/A. We have solved Eq. (6.4) by the usual Laplace Transform

technique and obtained the following expression for the shear strain ~y

(6.5) y= ] J(z3t — T)(OTo/Or)dr.
0
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Note that memory function J(y,t) plays the role of a creep function except that
now, at variance with local theory, it is a function of x as well as ¢. Equation (6.6)
gives the analytical form of J, found from the solution

(6.6) J(y,t) = AT {H(t) + (BY/ACy)erfe [y/at'/?)| }

where a®> = b/C}. In Fig.1 we show the dependence of v on time at various
y-stations when 7 has the form of a Heaviside step function, in which event
v(y,t) = J(y,t). Evidently the strain “diffuses” into the half-space as time in-
creases.

decreasing y

F1G. 1. Shear strain versus time for different values of y.

7. Postscript on plasticity

Previously, VALANIS [15, 16], we have developed the constitutive equations of
plasticity and viscoplasticity, in the context of the local theory of thermodynam-
ics of internal variables, by introducing the concept of “intrinsic time” =z, and
substituting z for ¢ in the equations of evolution of these variables. The theory
developed here may be extended to materials that are strain-rate indifferent, or
partially indifferent, by the use of a similar procedure, whereby z premultiplies
the left-hand side of the equations of motion of the internal fields. Eq. (5.10) will
now read

(7.1) z {1pﬁymr) - @b,\m} = b(,:)L U(L,) (r not summed).

The precise nature of Z will be discussed in future studies.
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Appendix I

The task is to prove that if
(1.1) (Qr + YLt =0

for all admissible vZ, where 17, = (?fJﬁ’L),lg, then

1.2) (Qr + 1) =0.

As discussed in Sec. 2, v” is admissible if

(1.3) Qrvt >0, Yot <0

for all [|QL]| # O, [[¢r| # 0, ||v”|| # 0. Otherwise v’ are arbitrary.

Proof. If ¢y and ¢, are collinear and either of the same sign or unequal,
the proof is trivial. Let ()7, = a1y, where o # —1. Then in view of Eq.(1.2)
¥;6q; = 0. However, the constraints 1, v’ = 0 and ¥»;,v% < 0, cannot be satisfied
simultaneously if [|1)| # 0. Thus, in this case, @ = —1 and @, + ¢, = 0.

If 1, and 17, are not collinear then there exists a vector 57, normal to the
plane of the vectors @1, and ¥;, (QrB* = 0, ¢ B* = 0), such that the scalar
product p = eEMNQ4ppr By > 0. The three vectors Q) ¢, and By, are linearly
linearly independent. We now introduce two vectors: R”, normal to the plane of
1, and By, and PL normal to the plane of @)1, and By, ie.,

(1.4) RL = e!MNyy vy, PL=e!™MNQyBy.

It may now be shown that all vectors v’ of the form:

(I.5) vl = aRL + BPL + yBEL,

where o and [ are positive scalars and v in non-negative, are admissible. In fact

(1.6) Qrvl = ap, Yol = —fBp

thus satisfying inequalities (1.3).
Three vectors v, are then constructed as in Eq.(1.7),

(17) 5’UL,- =a, R; + ﬂrPi + ’y,.Bl'

where o, > 0, 8, > 0, v, > 0. These vectors are admissible and, furthermore
linearly independent if v; = 1,7, = 0, 43 = 0, and the determinant condition (1.8)
is satisfied

(L.8)

Q)
Pi P

Since one can always find positive scalars such that a3, — azf; # 0, condition
(I.1) now demands that the vector ({); + ;) be orthogonal to three linearly
independent vectors. This is not possible if the said vector is different from zero.

Thus QL = —7/)[,.

0.
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Appendix II

Variational principle
Physical foundations

To derive Eq.(3.1) we begin with the observation that, actually, the rate of
(virtual) work W s done by the surface tractions is

(I1.1) Ws = /ZTi(,—)vi(r)d&
S

where T(") are the surface tractions on the phases of the domain and v(") are the
corresponding (virtual) velocities of the phases, i.e.,

(11.2) vi™ = 3y (™ (), 1)/ 01
More precisely, and since p are migration maps given by the relation
(I1.3) PE = pR(2%,1)

and omitting the index  on the right-hand side of (I1.4), for simplicity of notation,
the phase velocity v,(") is given by Eq. (IL4):

(L4) v, = oy (22, 1), 1)/ 0|, = (Dy;/Op™)Op™ |0t + Dyi/Ot|,.

Quite clearly dp™(,,/0t|.(= v, is the migratory velocity of phase r while
Ayi(p™ (1), 1)/ 0], (= vi{)y,) is the velocity of the phase relative to the present
reference configuration p. Thus:

(IL5) v = 9y Op" (" iy + 0.

Equation (I1.5) is merely the rule of addition of velocities.
In a similar manner the rate of (virtual) work W done by the body forces is

(IL6) (W)y = / S £:00,0 4y,
V g

Thus, the statement that the rate of change of the free energy of a domain is
equal to the rate of work done by the applied surface and body forces minus the
rate of dissipation (all rates being virtual), has the analytical form of Eq. (I1.7)

@n b= [Yrw0ds+ [ 0w - [Dav.
s 7 14 v
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It is a posited premise in continuum mechanics that the forces that constitute
a surface traction are shared equally by all particles of the neighbourhood. With
the above in mind, let ng, n,...,n,, be the particle densities of the phases (at
the surface) such that 5~ n, = 1. It then follows that

(I1.8) T =nT, T=) TV
In a similar manner,
(11.9) fO=nf, f£=3 10

where n, are now the particle densities in V' (if different from .5). Substituting
equations (I1.8); and (I1.9); in Eq.(I1.7) we recover Eq. (I1.6) of the text, i.e.

(IL.10) 0 = / TovidS + / fon; AV — f Dav,
S 4 | %4

where

(I1.11) vi =Y n"

i.e. v; is the mean, number-averaged (virtual) velocity and is equal to the one that
would be calculated from the first principles, in the case if the (virtual) velocities
of the phase were not equal.

The superscript r of the function 7,0 on the right-hand side of Eq.(I1.2)
signifies the fact that the deformation of the phases is not compatible, in the
sense that, after deformation, each phase r occupies a point y;(") in the spatial
system, not necessarily the same as ;" 1), say, or any other y;(™), for that matter.

Thus, to be precise, the free energy density ©»" in model (i) in the Sec.2.
Physical Foundations, should be given by Eq. (11.12)

(I1.12) ) =y /0p* (,)), T not summed.

But then the theory would be too complex, and mathematically and physically in-
tractable. In this simpler physical approach the deformation gradient dy."/dp*

has been replaced in Eq.(I1.12) by the mean deformation gradient dy;/dp™ .

where

Yy = Z Ny yi(")_
Thus
(I1.13) vi = O/ Ol = Ym0

as in Eq. (II.11), assuming n, to be constant.
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Discussion of boundary conditions

When the boundary conditions were discussed in the text, the question was
posed whether a diffusive velocity v’ (,), of a phase r, could be prescribed at the
boundary. This is experimentally not feasible — since at the boundary, separate
motions of the phases cannot be distinguished experimentally — unless, of course,
vL(T) = 0 for all r. This is achievable physically by making the pertaining part of
the boundary impenetrable to particle migration. In this case,

(11.14) pX ) = 8.5 2

for all r. Thus

(I1.15) vX oy = p% /6t = 0,
and in view of Eq. (IL5),

(I1.16) v = v;.

Thus, either the diffusive velocities v/, of the migrating phases are not
prescribable on the boundary, or if they are, then they all identically vanish.

A footnote on dissipation

In reference to Eq. (IL.5), quite clearly the dissipative velocity is the non-affine,
migratory velocity v”. Thus when resistance to such motion exists, through a
resistive force (), then the rate of dissipation is the rate of work done by the
dissipative forces, i.e., Qrv".

We make the statement of “when resistance exists” so as to open the door
to the possibility of elastic non-affine deformation. This, in principle, could be
achieved through breaking of bonds but without resistance to subsequent motion.
In this event 1) would be zero. This case is merely a sub-case of the theory already
presented. The relevant equations are obtained by setting the right-hand side of
Eq.(5.10) equal to zero.

One thus obtains a theory of non-local elasticity without the need for higher
gradients of deformation, by introducing the concept of internal fields.
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