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A new method of finding strong approximation
to solutions to some IBVPs

Z. TUREK (WARSZAWA)

IT HAS BEEN PROVED that every solution to a 1D initial boundary value problem (IBVP) represented
by a uniformly convergent series in some domain can be approximated by a Fourier cosine series.
The new series is also uniformly convergent in that domain. The strong approximation to the
heat-conduction problem subject to any boundary conditions with the application of the Fourier
cosine series is found. It is the Fourier cosine series approximation to the exact solution to the
problem under consideration. Its coefficients form an infinite set of ordinary differential equations
(ISODE). Numerical results presented for heat conduction problems show - in comparison with
solutions derived by the method of seperation of variables — that relatively small number of terms
of the Cosine Series approximate very well the exact solutions.

1. Introduction

IN [6] A New METHOD of finding approximate solutions to the heat conduction
equation in one dimension subject to mixed boundary conditions has been pre-
sented. From the results obtained we could see that the solution to the problem
derived by the Fourier cosine series approximated well the solution to the same
problem derived by the method of seperation of variables. The boundary con-
ditions for the problem were not satisfied. Paper [7], however, applies the new
method to a certain class of partial differential equations of engineering and
physics subject to non-Dirichlet boundary conditions, considering the problem of
boundary conditions as well. In that paper we solved two initial boundary-value
problems with non-Dirichlet boundary conditions without solving the eigenvalue
problems. The new approach was applied to the equation describing the heat
conduction subject to non-Dirichlet boundary conditions and the vibrations of
a rod also subject to non-Dirichlet boundary conditions. The numerical results
showed that the new solutions also approximated well the solutions derived by
the method of seperation of variables. For the heat equation, however, even the
boundary conditions at the initial instant of time were satisfied. Analysing the
boundary conditions of the vibrating rod for a given initial displacement of the
rod we came to the conditions on the Fourier cosine coefficients at { = (). They
were expressed as convergent series of the Fourier cosine coefficients mentioned
above. They did not tend to zero which meant that the new method solution
did not satisfy the prescribed boundary conditions even at ¢ = (. The classical
method of solution did not satisfy the prescribed boundary conditions either since
the initial condition for the problem did not satisfy the given boundary conditions.
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The aim of the present paper is to give mathematical grounds to the new
method. So it has first been proved that every solution to a one-dimensional
IBVP represented by a uniformly convergent series in [0, L] x [0, ¢.) can be ap-
proximated by the Fourier cosine series which is uniformly convergent in that
domain. It has been proved that the Fourier cosine series is a strong approxi-
mation to the problem under consideration, which is a solution to the so-called
integro-differential-boundary equations (IDBE) [6, 7]. It has been found out that
solutions to the corresponding ISODE form the Fourier cosine coefficients for the
strong solution (satisfying given equations and conditions) of the heat-conduction
problem (this is why we call our approximation strong approximation). In the pa-
per we present the new approach to the heat conduction problem for all kinds
of homogeneous boundary conditions. But the method can be applied to other
boundary-value problems as well [5].

2. Fourier cosine series representation for a certain function
of two variables

In this section we are going to show a Fourier cosine series representation for
a function of two variables which is a sum of a uniformly convergent series. To
this end we need some results concerning a Fourier cosine representation for a
function of one variable.

LemMMA 1 [4]. Every function X, continuous in the interval [0, L] whose
derivative X' is piecewise continuous in that interval can be expressed by a uni-
formly convergent series

: nmTIT
X(z )— 5 +Z%CS 7

in that interval, where

L
2 717r:c
(2.1) Vo = EO/ X(z)dz, n=0,1,2,...

Proof Let X bean even extension of X. Then X is an even cortinuous
function whose derivative X is piecewise continuous on [—L, L]. The Fourier
coefficients for X are

TIW.T

22) = / X () cos
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and

L
1 — . MW
= Z{X(:c)sm 7 dz =0,

.= : . D =)
as the function X is even. The Fourier Coefficients /3, for the derivative X of
the function X exist since X is piecewise continuous and the series

2.3) S 2
n=1

is convergent. Let us now consider the formula
LN _ o 2LIB.], (L
L —— ) =82 - +(—) >0,
(m | 1z7r) B nmw (nw) 20

from which we have

Lifnl 152, (L)2 (n=1,2...).

nm nmw

The right-hand side of the above inequality consists of the elements of a conver-
gent series. Then the series
i |ﬁn

is convergent and so is the series

(2.4) Z lenl -

n=1

As the series in (2.4) is convergent, then the series

o0
co nTT
— + €y, COS
7t 2 ocos T

n=1

is absolutely and uniformly convergent and its sum is X (z) [1]. But the function
X is an even extension of X and coincides with X in the fundamental interval,

then
L

2

=7 / ( () cos =
0

So the Lemma has been proved. O

TFT

B
1 [+ n
T ]L X(z)cos 7

diII = Tn -
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Now we will use a known result [1] concerning the uniform convergence of
an infinite series whose terms are products of functions of a certain class. This
results in verifying formal solutions to boundary value problems represented in
the following form:

25) 5@ )= 3 X)),
=1

Abel’s test for uniform convergence [1]

The series (2.5) converges uniformly with respect to the two variables = and
t together in a region D of the @ — ¢ plane provided that

a) the series
Z Xi(:z:)
i=1

converges uniformly with respect to z for all  such that (z,?) is in D, and
b) the functions 7; are uniformly bounded and monotonic with respect to ¢
(: =1,2,...) for all ¢ such that (z,?{) is in D. O
In establishing the way for the Fourier cosine series representation of the
series in (2.5) we will mostly depend on the important fact stated in the following
lemma which is an extension of Lemma 1 for a function with a parameter .

LEMMA 2. Any continuous function
u(+,t):[0,L] =R

piecewise C! in [0, L] for every ¢ € [0,1.) can be represented by the Fourier
cosine series

(2.6) E(-)g) + i ¢ () cos

nmTxr
)]
n=1 7

L
that is uniformly convergent in [0, ] for all ¢ € [0, ¢.) with coefficients
nwT

L
@.7) ca(t) = ]z_/u(.r,t)cos T da.
4 0 J

The proof of this fact is exactly the same as that of Lemma 1. a

The fundamental fact leading to the Fourier cosine representation for the
series (2.5) is expressed by the following theorem.

TueoREM 1. Let X; satisfy, for each © = 0,1,2,... the conditions stated in
Lemma 1 and additionally let X; and T; satisfy for each i = 0,1,2, ... the conditions
of the Abel’s test for uniform convergence.
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If the sum S(x,t) of the series (2.5) satisfies the conditions stated in Lemma 2
in D := [0, L] x [0,t.), then the series

2.8) E(@+§:c(t)cosn7rt
4 2 n=l n

with the coefficients

(2.9) () =Y yuTi(t) n=0,1,2.,

where ~y,; are defined by (2.1) for X = X, converges uniformly to the sum S(zx,t)

of the series (2.5) in D.
P ro o f. Notice that

o0 o0 L
ealt) = 3 1Tit) = %Z/cos””)( (2)Ti(t) dz.
0

=1 1=1

Using the theorem on integration term by term [2] we come to

L L
2 NTT nwTaT
en(t) = Z/ 55 Xi(@)Ti(t) da = / P72 S(z, by dx,
0 =1 0
for n = 0,1,2,..... These coefficients are Fourier cosine series coefficients for

the sum S(z,t) of the series (2.5). So the series (2.8) is the Fourier cosine series
for the sum S(x, t) which satisfies the conditions of Lemma 2, and that ends the
proof of the theorem. O

3. A new approach to strong approximation to a solution
to the heat conduction equation

oo
From Theorem 1 we know that every series . X;(2)7i(t) uniformly conver-
=1
gent in [0, L] x [0,¢.) whose sum S(z,?) satisfies the conditions of Lemma 2,
can be represented by a Fourier cosine series that is uniformly convergent in
that domain. This means that every solution u(z,¢) to an IBVP represented by a
series satisfying the conditions mentioned above can be expanded in the cosine
series

(3.1) u(x,t) = Co(t) + Z cn(t)cos

n=1
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with

(3.2) en(t) =D i Ti(1),
i=1

where

L
Yni = i Xi(x)cos L$d
0

with X;(z) being eigenfunctions of the problem under consideration and T;(t)
satisfying the corresponding uncoupled infinite set of ordinary differential equa-
tions.

The above representation will have a practical application if we find a method
of calculating Fourier coefficients other than those presented by (3.2). Such a
method exists, however, and has been described in [5, 6, 7]. The method leads
first to the IDBE and then to the ISODE for the problem. The corresponding
IDBE and ISODE are derived for each boundary-value problem separately. In the
present paper we are going to demonstrate the approach for the heat conduction
problem.

3.1. IDBE and ISODE for the heat conduction problem with non-Dirichlet
boundary conditions

Let us consider the equation

ou  9*U

(33) W - W =0 for (.T, t) € (O, L) X (O, tc),
subject to the boundary conditions

g—U—lU—O for = =0,
34) 82:

Tr +gU=0 for z=1L,
for all ¢ € [0,%.], and the initial condition
(3.5) Uz, 0) = Up(x),

for all z € [0, L], where h and g are constants. The IDBE for the problem is the
following one [6, 7]:

L
d
E/U(:r tycos " dz + o /U(:z: Hoos T de = £,

3.6) F, ——hU(O y-gUL,t)(-1)", ap=7mn/L, n=0,1,2,...
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Before we find the ISODE let us introduce a notion

DEFINITION. A function
U(,+):[0,L]x [0,t) = R

is a strong approximation to a solution to the initial boundary-value problem (3.3) —
(3.5) if it satisfies the IDBE in (3.6), i.e. U satisfies almost everywhere the following
infinite set of integro-differential boundary equations

d/((lt)os 7

Fo=-hU(©,t)- gU(L, t)(-1)"
forn =0,1,2,.... o

The corresponding ISODE for the problem in (3.3)-(3.5) appears in the
following lemma which we give without a proof.

LemmaA 3. Any function U(-, +) : [0, L] x [0, %) — R satisfying the conditions

stated in Lemma 2 is a strong approximation to a solution to the IBV problem
(3.3)-(3.5) and can be represented by the series

"tdr = E, .,

da:+a /U(l t)cos
3.7

(3.8) U(z,t) = CO(t)+ch

with ¢, computed from the so-called ISODE for the problem (3.3)-(3.5) in the
following form

" 2
Cp + azcn = —Gn,

(3.9) G —*~[h+ g9(= 1)”]*2@[’”9( 1,

en(0) = % / Uo(z) cos 72 da
0

forn = 0,1,2,... and (G, were derived from F), using the boundary conditions
in (3.4) o

Solutions to the ISODE in (3.9) follow from the following theorem.
THEOREM 2. If the series

(3.10) Uz, 1) = f:x,-(x)T,-(t)
=1
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is a solution to (3.3) — (3.5) derived by the method of seperation of variables, then
(3.11) () =) mTit), n=0,1,2,..
with
2 7 nmwT
i = 7 [ osTTEXi(@)da
0

being solutions to the ISODE (3.9).

Proof. We have to consider two cases; n # 0 and n = 0.
In the first case (for n # 0) let us consider the second term at the left-hand
side of (3.9)

(3.12) atc, = a2 Z'ym-Ti = Zai’)’ngﬂ,
i=1 i=1

Using now the expression for v, and integrating twice by parts we get for each
term in (3.12) the following expression

nmTe

(.13)  odyuTi = Tad% / cos T X (2)da

2 XD 1) + X OT] ~ T

In the above formula we have used the boundary conditions (3.4) and the fact
that X/ + w?X; = 0 and 7T'; + w?T; = 0, where w; is the :-th eigenvalue for the
problem (3.3)-(3.5).

As the terms of (3.13) contain terms of the series (3.10), we can add up both
sides of (3.13), to get

[o.<] . 2 " o0 [s e} i oo
A Y Ty =~ |90 L XAD)T: + by X O} = 3 Timis
=1 1=1 =1 =1
or using the fact that

iXi(L)Ti(t) = U(L,1), iXi(O)Ti(t) = U{0,1), i Ti() i = En
=l i=1 i=1

we have

023 3uiTi = 2 [gU(L, (1) + hUO, D] = én.
1=1
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Now we can exploit the above formula at the left-hand side of (3.9),
én+aic, = Cn+ z:: T;=¢n— T [gU(L (D" + hU(0,1)] — ¢n

= _Z [gU(L,t)(-1)" + RU(0,t)] = IG‘H

and that ends the proof for n # 0.
In the second case (for n = 0), Eq.(3.9); has the form

2,
— Z(JO

Consider the left-hand side of the above equation. Proceeding in the same way
as for n # 0 we get

]

L
-2 T,—(t)ofx;'(;c)dx = -% ST [9X:(L) + hXi(0)]

1=1

2 ‘
A [gU(L,t)+ hU(0,t)] = IGO
and that ends the proof for n = 0.

We also have to prove the initial condition (3.9); to be true. Consider Eq.(3.11)
for t = 0. Then

=1

o0 L
ca(0) = %Z/cosfﬂ X:(2)T:(0) dz
=17

B~ v
~| 2

L & L
/ E i(@)T(0)dz = / Up(x) cos %dw
0 0

which agrees with (3.9)s. O
3.2. ISODE for the heat conduction problem with any boundary conditions

This time we consider the heat conduction equation

ou  9*U
(3.14) S =0 for (z.1)€(0,L)x(0L).
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subject to the boundary conditions

/jg—U+aU—O for = =0,
(3.15) ou
6a—+7U—0 for =z =1,

for all ¢ € [0, ¢.], and the initial condition
(3.16) U(z,0) = Up(z),
for all z € [0, L] where «, 3, v, ¢ are constants satisfying the conditions
o?+ A2 #0, Y2+ 82 #0.
This time the boundary conditions in (3.15) describe also the Dirichlet boundary
conditions for the heat equation (3.14).

The IDBE for the heat conduction equation with these boundary conditions
are the following:

dt/U(m t)cos d:z:+a /U(”L t)cos Id.T = Uy,
(3.17) p
au T L
Zn = 5—(z,t)cos —— | NI T 1 0

Although the functions Z,, in (3.17) are defined by the boundary values of spatial
derivative of the function U(z, t) and, in general, case cannot be expressed by the
given boundary conditions, we can also find an infinite set of ordinary differential
equations for the coefficients c,,. In this case the ISODE is in the form

én + e, = %Hn(t),

(3.18) .

cn(0) = %/U@(J?)COS E?d:p, n=0,1,2...,
0

where after exploiting the cosine series representation for the first derivative [5]
in the function Z,, we get [, instead of Z,

(1)
(19 H()= [y - 11+Zc“><t> [-1y+ 1]
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with
2 & L
&2 = £ e [ = np -1],
(3.20) J=1L
T . kT
Nik = —ak/COS]Tsm 7 dz.
0

We can also prove that ¢, are Fourier cosine coefficients for the function U
which is the Fourier cosine approximation to a strong solution to (3.14), (3.15).
Theorem 2 is also valid for this case.

4. Some applications of the new approach

In [6] we have solved the heat conduction problem for mixed boundary con-
ditions (3.4). In [7] we have solved two IBVPs with non-Dirichlet type boundary
conditions for the heat equation and for the wave equation. Now we solve the
heat conduction problem for other boundary conditions (including also Dirichlet
ones) using the new method. Generally we solve

g 2
W _I0 =0 for @ne©L)x0.0)

subject to the boundary conditions

(4.1)

ﬁa,—U+aU=O for = =0,
Oz

ou
1) 9 +4U =0 for = =1,

for all ¢ € [0, ¢.] and initial condition

(4.2)

(4.3) U(z,0) = Up(z),
for all = € [0, L] where
2+ 3#£0, A+82#£0.

In further calculations Uy(z) = 1+sin[27(z—L/4)/L], L = 1 for all the examples
and Bi = 0.185. The corresponding approximate solutions

krz
L

colt) | <
(4.4) Us(a,1) = ==+ 3" cx(t) cos
k=1
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for N, terms of the series (4.4) we compare to the corresponding classical solu-
tions of the problem (4.1)-(4.3),

(4.5) Ue(z,t) = Y ar exp(-wf 1)i(e),

k=1

for N, terms of the series (4.5), where

L
ari= [ UnGaybu(e)da/[u)]%
0

Yr(z) and wy are eigenfunctions and eigenvalues, respectively, calculated from a
corresponding IBVP. We compute the corresponding ISODE using the Runge -
Kutta method.

The form of the ISODE depends on the type of boundary conditions involved.
In the case of non-Dirichlet boundary conditons (ie. 6 # 0), the function Z,
(3.17) can be expressed by the boundary values of the function U itself (e.g.
(3.6)) and consequently, by a single series in terms of the coefficients of U (e.g.
(3.9)). The simplest case in this class is when o? + 72 = 0 where the new method
solution agrees with the classical one. In this case the functions cos[(nmz)/L]
are eigenfunctions of the heat equation and the ISODE reduces to the infinite
uncoupled set of ordinary differential equations for the time components of the
Fourier series known from the method of seperation of variables. Other examples
are presented in Figs.1-2.

e 51
%—BiU=0 for =z =0, f,)—[=0 for z =0,
dz dzx

oU
?—U-=0 for = =1L. £+BiU=U for z=1
dz oz
u(x,t) u(xt)

1.15 1.15

1.1 1.1

1.05 1.05

%

0.95 0.95

0.9 0.9

0.85 0.85

FiG. 1. Temperature field for some values of ¢ for N, = 10 due to the new solution and
for N. = 5 due to the classical solution (they cannot be distnguished).
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710
c,)_—l-BiU=0 for z=0
dz
%+BiU=O for =1
oz

u(x,t)

1.1}

1.05 ¢}

0.95¢
0.9

0.85¢

Fia. 2. Temperature field for some values of ¢ for N, = 10 due to the new solution and
for N. =5 due to the classical solution (they cannot be distnguished).

= — [
U=0 for =0, W _ By =0 for &=0,
au . dz
E:-+B1U=0 for z=1L. U =0 for =z=1.
u(x,t) u(x,t)
=0.0
1.5 =0.03 1.5
1 ) 1
0.5 ———  classical 0.5 classical
_________ nEw P—
x x
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

F1G. 3. Temperature field for some values of ¢ for N, = 15 due to the new solution and
for N. = 10 due to the classical solution.

For Dirichlet-type boundary conditions (i.e. 36 = 0), the function Z,, in (3.17)
is expressed by a double series (3.19). In this class we consider three examples
of boundary conditions. For each IBVP we solve the corresponding ISODE and
numerical results are drawn in Figs.3-4.

From the figures presented it will be seen how closely the new solutions ap-
proach the classical solutions right through the interval.
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U=1 for v=1
u(x,t)
2| t=0.0
t=0.01
1.5
t=0.03
t=0.05
1 L
0.5¢ —_— classical
--------- new
X
0.2 0.4 0.6 0.8 1

F1G. 4. Temperature field for some values of ¢ for N, = 15 due to the new solution and
for N. = 10 due to the classical solution.

5. Conclusions

From the mathematical considerations presented in the paper we conclude
that the Fourier cosine series can be applied to many initial-boundary value prob-
lems without solving eigen-value problems. Computing relatively small number
of terms of the cosine series, the new solutions called strong approximations ap-
proach very closely the exact solutions right through the interval. Since the new
solutions are Fourier cosine series approximations to the exact solutions of such
problems, the boundary conditions in general cannot be satisfied.
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