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The influence of deformation path
on adaptation process of a solid

J. SACZUK (GDANSK)

THE DEA of a criterion of adaptation process of a body, accounting for the influence of deforma-
tion path on the material properties of the body, is proposed. A change of the deformation path,
realized either through the change of slip systems and/or by changing external loads, is analyzed
within the Finslerian description of the solid behaviour. In this continuum model no yield rule and
no intermediate configuration are assumed to exist, and the transition from micro- to macroscales
is natural. This approach makes possible the description of yielding, softening, hardening and lo-
calization of solids within the unified concept. A shakedown theorem, based on the Finslerian
continuum model, is formulated within the theory of differential inequalities. The presented the-
orem, in which a definite amount of the total strain energy comes into play, has no counterparts
in the available literature. It generalizes the classical approaches to the adaptation problems by
including arbitrary deformations and material nonlinearities.

1. Introduction

THE coMPLEXITY of inelastic behaviour of a solid is caused primarily by the fact
that its internal state is changing during the deformation process as a consequence
of glide mechanisms, twinning and other shear transformations. Understanding of
the overall deformation resistance of the material and the evolution of its internal
structure is also important in the accurate prediction of the long-term average
behaviour of structure. On the other hand, in many practical applications both the
loading and the initial state of the body are not known with a sufficient accuracy.
In these cases the knowledge of the whole evolution has only of limited interest. A
desired theory should (i) deliver good estimations of the average behaviour of the
structure and thereby correct of theoretical results compatible with experimental
ones, and (ii) predict the correct asymptotic behaviour whatever are the initial
conditions and the loading programme.

The answer to this question can to some degree, be obtained from the shake-
down theory, since the classical theory of limit analysis can sometimes give un-
safe estimates of collapse loads in certain cases (Korter [1]). For that reason
the shakedown theory provides a criterion of failure which may be considered
as a more realistic basis for design than that of the limit analysis which assumes
failure to occur when critical elastic stress is attained. Such an analysis is crucial
for the assessment of the structural behaviour under varying loads within the
range of time-independent plasticity. The problem is classically solved by analyz-
ing possible residual stress fields in the static approach (MELAN [2], KOITER [1])
or by considering possible mechanisms of plastic deformation in the kinematic
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method (KorITer [1]), under the assumptions of geometric linearity, elastic-per-
fectly plastic or linear and unlimited hardening material behaviour, the validity
of an associated flow law, etc. The extension of classical shakedown technique to
broader classes of problems including the change of temperature, (limited) hard-
ening, the influence of geometric effects are discussed by MANDEL [3], KONIG
[4], PoLizzoTTO [5], WEICHERT [6, 7], GROSS—WEEGE [8], SAcZUK and STUMPF [9],
Saczuk [10]. The second direction in the adaptation analysis, being the general-
ization of the post-yield analysis, is known as the inadaptation analysis (CORRADI
and MAIER [11], KONIG and SiEMASzKO [12]).

The shakedown criterion characterized by the non-specified definite bound
of the plastic work (there exists an instant beyond which no additional plastic
deformations occur) has certain shortcomings. A few of them are connected with
the impossibility of estimating a (safe) number of load cycles (observed in prac-
tice), to estimate lower and upper limits of the plastic work, to take into account a
continuous change of material characteristics during its evolution. Different, even
of a catastrophic nature, bulk properties of solid deformation, like shear bands,
Liiders and Portevin-Le Chatelier bands, hardening and softening, are sensitive
to a change of deformation path both at the micro- and macro-levels (cf. KORBEL
[13]). On the other hand, the importance of this problem is connected with the
fact that the safety problem of structure subjected to variable loads is one of
the major problems of structural design. We are still at the initial stage of such
analysis.

The aim of this paper is to propose a certain innovation in the assessment
of the structural safety, according to the Finslerian modelling of solid behaviour.
A measure of adaptation, identified with the boundedness of plastic work, is of
course physically justified but is too simple in reality. It is desirable to control the
amount of energy necessary to create stable thermodynamic states of the defor-
mation process, and to know how this energy is affected by internal and external
parameters. The more correct measure seems to be the definite amount of the
total (strain) work. One should stress that the plastic (dissipative) work is not
generally easily selected as a part of the total work created during a deforma-
tion process. In our case the “plastic” work can be identified with the vertical
(internal state) component of deformation process, but not as a priori assump-
tion (cf. Sec.2). We shall try both to propose an improvement of the classical
shakedown methodology within the theory of differential inequalities (SzZARSKI
[14], LaAksHMIKANTHAM and LEELA [15]) and to present its justification within the
scope of the generally accepted technique to shakedown problems.

2. Qutline of a Finslerian continuum model

The objective in this section is to present the main concepts of the Finslerian
modelling of solid behaviour (Saczuk [16]) that need to be known for a thorough
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understanding of the technique adapted to the shakedown analysis. A reader who
whishes to get information beforehand concerning the whole Finsler geometry is
asked to consult RUND [17] and MatsumoTo [18] monographs. The mathematical
preliminaries on Finslerian geometry are presented in Appendix A.

2.1. General assumptions

A continuous model of inelastic behaviour of solids modelled by means of the
Finsler geometry (Saczuk [16]) is based on the following assumptions:

A.1. A material body (a continuum) 5 is assumed to be a 3-dimensional Finsler
bundle F* whose points will be called line-elements (Runp [17]).

A.2. A motion of the body B is defined by the mapping:
Y:BxR— E*x E*xR, x5, )~ X=xXxy,1),

where I denotes an Euclidean space and [ is a real number space.
A.3. A time-space of events is the product £° x E? x R.
A.4. The body B is under external and internal force fields.

A.S. Laws of evolution of the body B results from a variational principle for
the first order functional describing its motion.

2.2. The motion

We sketch an approach (Saczuk [16]) which allows one to describe the irre-
versible deformation process of the solid taking place from the very beginning of
its deformation, in conformity with its real internal nature.

In this approach the body B, identified with the three-dimensional Finsler
space I3, is embedded into the product £3 x E* of Euclidean spaces and its points
are called line-elements (oriented particles) (Assumptions (A.1) and (A.2)).

The position vector in an actual configuration is defined to be

(2.1) X = X(x,),

where a diffeomorphism y : £° 5 F? — F? C E®is a deformation of the
body B. The line-element (x,y) consisting of a position vector and a direction
(or an internal variable) vector can be identified with an oriented particle of
the body B. The position vector x, identified here with the material point of the
configuration space with local coordinates (z') at the macro-level, is treated at
the micro-level as a separate continuum with coordinates (y°) at the point x. In
special cases we can consider the internal vector y as the micro-displacement, or
the deviation from the mean displacement (Konpo [19]), or the microposition
vector (WoznIAK [20]).
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The deformation gradient is defined as the direct sum of components describ-
ing the deformation process of the body (Saczuxk [16]) in the form

(2.2) F=F"+F"
In (2.2) vertical F¥ and horizontal F* parts are respectively equal to
(23) F'=vV'X=,Xi0;@Dl*, F"=vtX=,X}0;®dzF,

where [ = y*/L(x,y) are components of the unit tangent vector, L(x,y) is the
fundamental function identified with the energy stored in dislocations and induced
by the deformation process, d; is the unit vector in the current configuration of
the body and ® denotes the tensor product. We shall denote further horizontal
and vertical components of any tensor T by ;7. ; and T’ , respectively. The
h-derivatives and v-derivatives of the position vector X = X(x y) are defined as
follows (MatsumoTo [18], RunD [17])

hXi = akXi . a.inékGl + F[?Xrl,
(= L9 X + AlLXY,

(2.4) (F");
(2.5) (F");

1]

Il

where 0; = 0/0x, 5 =0 /dy* and the remaining unknowns in (2.4), (2.5) are
defined by means of components of the metric tensor

1 0°L2(x,y)
(2.6) gij(x,y) = ) W
according to
* aG! oGt aG! PYel
(2.7) e = Lk = Cing— Gy7 = ik~ ijta_yt - Cz‘ﬂa—y—k ¥ Ctkla T
(28) Sk = gl iy = galh,  2G' =~hyiy*,
s 4 OG Y
Ni = 06" = 55 = Ty’ = Ty,
29 ,
B oot 1(5‘57,']' " Ag;k > 091.—:‘)
Yijk al‘k G:ci %
1 9g;; 5 ; ;
Cijk = iwa Ciiny® = Cijry’ = Cijpy' =0,
(2.10)

Cijk = gjlcfk’ Al ik = LCJL )
(211) DU

dl' + Nida*.
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2.3. Strain measures

For an orientation-preserving deformation y (j = detF > 0), the Lagrangian
strain tensor is defined by

~

1
(2.12) E=5(C-,

where C = FTF is the right Cauchy - Green deformation tensor. In the represen-
tation of the direct sum the relation (2.12), after using (2.2), is equivalent to

_(E" 0\ 1/Ch-1 0
o EY) 20 0 cv-1 )
Using (2.4) and (2.5), the horizontal and vertical parts of the Cauchy - Green
strain tensor are then respectively equal to

(213)  C'= (B XOXT + 0, X iG™OX 0y GF + I T X" X

nl

- 8(‘1\ (Ja|k|)\ )()h)(‘rk - ()mA(Ja([Gl ’F“‘VL)X

+ 0y XU X¥) gi; da' @ da®,
(2.14) V= (W XX + QuXU T, X*
+ CinCi X X™) g,y DI' @ DI*,

“ml~
where () means the symmetric part with respect to the enclosed indices, the sign
| | enclosing the index is used to exclude it from the symmetrization operation,
and §;; are components of the metric tensor in the actual configuration. The
interrelated pair of measures of any deformation process (2.13) and (2.14) is
defined in the invariant way.
In the case when the internal state is neglected, i.e. y = 0, we obtain

(2.15) Ch = (X'OXT + I I X"X*) gij da' @ da?,

CV is identically equal zero, and X and g are functions of position x only. The case
y =y, with y, being a residual or imperfection vector leads to non-singular C"
and C”. To specify the connection coefficients C', (% and I';} we first have to
estimate the local internal (dislocation) structure of the solid under consideration
defining its fundamental function £, (square root of the internal energy stored in
dislocations and induced by the deformation process) or its metric tensor g.
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2.4. Equilibrium equations

The equilibrium equations and boundary conditions are obtained from the
variation of the action integral (cf. Saczuk [16])

(2.16) I f[,(x,y, X,F" F*)dV,
G

where (& denotes a fixed, closed and simply-connected region in the 6-dimensional
space of (x,y), bounded by a surface d(/, and

dv = \/gd;rld:czdaédyldyzdy:* = \/gdxdy

with g = det(g;; @ ¢;;) being the volume element. The variational derivative of
the action integral [ can be written in the form

(2.17) 51:/[1:(1);,5@ + Dyéy* Y+ Lpdzt + L7IL); 8y* + fx,kax*‘
G
oL ky 0L Iy
d Xkéh)x aU,X'f‘s”‘X’}dV’

where

(218)  Di() =)+ 5 I aixr,  Dity = i)+ oS dixe

are the total partial derivatives with respect to z* and ¥, and
(2.19) L= 8L - pLOGF - LI, L= LiL - LAY,

are h- and v-derivatives of the density function £, respectively.
The components of generalized body forces are defined by

ar RN
5‘(—X—h)_k; vfk:(f)k_mv

where f" is identified with the external body force and f” can be identified with
the internal source of the exchange of momentum between dislocated states (cf.
AIEANTIS [21]).

When variations of the independent variables in 6/ are neglected, i.e. éx =0
and dy = 0, then

(2.20) wfi= () =

@221) 6I= / (¢ + Div* T)- X" + (f* + Div* T)-6X"] dV
G

—/ [6Xh-(Thn—Th5Gm)+6X'“-LT'”m] ds,
G
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where

(Divh T),
(Div® T),

Di(WTf) - 8:GI DTy = wTiEy

(222) ST
LD(T) - TiAl,

Il

are h- dwergence and v-divergence of T, and n;, m; are the components with
respect to ' and y* of the unit vectors normal to the boundary 0@, respectively.

One should point out that according to the connections /™ and I'*, one can
distinguish the base space approach and the fibre space approach, respectively
(cf. TAkANO [22]). The fundamental lemma of the calculus of variations applied
to (2.21) gives the field equations

(223) hfk + (Dth T)k =0, 1,fk + (Div” T)k = 0,

for all variations of X" and 6X7, or in the component forms

wfi 0.’1:1 01 0JJ —LnE =0,
ot} .
v ff-. + L dyk T;A‘I‘lt = 01

which should be satisfied in the interior of the inelastic body. The field equations
(2.23), interrelated at the micro-level, form the equilibrium equations for both -
and v-ingredients of the inelastic behaviour of solids.

3. Ideas of a new criterion of adaptation

The classical shakedown criterion which defines the necessary condition of
structural safety in the case of variable repeated loads is formulated as follows:

A certain domain of load variations is given and the question arises whether will
a given structure will shake down in an arbitrary sequence of the loads contained
within this domain.

One of the drawbacks of the classical shakedown theory is that a definite
bound of the plastic work is not specified in the shakedown criterion (KONIG
[23]). A definite amount of this work is at any rate of fundamental value for
an adaptation and can be used, among others, to establish a safe number of
load cycles for the structure’s life. For that reason modifications in the classical
criterion of adaptation seem to be necessary.
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3.1. Motivation

A more realistic assessment of structural safety demands to change the way
of estimation of the energy function used in the shakedown theorem, according
to the methodology of Finslerian description of solid behaviour. The source of
our idea comes from the proof of shakedown theorem (cf. GROSS—-WEEGE [8],
Saczuk and Stumpr [9]). In this proof we have to estimate the time-dependent
energy function II in the form

TI(t) = %/T-Fd\/,

where T is the first Piola - Kirchhoff stress tensor and F is the deformation gradi-
ent tensor. We analyze the time derivative of II by decomposing its right-hand
side according to the following scheme:

A = - ] S —8§)-0EPdV  + f (T - 1) 8,HFdV
1% v
l |
the convexity conditions  equilibrium conditions
| |
decreases when E? # 0 0

where § is the actual residual (second Piola - Kirchhoff) stress tensor, S is a (fic-
titious) shakedown stress tensor, E? is the residual plastic strain tensor obtained
from the multiplicative decomposition of the deformation gradient tensor, and H
is the residual displacement gradient.

The above estimation of J,II we replace by

(3.1) 8I1(t,C) < B || B11(¢, C) || +w(t, I(t, ©)),

where C is the Cauchy-Green strain tensor, 3 is a constant connected with
a safe domain of admissible strains and ¢ is a comparison function being a
maximal solution of a comparison differential problem used to estimate II. The
basic problem here is how to define the comparison function. Before that we
will introduce the notion of the maximal solution of a differential problem and
the comparison differential theorem within the theory of differential inequalities
(LAKSHMIKANTHAM and LEELA [15], Szarski [14]). Let us note that differential
inequalities are extremely important and constitute a very helpful technique in the
differential problems to formulate the uniqueness conditions for their solutions
and to make their certain estimations.

Assume that [ = [ty,T) C R, 0 < tg < T is a time-interval, G C R? is an
open set in RZ.
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DEFINITION 1. Let v be a solution of a differential problem
(3.2) u' = P(t,u), u(to) = uo, tel
and v € C(G, R). Then r is said to be a maximal solution of (3.2) if
(3.3) u(t) < r(t), tel

for every solution v of (3.2) in 1.

ComparisSON THEOREM (LAKSHMIKANTHAM and LEELA [15], Vol. T)
Suppose:

1. ¢ € C(G, R) and r is the maximal solution of (3.2).

2.me C,R), (t,m(t)) € G for t € I, m(ty) < ug, and

(3.4 Dm(t) < (t, m(t)), teI\S

with D being a fixed Dini derivative and S at most a countable subset of I. Then
(3.5) m(t) <r(t) in 1.

32. A comparison problem

A comparison function ) in (3.1) is identically equal zero in the classical case.
This takes place when the microstructure-independent equilibrium conditions for
T and T are satisfied a priori. Therefore, the equilibrium conditions, or more
strictly the equations of motion, will be used to define the comparison function .

Our comparison problem will be defined by differential equations, deduced

from the equations of motion in the continuum with microstructure (cf. Egs.
(2.23))

LGy —

(3.6) po hVk = nfi + Dot Oyt Byi ik
. . (?T,é i A7
(3.7) po Uk = ofr + L ay - Tinia

where ,v; and , v, are components of macro- and micro-velocity. The remaining
unknowns were defined in Sec. 2. The first equation describes the macro-motion
of the body (in the configuration space), while the second one its micro-motion
(in the internal state space), or briefly ~-motion and v-motion.

For clarity, the above partial differential equations are reduced to the scalar
differential equations of the form

(38) 8" = Ph(, o),
(3.9) B =t vY)
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using an Euclidean norm || a ||= /(a-a) under the following assumptions. If body
forces f* and f¥ are neglected and classical equilibrium conditions J;7} = 0 and

éiTg = () are satisfied inside the body, then the right-hand sides in (3.6) and (3.7)
lead to the following identifications:

(3.10) a sl ke

where y = \/ (y1)? + (y3)? + (y3)? is the Euclidean distance in the internal state
space. The identification used in (3.10) is due to the following form of L:

P 2xiy!
LA(x,y) = g:i(x,Y)y'y’ = Tyw + 222(y?) + 223()>

This assumed relation, identified here with the internal energy stored in disloca-
tions, is proportional to the square of the microposition vector.

According to equations (3.8) and (3.9) one can write the admissible functions
in the form

h .1 v
v y v

Wh — ) —
Yrh=—=%, ¢'=—
z oy Y

and, then, their solutions under homogeneous initial conditions are respectively
equal

L t
(3.11) v = exp (y—z‘) : v” = exp (—) .

3.3, Method of solution

The language of the theory of differential inequalities (LAKSHMIKANTHAM and
LEELA [15], SzARski [14]) is used to provide a general definition of “adaptation”
of structures. Within this methodology it is sufficient to assume:

1. There exist (experimental or other) time-dependent comparison functions
)" and 1) defined in a certain domain {2 of the strain-time space.

2. The estimation (3.1) takes place at any instant of time ¢.

Then, according to the comparison theorem (cf. Szarski [14], Chap. 7, LAKSH-
MIKANTHAM and LegLA [15], Chap.9) one can make the following estimations

(3.12) (¢, "y < rh(),
(3.13) II°(¢,C%) < r¥(t),

where " and r¥ are the maximal solutions (see Definition 1) of the differential
problems induced by " and 1?, respectively, i.e. at the given time interval the
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energy function is estimated by known a priori time-dependent functions. In this
case we have to find the time-dependent comparison functions ¥ and 1", instead
of a time-independent residual stress field postulated by the classical shakedown
criterion (MELAN [2], KorTeRr [1]). The condition (3.1) is the asymptotic estimation
of the rate of energy function. Moreover, the energy function IT = IT" + 11" is the
position-direction dependent function. It should be emphasized that the variable
¢ can here mean either the time or a monotonically-increasing loading parameter.
The presented explanation allows us to propose

DEFINITION 2. It is said that the structure will shake down over any programme
of loading if the total energy created during its deformation satisfies (3.12) and (3.13)
at any time interval of that programme.

Note that the classical shakedown demands only boundedness of the total
plastic work in the limit as the time approaches infinity. To define the plastic
energy for defining a criterion of adaptation, one has to decompose the total
strain tensor into elastic and plastic parts. In the classical approach it is generally
realized within the multiplicative decomposition of the deformation gradient using
the unstressed intermediate configuration concept, while in the Finslerian one
the additive decomposition is given by definition. The shortcoming of such the
additive decomposition lies in that a common sense of elastic and plastic part of
the deformation is slightly changed. It is due to the fact that any deformation
process cannot be strictly decomposed into elastic and plastic parts [16]. For
simplicity, one can consider the state of strain in the structure that does not
vary with position in it. Then the deformation gradient F is a function of the
microposition vector y. Summarizing the quoted explanations we assume:

1. The total (strain) energy is defined as a time-dependent energy function

H(t,é)=/(T"-C"+T“-C“)dv,
J

where the Cauchy-Green strain tensors C" and CV are defined by (2.13) and
(2.14), and appropriate stress tensors from (2.23), for given " and f?, respectively.

2. We also establish by calculation or using experimental results the safe do-
main {2, required to any individual shakedown problem, and the comparison
functions " and v.

3.4, Algorithm

The above explanation can be arranged in the following algorithm.
Fori=1,n
(z,1) Calculate the strain state of the body for a given loading programme

and an assumed internal state, or basing on experimental data connected with
internal state of its material;
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(1,2) Define the strain energy function;

(z,3) Define the function of a comparison problem;

(z,4) Find the maximal solution of the comparison problem;

(z,5) Verify the conditions of adaptation (see Shakedown Theorem).

The steps from (i,2) to (i,5) are changed according to a demand. The index ¢
can symbolize a number of states which are relevant for a prediction of the safe
domain in the space of admissible strains. In general, an optimization technique
is necessary to define the safe domain of adaptation for the given structure.

4. A proposition of the shakedown theorem

Under the preparation of Sec.3 we come to the following theorem

SHAKEDOWN THEOREM:

(i) Suppose that v"(t, to, v(’;) and rV(t,to, vy) are the maximal solutions of the
scalar differential problems

(4.1) 5 = Pt o) = —pl || Divh T + £7 ||, vh(tg) = of =|| C¢ |,
0
. h v v 1 L 7] v v (7] v
42) v =YPUt,vY) = &y || Div' T + £* ||, (o) = vy =|| Co |l -

(i) Suppose that the energy function I1(t, C) = 11" + IIY possesses continuous
partial derivatives 0,11 and 011 on

@3)  02={¢t0C): ta<t<lo+aq, C =|Cll< a- Bt -to)}.

(iii) The following inequalities are satisfied on §2:

(4.4) AIIM < B BcnIll(t, CH) || + (¢, T, CPY),
(4.5) A1 < B || dcoII°(t, CV) || + (¢, [T (¢, CY)).
Then,

(4.6) II"(to, C") < v,

(4.7) IT"(tp,C") < vg

for C' < 3 implies

(4.8) A (¢, C*) < r(t, to, vd),

(4.9) IT°(t, C") < r(t,to, vg),

i.e. the body shakes down under the given loading programme.



THE INFLUENCE OF DEFORMATION PATH 537

REMARK 1. The inequalities (4.6) and (4.7) define initial conditions for the
strain state. In fact, they can be neglected as in the classical shakedown theorem,
if we shall remember that strains in reality are not arbitrary quantities, but have
always definite values. These conditions mean simply that an analyzed initial strain
state is inside the domain 2.

Proof of the Shakedown Theorem is analogous to the proof of Theorem 9.2.1
in LAKSHMIKANTHAM and LEELA [15]. In this proof, in the spirit of the Comparison
Theorem, we have to estimate the function

(4.10) m(t)y= _ max II(t,C),
€l < - Bl —to)

which satisfies the differential inequality (3.4), using the extremal solutions
rh(e,to, || C& ||) and r¥(+, to, || € ||) of the corresponding differential equations
(4.1) and (4.2) under conditions (4.6) and (4.7), respectively.

There are two observations which we would like to make with respect to the
presented technique. In the first place, the presented idea of new criterion of
adaptation can be treated as an example, and its extension to more complicated
cases is also possible (cf. LAKSHMIKANTHAM and LEELA [15]). For a more detailed
and rigorous discussion of the generalized cases the reader is referred to the
cited literature. The second observation is that the fundamental conditions used
in Shakedown Theorem depend on a particular internal strain distribution. This
information is of fundamental importance since the mechanical response of the
solid like softening, hardening, localization is only changed by the history of
deformation and the applied load system (Basinskr and JACKsON [24]).

5. Conclusions

The importance of shakedown theorems depends on proving that if the struc-
ture shakes down under some particular programme of loading, it will shake down
under any loading programme. The proposed shakedown theorem can be used to
predict the behaviour of structures based on the properties of the energy function
and its internal energy distribution. As final conclusions one may cite:

1. It generalizes the classical approaches (MELAN [2], KOITER [1], CORRADI
and MAIER [11], KONIG and Siemaszko [12]) by including arbitrary deformations
and material nonlinearities.

2. It is based on the consistent continuum theory of solid behaviour which
allows one to describe, among others, the specific internal structure of the ma-
terial, the influence of initial deformations or imperfections of the deformation
process within the unified concept.

3. It can be used to estimate a safe number of load cycles for the real or
predicted structure’s life.
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4. Tt can be used to estimate lower and upper limits of the total (or plastic
under certain conditions) work in the given time interval.

A. Appendix. Basic notions in Finslerian geometry

In this appendix we give the mathematical preliminaries on Finslerian ge-
ometry (RUND [17], MATsumoTO [18]), especially on the definitions of connec-
tions, absolute differential and covariant derivatives.

A Finslerian (generalized metric) geometry is a natural generalization of a
Riemannian one and of which a metric tensor depends both on the position and
on the direction. Following BuseMANN [25] the Finsler space is a metric, finitely
compact (i.e. every bounded, infinite sequence of points in a metric space con-
tains a converging subsequence) and locally Minkowskian space. The anisotropic
character (the Minkowskian metric is not symmetric in general) of this geometry
is expressed completely by the physically useful concept of indicatrix. Therefore,
common inelastic solid behaviours like anisotropy and hysteresis loop are mod-
elled easily within this geometry. The major obstacle encountered in the practical
application of this geometry is caused by its complexity and a difficulty of using
its concepts to define mechanical counterparts.

The subject is described in the monographs of Runp [17], Asanov [26],
MatsumMoTo [18], ABATE and PATRIZIO [27], ANTONELLI and MIRON [28] where
additional bibliography can be found. In this appendix we shall use the notation
employed mainly in [18] and [17] without further comments.

A.l. Basic concepts

We consider an n-dimensional differentiable manifold M (cf. CHOQUET-BRU-
HAT et al. [29, Ch.1II], WesTeNHOLTZ [30, Parts II and V]) as the space for mod-
elling of a solid behaviour. Let 7, M be the tangent space of M at a point x,
and T'(M) be the set of all tangent vectors parameterized by M. The mapping
(projection) 7, : T'(M) — M is defined by 7(y) = x fory € T, M. Let L(M)
be the linear frame bundle of the manifold M. The projection 7, : L{M) — M
is given by (x,z) — z, where a frame z at a point x of M is by definition a base
z = {z;}1,.. of the tangent vector space 1, M.

The Finsler bundle F'(M) of M is, by definition [18], the principal bundle

"1L(M ) over T'(M) induced from the frame bundle L(M) by the projection
7, of the tangent bundle 7'(M). This construction is represented by the following
commutatwe diagram

(v,z) € F(M) = L(M) 5 (x,2)
™ L l 7|."L
xy) e T(M) = M 3 (x)
where 7, 7, and 7, 7, are projections.
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To introduce a Finsler connection F'[” it is worth reminding that a (nonlinear)
connection N on M is a distribution y € T'(M) + N, in the 1'(M) satisfying
T, = Ny & T}, namely, the tangent space 7', at every point y of T'(M) is the
dlrect sum of N and the vertical subspace T"

A vertical connection ™ is a distribution u € F'(M) — I'? in the F'(M) such
that the restriction I™ |, of I'” of the subbundle F'(z) of F'(M) over the fibre

1(’1‘) over every point x € M is an ordinary connectlon 1n F(z). In turn, the
honzontal connection [ is a distribution u € F (M) in (M) satisfying

l(

(A1) T.F(M)y=TteI'"eT,F(M),
(A.2) rh =T}

ug ?
where T, /(M) is the vertical subspace of the tangent space 1, F'(M) and 7, is
a right translation of F'(M) by g € G'L(n, R). Other equivalent ways leading to
the Finsler connection have been discussed by Marsumoro [18].
The h-part I'" of the Finsler connection F'I" = (I'", '*) is spanned by the
h-basic vector field B"(v), v € V, V - a vector space, of the form (Marsu-
MoToO [31])

: d 0 gt 10
(A.3) B"(v) = ziv® (aﬂ - 1\/35-?)’7 - szJ._),

b kzazg

ata point u = (z*,y’, z.) and for v = (v®), where (', ', ) are local coordinates
on F'(M) induced from local coordinates (z') on M. The connection coefficients
F’ are defined by FJ = (” N7, following RuND [17] they will be denoted
by F
The v-part IV of the Finsler connection F'I" = (I'*, I'") is spanned by the
v-basic vector field BY(v), ve V, of the form (MATSUMOTO [31])

o NG,
(A4) B(v) = ziv® (0 - CM@;.J

where functions C] .(x, y) are connection parameters of the vertical connection /™.
The h- and v-covariant derivatives of an arbitrary Finsler tensor field K [18]

are defined, within the bundle theory, by

(A.5) VPK(v) = BMv)-K,

(A.6) VYK (v) = BY(v)- K,

for any v € V. The components of V*() and V¥( ') are usually distinguished by
”” and ” | 7, respectively (cf. (A.17) and (A.18)).
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The torsion tensor fields T!, R, C!, P!, 8! (T! and C! are often denoted by
T and C, respectively, cf. RUND [17]) and the curvature tensor fields R?, P?, §?
of a Finsler connection F'/" are introduced by the structure equations

[B"(1),B"(2)] = B*(T'(1,2)) + B"(R'(1,2)) + Z(R*(1,2)),
(A7) [B"(1),BY(2)] = B*(C!(1,2)) + B*(P!(1,2)) + Z(P*(1,2)),
[B¥(1),B¥(2)] = B¥(S'(1,2)) + Z(8*(1,2)),
where vy, v, € V are present by their indices 1, 2 only. Here Z(A) is the funda-
mental vector field on F'(M) corresponding to the element A of the Lie algebra

of GL(n, R).
The torsion and curvature tensors are called as follows:

T! is (h)h-torsion, R! is (v)h-torsion, R? is h-curvature,
C! is (h)hv-torsion, P! is (v)hv-torsion, P? is hv-curvature,
S! is (v)v-torsion, 8% is v-curvature.

DEFINITION A.l. A Finsler connection F'I' of a Finsler space F'(M) with a
fundamental function L is the Cartan connection if:

(i) Vig =0and T = 0,

(ii) V'g = 0 and S' = 0;

(iii) The deflection tensor field D = V"y is given.

In practice D = 0. This condition means that nonlinear connection coefficients
N are defined by horizontal connection coefficients 17 as N} = I77y".

The triplet F'I" = (F};, Ni,C,) is known as the Finsler connection. Before
determining the Finsler connection F'I" one has to introduce the Finsler metric.
In this geometry the differentiable manifold M is equipped with a line element
ds = L(x, dx), where the function L, homogeneous of degree one in dx, is called
the fundamental function of the Finsler space. Its geometric significance results
from the fact that in each tangent space T, M of M the function L(x,y) defines
the (n — 1)-dimensional hypersurface,

(A.8) L(x,y) =1,

called the indicatrix, where x is assumed to be fixed. The concept of the indica-
trix (Yasupa [32], MatsumoTo [33], WATANABE [34]), as developed by modern
geometry, provides a precise explanation of the main geometric properties of a
given manifold. The definition (A.8) represents a sphere in the Riemannian case.
Physically, one can construct the fundamental function L using a relation

(A9) L(x,y) = yW(x,y),
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where the function W, homogeneous of the second degree with respect to y, can
be interpreted as a stored energy in dislocations and induced by the deformation
process. One should stress that the geometric structure of a yield surface in
elasto-plasticity falls under the general concept of indicatrix of the Finsler space.
The most evident analogy between the indicatrix and the classical yield surface is
that they both are closed convex hypersurfaces in the 6-dimensional spaces. The
first one is in the 6-dimensional (z,y)-space of the Finsler bundle, the second
one is in the 6-dimensional x-space of symmetric stress or strain tensors (the
stress or strain space). The further analogies are not so evident due to their
different geometro-physical meanings. For example, the indicatrix can represent
an abstract model of internal structure of the given solid, while the yield surface
has a sense of the surface separating an elastic region from a plastic one. In
other words, the indicatrix is the fundamental geometric object of underlying
(physical) space for any solid, while the yield surface is a certain auxiliary notion
of criterion type used to distinguish between loading and unloading criteria. In
Finslerian approach such a distinction can be superfluous.

The function . = L(x,y) satisfies, by assumptions, the following two condi-
tions:

(i) The function L is at least of class C'* with respect to x;

(ii) The function L is positive homogeneous of degree one with respect to y.

The homogeneity condition (ii) plays an important role in the Finsler geome-
try. The application of the Euler theorem on homogeneous functions to L? gives

(A.10) LA(x,y) = gi; (%, )y'y’,
where

1 ‘. "
(A.11) 9:i (%) = 50:0;L*(x, )

is the Finslerian metric tensor.

For example, the Riemannian space as a special case of the Finsler space
demands

dsz = gij(;l‘)d;TidilTj = Lz(xv dx)a

where the metric tensor is defined by

1 922
(A.12) 95 = 5 S50

Using the relation y; = ¢;;(x,y)y’, from (A.10) we obtain y; = L(;;h—L. Then
the unit tangent vector

.= Yi — ‘.- = {;5 :
(A.13) L= i) d:L(x,y) = gi; (x,y)I.
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The definition (A.11) (cf. Definition A.1) allows us to define, among others,
connection coefficients (A.20)-(A.23) as functions of L only. For example, the
so-called Cartan torsion tensor is then defined from

1 =
(A.14) C'l-jk(x,y) = Z@,-BjakLz(x,y).
The remaining torsion tensors, curvature tensors, Cartan structure equations are
discussed by Runp [17], MaTsuMoToO [18].
A.2. Covariant derivatives

The definitions of covariant derivatives (A.5) and (A.6) restricted to the Cartan
connection (Definition A.1) can be introduced as follows. Consider an (x, y)-de-
pendent tensor T = T(x,y), then the absolute differential and covariant deriva-
tives are defined by

(A.15) DT} = T}ds’ + T}|; DI,

or, in the absolute tensor notation, by

(A.16) DT = V!T® dz* + VT ® DI,
where

(A.17) T}, = 8T} - 8;G'8,T} + I}iT! - IiTy,
(A.18) T} = LO;Ti + AJT} — ALT?

are h-derivative and v-derivative, respectively, and
(A.19) Dl =dlI' + F;ky‘“dyj

is the absolute differential of the unit tangent vector (A.13). To define the re-
maining quantities in (A.17) and (A.18) one has to use Definition A.1 (RunD
[17], Matsumoro [18]). In this case they are given as follows:

" aG" aG" aG" aG'
(A20) I3 = L - Cjkla—yi = Yijk — C!cjia—yi - CiﬂW + Oile ,
(A21) S = galik Lijk = g lhy’, 2G' = YLyt

: oG! . . 1/0g;; 9Ogjx Ogri
* - [ — =l o e 2 ) JE t
G R S oyk Ly’ = Ly, Tiik = 3 (63:‘“ * Bzt T B )’
1 dgi; ' i
Cijh = 3 anguf o Cury® = Ciny? = Cigpy* = 0,

(A.23) ; :
Cijk = gjlcfka Ajk = LCJ‘;;-
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In particular,

(A24) Xt = 0;X*% - 9,Gm0,X* + I[FX™,

Ld; x* + AL X

(A25) Xk

for a contravariant vector field X = X(x,y), and

(A26) fis = 0;f - 9;G*d,f,
(A27) fli = Ld;f
for a scalar field f = f(x,y).

Instead of using (A.5) and (A.6) to define the absolute differential and co-
variant derivatives, one can apply the linear mapping

(A28) VX : TF(M) — TFUM)7 Y— VxY

for any X, Y € T'F'(M). To obtain a desirable result we can proceed as follows.
In Finsler spaces all quantities are depend both on the position vector (x) and
the direction vector (y). If we define coordinate transformations by

Jze . I 0z _
(%jy, ran [83:1] =n

and, if there exist the quantities /V'(x,y) which transform under (A.29) according

to the rule
82- yk 8'1-7 AA 81"
dzidz* dzk I T ai
then one can define the covariant differential operator by
) d . 0

(ASO) "5_‘1':"“ = -a"-(z‘—-"—N]z"a—y"{ or 5k=0k—N,§85.

(A.29) = f'x), oyt =

Nba

The quantities NV} in the light of Definition A.1 are equal to ékGi. It is important
to note that the basis (J;, éi), with respect to the coordinate transformation
(A.29), does not transform as a vector, while the basis (6;, 9;) has the desired

property (cf. Comi¢ [35]). The dual basis to (§;, J;) is denoted by (dz*, Dy'),
where . . .
Dy' = dy' + Nidz*.

Any vector field X in 7'F'(M) can be represented in the basis (6;, é@-) in the
following form

(A.31) X = X"+ X" = Xi6; + X°0,,
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where we call X" = X§; the horizontal vector field, and X” = X“0, the vertical
vector field. Generalization to more complex geometric object is straightforward.

Under this preparation, if we take X' = da2' and X* = Dy® in DT = VxT,
the relation (A.16) can be alternatively written as

DT =V;T@ds'+V, T® Dyt

Analogously to the Riemannian geometry, the Cartan covariant derivatives
are defined to be metric, i.e.

(A.32) girli = 0, gik ;= 0.
In addition
(A33) E=yf=L;=0, Lj=y;, yl;=L&, wili=Lg;.

The identities (A.32) and (A.33) show that the metric tensor g, the metric
function I, and the tangent vectors y' and [' can be treated as constants for the
h-derivative. In the case of v-derivative this is true only for the metric tensor g;.
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