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On attainability of Hashin-Shtrikman bounds
by iterative hexagonal layering
Plane elasticity problems

T. LEWINSKI and A.M. OTHMAN (WARSZAWA)

THE PAPER presents a derivation of the Hashin-Shtrikman bounds for the plane elasticity problems
and for the Kirchhoff problem of plates in bending. A two-dimensional counterpart of the method
of FRANCFORT-MURAT [1] is applied. The method consists of three subsequent layerings along the
directions of vertices of a unilateral triangle.

1. Introduction

FRANCFORT AND MURAT [1] showed how to mix in space two isotropic elastic
components to obtain the stiffest possible isotropic material. The aim of the
present paper is twofold. First we consider this problem in a two-dimensional
setting, which means that both plane-stress and plane-strain elasticity problems
are comprised. Secondly we deal with the plate bending problem of Kirchhoff.

Francrort and MURAT [1] performed subsequent layerings in the directions of
vertices of a regular icosahedron and arrived at an isotropic material of extremal
properties. The present paper shows details of a similar but plane mixing process,
using layerings in the directions of vertices of a unilateral triangle.

The Hashin - Shtrikman bounds for both the problems considered are similar
due to the analogy between two-dimensional elasticity and plate bending prob-
lems. This paper shows the details of how to perform the passage between the
bounds. It turns out that such a passage is feasible, but requires a change of
the assumptions of ordering of the material phases, which makes it non-intuitive.
Thus the independent derivations of these bounds, like that presented here for
both the problems, seem indispensable, whether the analogy recalled applies here
or not.

2. Plane elasticity problem. Laminate of first rank composed of two isotropic
materials

Let us denote by A the tensor of elastic moduli for a plane-stress or plane-
strain problem. We consider two isotropic materials of moduli A, (o = 1,2)
and restrict our consideration to the ordered case: A; > A;. These tensors are
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determined by the pairs of moduli (k,, i) as follows
(2.1) A, = 2]60,31 @ a; + 2#0,(32 ®ap;+az3® 33),

where

1
a = ﬁ(el Qe + €@ e),

1
2.2 a = —(eg D e — e @ ep),
(2.2) 2 \/—2-(1@’1 2 ® €2)
1
a3 = —(e1 Qe +e2®e),

V2

and (e;, ey) are versors of the orthogonal Cartesian coordinate system.

Let us stack both materials to make an in-plane laminate directed along versor
n with area fractions f,. The tensor of effective moduli of the laminate is given by
the formula of FRANCFORT and MURAT [1], truncated here to the plane problem,
see also KoHN [3]

(2.3) 01(A2 — AR) "' = (A — Ay)! — % v
where
(2.4) v = Ulssea eg@e, @ es,
@5)  Um = % i i b Bizsitdi b - Buesigil)
- kzk_;_izmnanﬁngnw

with n, = n-e,. The formula (2.3) holds true if A; is non-isotropic, which will
be utilised later.

3. Layering of second rank

Let us form the subsequent laminate by stacking the layers of material 2 with
the first-rank laminate constructed in Sec. 2, along direction of versor m = (m,)
with area fractions o, (material 2) and o (composite material of moduli Ay).
Since Eq. (2.3) holds even if the first material is anisotropic, we apply this formula
to arrive at the following implicit formula for the effective stiffness tensor Ayy:

(31) al(Az —_ Ahh)_l = (Az — Ah)—l — %z ‘I'(m).
2
By combining (3.1) and (2.3) one finds
0
(3.2) a101(Ag — App) ™t = (A7 — A)) 7! - 02 g _ 920 g my
H2 H2

One can prove that Ay > Ay, hence the first term of Eq. (3.2) makes sense.
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4. Laminate of third rank

Now we stack the material obtained by the second layering with material (2),
in layers along versor p, with area fractions 3, (material of modulus A;) and 3,
(material of modulus A;) to obtain a laminate of moduli Ajy,. Again Ay > Ajypp
and by applying (2.3) one finds

(4.1) Br(Ag — Annn) ™! = (Ag — App) ! - 5—2‘1’“’).
On combining (4.1) and (3.2) one arrives at

(4.2) a101B1(Ar — Annn) ' = (Ao — A7 - %‘1’,
(4.3) U = 6,9™ + 0,0, 0™ 4+ 350,60, P,

5. Hexagonal lamination

Let us choose
1 V3 1 V3
(51) n_(]‘?o), m = (—537)7 P= (_21_7)7

hence end points of versors n, m, p are vertices of a unilateral triangle. A direct
computation yields

1
WPH] =1-0b, t-171(121%2 = 2’ J’g:,)m =0,
(5.2) .
a =2, #=1 or 2, b= 2.
ky + 12
m 1 b m 3 9
wl(ll)l = 3 16’ %;122 =2 Ebs
3b V3 /1 b
63 W= i o= (3-3)
gp(m)=_£(_1._3_b> gm 1 3b
2221 4 ) 4 ’ 1212 4 16 ’
1 b 1 3b
v, = i 16 wg{z“z 16
® _ ( V3 /1 3
(54) Wity = —32b, v, T (5 - 20)

3
16
V3 b 309
L[’1(11?2 =5 (1 - ‘)» g’z(lzgz s T
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Now we stipulate that ¥ given by Eq.(4.3) is isotropic. Conditions ¥;7; = 0,
!pnu =0 inId ﬂz = 012/0'1. The condition (pllll = szzz implies Qp = 92/91.
Thus we have

3 9
Ui = b (— - —5)7 U222 = Y1,

2 8
(5.5) 5 3 3
Uppip =02 (= — Zb), U122 = — b,
4 8 8

and finally we conclude that ¥ can be put in the form similar to (2.1)

(5.6) U= %92 [(1 —b)a; @ a; + (1 - —g) (a@a +a3® 83)} .

Let us compute

1 [1 3(1 - b)

S _1_— = R
6D Ba-a) - ¥ = s - o

1 3 b
A PRA T i
& [2A,u 249 (1 2) 2] (a2 ® az + a3 ® a3),
Af:fz_fla f=k or i
and equate this expression to

(5.8) 101 81(A1 — Appn) !
a1 816, & @8 + a0y

S —— (2 ®a; + a3 @ a3),
2(&'2 - khhh) ! ! 2(1“2 - Hhhh) ( ?

where =,
Apni = 2kpppay ® ay + 20y, (a2 @ a2 + a3 @ a3),

which gives

010’161 Cn 1 302(1 — b)

(59) kz Y Ehhh Ak 2
brenfy  _ 1 36,(1-1/2)
M2 = Hppp  Dp [ -

Assume that the area fraction of the first material is fixed and equals m, or

(510) my = (11]6101 .
We can express 0, ap, 3, in terms of m; as follows

_my __m _ o m
11} b2 = c Q2T F= my’ & 3—-2m;y
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and Eqgs. (5.9) assume the form

M _ 1 B ma
(5.12); ko — Ehhh ky—Fki ka4 po ’
’ mi 1 ma(ky + 2u2)

P2 = Fpn 2= 2pa(ke + o)

The moduli (ks , Jiys,) determined by Eq.(5.12) are just upper estimates of
Hashin and Shtrikman, see CHERKAEV and GiBiANSKI [2]. Formulae (5.12) can be
written as follows

kpp F(mikl» ["-‘25."-12):

Ipg = Gpe(m; p1, p2, k2); m = (my, ma);

(5.12),

P E means “plane elasticity problem”, the functions /" and G pp being determined
by Eq. (5 12)1, here ka kihh, T Epg = Huhh-

REMARK 1. The laminate of 3rd rank constructed by subsequent layerings
discussed here is the stiffest among all isotropic composites made from two given
isotropic materials with given area fractions. Let us stress that both bounds for
p and k are attained simultaneously.

REMARK 2. In a similar way one can construct the softest isotropic composite.
To this end one should mix subsequent laminates with the softest material to get

ki — Ky ki —ky Ry opy]
(5.13), 1 i 1~k BT
mo _ 1 7n1(k1 + 21“1)
=y, = g2 2pa(k o)
or
-]ﬁPE = F(;ﬁ;k‘bklaﬂl)’
(5.13),

Epp = GpE(m; pa, p, k1), m = (mg,my),

where hhh is replaced with P £/, which indicates that the plane elasticity problem
is considered. We recognize that k;;, = kpg, i Banp = are lower bounds of
Hashin and Shtrikman, see CHERKAEV and GIBIANSKI [2]. ”[%ese lower bounds are
attained simultaneously.

6. Kirchhoff bending problem. A rank-1 Kirchhoff’s in-plane laminate

Let us consider now a bending problem of thin transversely symmetric plates.
Given two isotropic plate materials of bending/torsion stiffness tensors D,



518 T. LEWINSKI AND A.M. OTHMAN

a =1,2; D, — Dy > 0, we construct an in-plane laminate (we use the term lami-
nate to stress similarities with the layering construction of the previous sections;
the term ribbed plate would be more appropriate) in the n direction, n = (n1, n2),
with area fractions 6, respectively. Let e, be versors of Cartesian axes. Let us
decompose
(6.1) D) = DY, Res@e, ®es,
(62) Délll = D§222 =k, + o s DélZZ =k, — Lo s Dclx212 =g,
ks, o being Kelvin and Kirchhoff moduli, respectively.

Within the Kirchhoff’s framework the effective stiffness tensor D, of the
in-plane laminate considered is uniquely determined. The dispersed in the lit-

erature contributions by G. Duvaut, R.V. Kohn, A.V. Cherkaev, K.A. Lur’e,
G. Francfort, F. Murat, G. Milton, R. Lipton and L. Tartar lead to the ‘ormula

0
(6.3) f1(Dy —Dy)' = (D - Dy) ! - ér("),
(6.4) ss=ky+p, T®=n@n@naen,
D; being not necessarily isotropic. A derivation of Eq.(6.3) can be ‘ound in
LipTON [4].
7. A rank-two Kirchhoff laminate

Let us envelop the rank-1 laminate around the strongest phase (2), the area
fractions of Dy, D, being «; and «ay, respectively. Thus we stack materials Dy,
D; in layers orthogonal to a versor m. To find effective stiffness tensor Dy one
can apply (6.3) again to find

(7.1) ay(Dy = Dus) ™ = (D - Dy) ™' — —(:2 L™,
52
On combining (6.3) and (7.1) one finds

0 0102 (.
(7.2) 8,01(Dy — Dp)~! = (D, - D)~ - g—ir('ﬂ ~ —lsir( ),

the quantity f;a; being the resulting area fraction of material (1).

8. A rank-three Kirchhoff’s laminate

Let us stack the materials of stiffnesses Dy;, D, together thus building an
in-plane laminate along versor p, with area fractions (31, 3, respectively. Applying
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(6.3) once again we have
(8.1) B1(D2 — Dyyp) ' = (D3 = D) — f—zzI‘(").

On combining (8.1) with (7.2) one finds

1
(8.2) Bi01a1(Dy — Dppp) ' = Dy = Dy) ! - 51‘,

(8.3) T' = 6,1'™ 4+ 0,0,T™ + 6,0, 3P,

9. Hexagonal lamination

Let us take versors n, m, p such that their vertices form an unilateral triangle.
Thus

m = __1..n _ﬁn _ln +_\£§.n
' — _.lg +£ _._1_ _ﬁrn
p= 211 2 nz, 2712 7 M

We shall prove that the above choice of m and p implies isotropy of I'. Assume
for simplicity that n = (1,0), which is not a restriction. Let us compute
4
: 0 V3
Iy =0+ é(az + o), 1§55 (T) 1(c2 + facvr),

2
1 3 3
(92) I i (—\é—_) 0 (a2 + Bray), Iz = \1/—6_91(—02 + Bray),

3
Iy = Tz, [0 = 1—6~91(C¥2 + o).

We stipulate

9.3) Ia22 = 1112 = 0, I = 102,
hence
(9.4) fr=azfay, 0 = 0102,

and consequently make the tensor I' isotropic

3
9.5) r'= 192 [2a; ® a1 + (a2 ® a2 + a3 ® a3)].
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Let us find now kppp, Ity involved in the representation

(9.6) Dunn = ZEhhhal ® a; + 21, (a2 @ a3 + a3 @ a3).
Since
1
(9.7) (Dz—thh)_l = —a;®a + (32@)32 +a3® 33)

2(k — khhn) 2(p2 = Fpnn)

and
(98 (Dy-Dy - —T
82
3 3
1 592 1 =0,

4
———c—laQa + [ -
Aky— k1) sz | LT | 2(ua— ) s2

(ﬂz ®ay+az® ag),

the formula (4.2) implies

bra1f _ 1 36
(99) k2 . khhh k’Z - krl kz + iy ?
by _ 1 36,

B2 —Fwny  M2— 1 2k + p2)
Denote the resulting area fraction of phase 1 by m,. Then m; = 613, my =
1 — m,. The previous results imply

my my mo

(910) 02 = T, (6%) gl ™ y /."7)2 = 3_ 2')772 .
By (9.9), (9.10) we find finally
my = 1 my
oy — Fnpn Fa—ki katopa’
9.11) ky — knnn 2 — K1 2+ U
ma 1 My

o —Bpan H2— 1 20k + p2)’

REMARK 3. Functions k., (m2), Ty, (m2) grow monotonically from £y to k;
and from i to 9, respectively, if m; varies from 0 to 1.

REMARK 4. Tt turns out that the resulting isotropic plate of stiffness Dppp
given by (9.6) with kppn, ., given by (9.11) is just the stiffest possible plate
among all plates formed from phases (1) and (2) with given area fractions m,
my. Thus equations (9.11) provide the upper Hashin - Shtrikman bounds for both
k and pu.

ReEMARk 5. To find the softest plate one should envelop the homogenized
material around the softest one. In the same manner one arrives at the lower
Hashin - Shtrikman estimates for & and .
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10. Plane elasticity versus plate bending results

One can show a remarkable correspondence between Hashin - Shtrikman
bounds for Kirchhoff plates and plane elasticity problems. For Kirchhoff plate
model the upper Hashin - Shtrikman bounds k., 17, are solutions to the following
equations, cf. Eq.(9.11)

Il

(10.1) Fic = F(ms by, by, o),
(10.2) Hg = Gk (m; g1, p, ‘1“2)

Index K refers to the Kirchhoff plate model; function (7 is determined by (9.11)
and function F' - defined by Eq. (5.12). Let us note that

-1
F(m;ky, k2, p2) = [F (m; (kl)_l,(kz)'l, (,Ltz)_l)] ;

(10.3) L
Gr(m; pas iz, k) = [Gew (ms ()™, (u2) ™, (b))

which can be proved by algebraic manipulations. Thus the link between plane
elasticity bounds

P‘(ﬁ;’:a kZﬂ klwul) < kPE < F(TTL; kla kZM“’LZ)’

(10.4) -
Gpe(m; 2, 1, k1) < ppe < Gpe(m; o, pa, k2),

and Kirchhoff plate bounds

(10 5) F(;ﬁ1 kZa kla ,U']) % kf\' < F(Tn; kla kZa ,112),
' G (s pa, i1, k1) < pre < Gre(mg py, p, k),

can be explained as follows.

Assume that ky > ky, 11 > jp. Then the bounds for the plate moduli assume
the form

F(m;ky, ky, p2) < kg < F(m; ko, ki, 1),

(106 , o
) G (m; pa, pa, k2) < pr < Gre(m; pia, pa, ky),

since m = m. Hence by (10.3) we find the bounds for the flexibilities
F (5 (k)™ (k)78 () ™) < (i)™ < F (s (k)™ (Ra) ™ ()71,
(10.7)  Gpp (7 (u2)™, ()™ (k) ™Y) < (i)™
< Gpp (m; ()™, (), (k)7Y),
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similar to elasticity bounds (10.4). We see the analogy

(108) ke e (kx)™,  wrEe (k) ke (k) pa & (a) "
Let us stress that inequalities (10.4) are valid for

(10.9) ky > kq, 2 > [y,
while inequalities (10.7) are valid if
(10.10) (k)71 > (k)7 ()7 > ()

which is compatible with analogy (10.8).
Let us prove a correspondence between (10.4) and (10.7).
The analogy to be proved follows from the following homogenization formulae

a) the homogenized plane elasticity tensor Ay, is given by
(10.11) EagA:m“E,\u = min{<so,ﬁA"ﬁ’\“eAu> leap are kinematically admissible:
€1122 + €2211 — 261212 =0, Y -periodic and such that () = E}

(+) means averaging over periodicity cell Y; ( ) o = 0/0ya, ¥y = (Y1,92) € Y.
b) the homogenized tensor C;, of Kirchhoff’s plate flexibilities is given by

(10.12) MeP Cc’jﬁ auM A rnin{<mme Capa um"“> |m°” are statically admissible:
m*? .5 =0,  Y-periodic and such that (m) = M}.

Let us denote

(10.13) en=nll, ey=n?  ep=-n
Then
(10.14) n°f =0, (n°) =eneep,Epy = Eap,
where €., =0, e13 = —e€z1 = 1. Thus formula (10.11) assumes the form
(10.15) Eaﬁﬁzm“ﬁ,\# = min{(n“"’fiwmn”")
of3

[n®” o = 0; n®? are Y -periodic; (n) = ﬁl},

where

(10.]6) A75g,i = eweﬁge,\geu,{Aam‘“,

and A, is defined similarly. Transformation (10.16) changes indices (1,2) into
(2,1), which is unimportant if we estimate the energy by isotropic quadratic forms,
which is the case here. Hence the upper/lower estimates for strain energy (10.15)
assume the form of upper/lower estimates of complementary energy of Kirchhoff’s
plate, cf. Eq.(10.12). Therefore estimates (10.4) have formally the same form as
estimates (10.7) for the plate flexibilities. Note, however, that the applicability
ranges of both estimates are complementary.



ON ATTAINABILITY OF HASHIN-SHTRIKMAN BOUNDS 523

Acknowledgment

The financial support by the State Committee for Scientific Research through
the grant No. 3 P404 013 06 and through the Statutory Project No. 504/072/253/1
is gratefully acknowledged.

References

1. G.A. Francrort and F. Murat, Homogenization and optimal bounds in linear elasticity, Arch. Rat. Mech.
Anal., 94, 307-334, 1986.

2. A.V. CHERKAEV and L.V. GiBlanski, Coupled estimates for the bulk and shear moduli of a two-dimensional
isotropic elastic composite, J.Mech. Phys. Solids, 41, 937-980, 1993.

3. R.V. KonN, Recent progress in the mathematical modelling of composite materials, [in:] Proc. of a Work-
shop on Composite Materials. Constitutive Relations and Damage Mechanisms, G.C. S, G.F. SMmITH,
LLH. MaRrsHALL, J.J. Su [Eds.], Glasgow 1987.

4. R. LwetoN, Optimal design and relaxation for reinforced plates subject to random transverse loads, Probab.
Engng. Mech,, 9, 167-177, 1994.

CIVIL ENGINEERING FACULTY, INSTITUTE OF STRUCTURAL MECHANICS
WARSAW UNIVERSITY OF TECHNOLOGY

Al. Armii Ludowej 16, 00-637 Warszawa, Poland.

Received February 10, 1997.



