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A formulation of continuum mechanics as a dimensional
reduction of a finite-dimensional dynamical system

J. KACZMAREK (GDANSK)

IN THE PAPER a generalized formulation of the continuum mechanics is suggested. The generaliza-
tion consists in the assumption that the energy balance equation is not satisfied for all subbodies
of a body but only for their chosen family. This formulation leads to fields in the continuum which
create a finite-dimensional space. With the help of the chosen family of subbodies, a volume of
averaging related to the continuum model is defined. This volume is connected with a more ele-
mentary dynamical system which takes part in determination of the form of constitutive equations.
[n general, the mechanical model of the continuum is seen as a dimensional reduction of the more
elementary dynamical system related to another continuum or to a discrete set of material points.

1. Introduction

PHYSICAL PHENOMENA related to a microstructure are frequently taken into con-
siderations in mechanical modelling of material behaviour [1, 2, 3].

The evolution of the microstructure can be quite complicated. In such cases
it is difficult to postulate the form of the equations, and particularly the form of
the constitutive equations for highly averaged models of the continuum.

A good illustration of such a situation is the martensitic transformation re-
lated to the shape memory alloys. In small scale we observe different martensite
variants, different kinds of moving interfaces, shuffles, internal rotations, stabi-
lization of the martensite etc. These phenomena make a mechanical description
in the small scale quite complicated. On the other hand, simpler descriptions
can be carried out for a more averaged continuum. However, it is then difficult
to determine the form of constitutive equations. This suggests a multiscale ap-
proach, where the equations related to a small scale should form the theoretical
and numerical base for those related to the larger scale. Such an approach was
proposed and discussed in [12, 13, 14].

Considerations related to the model with a small scale create, in turn, new
difficulties. The determination of all constants and functions related to material
properties of the model in small scale often require complex discrete calculations.
Then, a discrete model can form a foundation for the continuous one.

At the moment we have the following problem. All discrete models are finite-
dimensional ones. During reformulating them into a continuum model, the de-
scription itself undergoes a simplification but all the fields obtained in the con-
tinuous body become infinite-dimensional ones. It is expected that continuous
model should be dimensionally reduced as compared with a discrete one, and
therefore the continuum theory should be finite-dimensional as well.
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The next problem is related to the degree of averaging. The notion of the
volume of averaging is intuitively intelligible. On the other hand, it is related to
physical foundations of the mechanical model. Therefore, the notion of volume
of averaging should be introduced and elucidated in detail.

The above mentioned remarks suggest that in considering complicated mi-
crostructure, it is difficult to avoid discrete calculations.

There are many efforts to provide discrete foundations for continuum mech-
anics [7-11] as well as simplifications in the description of complex discrete
systems. The statistical mechanics reduces enormous number of degrees of free-
dom by the statistical averaging [4, 5]. In analytical mechanics, the well known
method of constraints reduces the number of degrees of freedom [26]. There is
an averaging method known in nonlinear dynamical systems [6] which leads to
replacement of the complicated evolution by a simpler one. Thus, simplifications
in mathematical description of complicated systems were frequently studied in
literature.

The aim of this paper is to give a generalized formulation of the continuum
mechanics. This formulation is in a position to adopt the point of view that the
continuum appears as a dimensionally reduced discrete system, or another more
complicated continuum system. Furthermore, in the frame of this formulation,
the notion of volume of averaging is elucidated sufficiently.

2. An idea of a dimensional reduction

The discussion carried out in the introduction suggests that the continuum
models should appear as a dimensional reduction of discrete systems. Behaviour
of a system of atoms in many cases can be well approximated by a classical system
of material particles. It can be obtained with the help of the Born - Oppenheimer
approximation [27].

Therefore, at the beginning of our considerations an idea of a dimensional
reduction of a dynamical system described by the Hamilton equations will be
discussed.

Let us consider a system of N material points with masses m;, 1 € [y =
{1,..., N}. The position of the ¢-th mass is given by q; = {q1, ¢2, 3}, the
velocity by v; = q,, and the linear momentum by p, = m,v;. Let / stand for the
Hamiltonian of the system under consideration, and let f; be the force related to
the :-th point.

Equations of motion for this system of points are are discussed in analytical
mechanics and are given in the well known form [26]

dq; _ OH dp; _ OH

(2.1) (/_/ B f)p; g W i (ﬁ)qg ¥ ii '
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Let us introduce the concise notations d; = {q;, v;}, d = {d;}, f = {f;},

L, f)= {O_H L ( gf + f) }, ¢ € In. Then, Egs.(2.1) can be rewritten

opi” m;
concisely as d = L(d, f).
The evolution function for the dynamical system defined by (2.1) can be ex-
pressed as a generalization of linearized solutions of these equations (see for
instance [28]) in the form

2.2) \(do, D(t) = el 3D

where the existence of JL/dd is assumed.

We would like to introduce a dynamical system which would have a consider-
ably lower dimension than the original one. Let M be a manifold consisting of all
admissible d. A dimensional reduction relies on introducing a smaller number of
variables and on deriving a new appropriate evolution equation. Let d be a vari-
able of such a new kind of a system, and let, by analogy M = {d}. The connection
between these variables can be given with the help of a map 7 : M — M.

External forces undergo a dimensional reduction as well. Indeed, the reduced
dynamical system should be insensitive to some fine features of forces {f;} related
to a more complicated system. Therefore, by analogy, we define ¥ = {f}, 7 = {f}
and 77 : F — F.

The map 7 formally reduces the dimension of the system. However, such a
reduction can be accompanied by a simplification of behaviour of the system in
some time interval 7' = [to, to + T'].

Let (M x T = {x(do, £)(t): t € T\ dyg € M}. This set consists of elements
which are possible solutions of the equation (2.1) with the initial condition d(tg) =
dy and the given function f(t) € Fr, where 7, = {f(t) : ¢ € T'}. In a similar way
we define the sets (M x Tp= {X(dy, ) : t €T, dg€c M}and F, = {f(¢):
t € T'}. With the help of these sets we can introduce new maps 7, : (M x 1)y —
(M x T);and mpp 2 Fp — Fis

For convenience, let us introduce a more general set of all continuous func-
tions with sufficiently high time derivative C'(dg) = {o(1) : ¢ : T — M. p(tg) = do}.

The relation between 7 and 7. lies in the fact that for each ¢ = {, 7.(f) has
the same domain and range as 7. Thus, 7, does not introduce new Variables

The evolution function Y : 7' — M for the dimensionally reduced dynamical
system is unknown. Let us assume that the form of Y can be expressed as

dg .

. ‘ 8L(C, d, Dt —
(2.3) (T, @, Bty = cJo 56 @2 g,
where C € (, with C being a set of all admissible constants C. Thus, the expression

(JL/0d)(C, d. f) is postulated to be dependent on C and operation J/dd is
assumed to be realizable. Consequently, the determination of a dimensionally
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reduced dynamical system rests on finding =, 7, 7y, 7,, and the best C* € C.
To this end appropriate criteria should be formulated.

We can consider two kinds of dimensionally reduced time processes. The first
one is induced by the Hamiltonian system. We have y(dy, f)(t) € (M x T');.
With the help of the introduced mappings {7, 7, }, we obtain induced process
7, (x(do, f)(t)) which belongs to a new set (m. M x T)T' The second time process

is related to the evolution function Y(C, dy, f)(t) which is parametrized by C. Let
us assume that for each C the evolution function Y is determined. Then we are
able to define a new set (Mc x 1) = {X(C, do, H)(t) : t € T, dy € M} and two
injections i : (TM x T); — C and i.: (M. x T); — C.

Now we have a possibility to compare two processes introduced previously. To
this end, a metric on (' has to be introduced. Thus, let o : C' x ' — R* U {0}
be a metric on .

With the help of the assumption (2.3) we can generate a family of processes
dependent on C in the form Y(C, dy, f)(t), C € C, dg = 7(dy), f = 77 (f), where
dy and f are applied to determine the Hamiltonian process y(dg, f)(7).

Let us define a function

(2.4) i(do, ) = jnf o(i(x(C, do, D). i(7r(x(do, DID))).

By C* we denote the constant C € C which minimizes the function /. Accordingly,
C* = C*(dy. f). A satisfactory approximation should have the property that C*
displays a weak dependence on dy and f. It depends, in turn, on an assumed
function 7, for the dimensional reduction. Finally,

(2.5) C= Av{C": C"=C(d, D), dy e M, e Fr).

where Av means an averaging operation. Thus, C determines the evolution func-
tion of the reduced system Y(C)(1).

Thus, as a result of the dimensional reduction, we have obtained a new dy-
namical system. Let us characterize the main elements of the dimensional re-
duction. First, we have to choose new variables represented by d. Similarly,
the forces are also dimensionally reduced to the f. Next, we have to assume
or to infer the form of expression (JL/dd)(C, d, f). This equation creates
a skeleton of a new dynamical system S1).S which can be characterized by
SDS(C) = {d, f, (9L/od)(C, d, f)}. We should also determine the family
of maps {7} = {7, 7, 7;, 7,,}. Dimensionally reduced dynamical system
RDS(C) is obtained with the help of an approximation method app given by
(2.4), (2.5). Consequently, the dimensional reduction operation can be charac-
terized by DR = {SDS, {r}, app}. Finally, the pair {£/DS, DR} leads to
RDS(C), where F'DS is the elementary dynamical system determined in (2.1).

Continuum models should be such dynamical systems which describe a ma-
terial behaviour. Thus, they should appear as dimensionally reduced dynamical



A FORMULATION OF CONTINUUM MECHANICS 53

systems describing a behaviour of a set of atoms which constitute the material of
the body. Therefore, in the paper, just such a formulation of continuum mechan-
ics is discussed.

3. A generalized formulation of continuum mechanics

The continuum mechanics has been developed by creating its precise mathe-
matical foundations. These problems were widely discussed in the literature, for
instance in [15, 16, 17, 18, 19].

In this paper we propose a generalization of the formulation of the continuum
theory. This generalization is based on weakening of an assumption that the
energy balance equation is satisfied for each subbody of the body B. It is assumed
here that this is the case only for a distinguished family of subbodies of 5. Such
a theory comprises the traditional formulation as well, since the distinguished
family of subbodies can, in particular, consist of all subbodies of 5.

Let us note that for discrete system, energy depends on a finite number of
variables wich are related to positions and velocities of particles of the discrete
system. During a dimensional reduction the number of variables decreases. Such
a new variable represents usually a group of particles from its discrete set. This
leads to justification of the theorem that the balance of energy can be introduced
for the finite subbodies of the whole body only.

Let us consider a set B and a family of its subsets which create a countable
additive field §.

DEFINITION 1. The body B is a space with a positive measure M : S — R* U{.
The measure M is called the mass.

DerINITION 2. The body B is the continuous body if it is endowed with a structure
defined by a non-empty class C of maps which satisfy the following axioms:

a. The members of C are invertible maps from B onto open subsets of the Eu-
clidean space.

Yis a homeomorphism in E°.

b. If k, v € C, then Kk o~y~
c. If k € C. X is a homeomorphism in E* and Range x = Dom )\ then

/\ 0O KR E (1

The members of C are called the placements of 5. The range «(B), « € C, is
called the region occupied by B in the placement .

The function A =~ o k™! is called the displacement function between place-
ment x and ~. The last definition follows from [19].

DEFINITION 3. The continuous map of the time interval [0,T"] onto the set C is
called the motion of the body B.

http://rcin.org.pl
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Let \ (X, ?) be a motion of the body B, where X € B. The velocity v is defined

asv= g\(X t).

Let A {(Ki: Kie S, 1el},1={1,2.. N}, K;nK; = { for each
t, j € I and (J;c; Ay = B. Thus, K C S is a subfamily of subsets of B which
represents a decomposition of the body into subsets i, ¢ € /.

Let us consider a function Y: K — B3, Y(Kp) =xn€ RP. Letlf c I, hel
and {.,.} be a set of values of the function Y for m € ;. We can define the set
b, = {ap: ap: {xm} — R?, m € I}, p € N}. Then, we introduce a function
a: K — &, a(ky) = ap.

The function Y assigns a set of discrete values of the field \;, h € [ to the
body B with the help of the family A. Similarly, the function a assigns a set of
discrete values of the field a;, h € [. However, a; depends on the finite set of
values \,,, m € [}. The definition of the finite set is introduced with the help
of a set of indices /;. This set in turn, contains numbers of elements of X which
have influence on the value of a;. Usually, it will be some neighbourhood sets
i; for K. Thus, the functions Y\ and « together can express nonlocal properties
of X h-

Let Vp = {{X, a} : {xn, an}, h € I}. Let us define the space V. of
dlsplacement functions \h of the body B with respect to a configuration x as

e = {Xx: \h = \ox~', A, x € C}. Let furthermore, o : V) — V, be a linear
functlon and xX = a({\;,, (zh})

Let us consider a Cartesian coordinate system. Then, X = (X, X;. X3). We
define a function ', : K — R3, C.(K}) = X;,. We assume that in particular
cases the function a; can be expressed as a, = {ayp,...,ars}. In this case we
assume that the function « satisfies also the following conditions

i\ K
e Xn) = Xns (@il = Jh \dzl(\())k\g Pl

by bbby =8, GE€LL, 200L}, K i, i€ fa=1{1,2, 3}
IO
Then, ((IM)H = (T)\X'%-

of deformation and we can consider ((a;;)™) as well.

can be interpreted as an approximation of the gradient

DEerINITION 4. The displacement function associated with the family of sets K is
a function \% of the form \% = a({yn, ai}).

The function o assigns a displacement function field \* to the set of discrete
values. The aim of this function is to introduce a continuous field y on the body
5. Thus, the space of such fields Ima C V is finite-dimensional, where Im ¢
means the image of a function ¢.

DEFINITION 5. The motion of the body B associated with the family of sets K is
a continuous map x; : [0, T] — {\}}.
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~ We also introduce a function T on K, which will represent temperature, as
T:6—- BT K) = T,. Let [,{j C [ and {T,,} be a set of values of the function
T for n € I}. We define a set ¢, = {b, : b, : {T,} = R9,n € I},q € N}.
Similarly as for the function «, we introduce a function b : K — @;, b(K}) = by,.
Let Vo = {{T, b} : {T, b} = {T), by}, h € I}, Vp = {T(X) : X € B}. Let

us consider a function 4 : V'3 — Vi which is linear by definition and 7% =
LA K;

B({Ty, by}). We assume also that T*(X;) = 7}, and %%(Xh) -

Al

DEFINITION 6. The temperature field TK. associated with the family K is the field
obtained with the help of function 3 as T* = B({Th, bi}).

Thus, we have obtained a finite-dimensional space of temperature fields Im 3 C
Vr in the body B.

Let us consider the functions: the internal energy £, the entropy S;, the
energy flux W, the power of inertia forces F, the entropy flux //,, the energy
source F?;, and the entropy source ;. Here £, : K — R, 5, : K — R, W, :
OK - R, P:K—-R, H:0—R,R: K= R, N; : K = R, where 0K is
the family of sets A'; N JB. These functions are determined for any time instant,
thus they represent some processes. It is also assumed that they are differentiable
enough with respect to time.

Neglecting at the moment the detailed representations of these functions, we
assume the energy balance equation in the form

(3.1) 2,B) — Py(B) + W,(0B) — R.(B) =0,

where
B= U K, K; ek, B = U.[\’J' N aJdB.
i J
The second law of thermodynamics is expressed with the help of the entropy
balance equation and takes the form

(3.2) S.(B) + H,(9B) — N(B) > 0.

We introduce also the function ¥, : K — K which is interpreted as the free
energy.

4. An example of a continuum with finite-dimensional fields

An example of a finite-dimensional continuum presented here is connected
with a special choice of the family A, functions which appear in (3.1), (3.2), the
variables and the form of constitutive equations.

Let K = {A,}, 1 € [ be a division of the body B into a sum of geometrical
complexes A'; which have a cubicoid form. Let the coordinate axes { X'y, X,, X3}
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be prependicular to the faces of cuboids in the undeformed state. We can intro-
duce a discrete field on the set of complexes /;. Then, we assign a value of a
field to the center of gravity of each A, 7 € .

We have introduced discrete fields related to the family X'. Thus, the following
expressions will be helpful in what follows:

1
DZ(:Um) = ﬂ(ym-ﬁ-l i ym—l)s

1
(41) A(ym) = E(ym+l i ym—l)a
DZ(ym:m) == DZ(!/W)A(Zm) + DZ(Sm)A(ym)\

where A is a distance between centers of neighbourhood complexes A,,. It is
assumed that, for simplicity, A is the same for the whole body. Let Dy, (y,) =
(1/2A)(yn,, — Yk, ), ¢ = 1,2,3,where h;p, h;y stand, respectively, for indices of two
neighbourhood complexes for A in the direction X;. By analogy, we introduce
also Ai(yh) = (]/2)(yh,2 o yim)'

Let py = {pni, ¢ € I3} be a discrete field assigned to the center of A’;,. By
means of the above formulas we can introduce a discrete version of the Gauss
theorem which is convenient for our purposes

(4.2) Y Dapri)= Y Y PayilNayis

hel he€l sp€lp

where p;, ; is the same field p, which has been assigned to the center of face S,
of the complex A, N, are components of the unit vector normal to the face
S, - Furthermore, py; = J (u,l*hl),»;\. Prk 18 @ connection between vectors dependent
on space and material variables.

In general we assume that p,,; = A(pni, pi;), where h, [ are indices related
to complexes which have common face 5, . A is a function chosen in such a way
that the formula (4.2) would be satisfactorily satisfied.

Let us introduce a function a,, of the form a;, = {Dy1(x1), Daa(x1), Das(xyn 112
Xn={Xu},n € 3 ={1, 2, 3}, h € I. Thus, ap, = {anni}, n, 2 € I3.

We assume the following representations for functions related to the energy
balance equation and the second law of thermodynamics:

(4.3) E(K}) = Ey, E(Kp) =y + 5T,

(4.4) E(Ky) = B, B(KR) =Wy + STy + ST,
(45) ”"'(d]\’h) = Z (fﬁnf‘}v-‘ih i Z Psp, l'i.s,,i )

(4.6) P(]\’/L) = —my '\.hi ih.i + DZm(’.hm—n ;zhkn)i.hk )

(4.7) R(Ki) = Ren + fhiXni
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(4.8) S(Ky) = %',_ S(Ky) = S,
(4.9) H(OK)) = Z T = spiVspi
(4.10) N(K;) = ILR,

h

where 1, is a mass assigned to the complex /5, ¢4, is an inertia tensor related
to Ky. fi = {fni} and R, are a force and a heat source related to K. q5, =
{qs,:} and p,, = {ps,:} are a heat flux and a surface force related to the surface
S5, - Let us note that the expression (4.6) is obtained with the help of definition
of the kinetic energy £ = [ o&;2;dV.

We assume that the energy balance equation is fulfilled for each K), € K
separately. Then, the energy balance equation takes the form

(4.11) ‘:Un + »;";szl + AS'hTh + M Xpi X
= [)Zm (jhmﬂ &hkn)ih},: - Igfh + Z (1.‘.-,,1'N3,.Li - fhiih,f = Z])shii'sh-j =0
5K

Sh

The term ¥, can be expressed as

(.)(I/h . ()‘[/h &)!!/h . . Ofllh .

A——hn Ty = Dy; + 1
()(’Im{ - )’F 8 ()(I-hm' 2(\/171) ()]h A

s ) ()qj" . dlllh ()w}“
- Dz‘ (aahni\h“> - [-)Zi (d hm) 4 (\hu) )11 Jh )

where the properties given by the formula (4.1) have been used. The summation
convention does not concern the index 7 in A;. Furthermore, we assume that
‘ “(i/m) = (fm‘

With the help of (4.12) and the discrete Gauss theorem (4.2), we can transform
(4.11) into the form

4.12) ¥, =

(4.13) [—1)2, ( Oy

)—) . .fhn. + my, XHhn —[)Zm(’hmp alm'p)] Xhn
Ol pni

+ (0{% i _%‘h) T}l + 5;; T},

ar,
v, "

\Ys it = Pspn ; =0.
()(15; nt o Plh ) \s;,n

+ Doi(gni) — Ren + Z (

Then assuming that an arbitrary time process Y\, is admissible, we obtain from
(4.13) the following system of equations:

o, : 5 . g
(4]4) '"l)?.i (—’) = fhn + my, Xhn —DZm(“me a’lmp) = 05

()(l hni

http://rcin.org.pl
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= ov,,
: Ok = —a=m
(4.15) f a7,
(4.16) 51T + D2i(qni) — Rer, = 0
and
(4.17) 0Y,, Ngi — psyn = 0.

Bashm-

The Clausius - Duhem inequality can be expressed with the help of (3.2), (4.8) -
(4.10) as

. 1 1
By < By N qrie ,
(418) I h Rch Th + D21 (th Th) 2 O

Taking into account dissipative processes and introducing internal state vari-
ables £;, we can generalize Eqgs. (4.14)-(4.16) to the form

(419) _[)QJ (ﬁ + t;{ni) - fhn + my, X fen _DZm(thp almp) = O,
~ ad’h rd
; Sy = ——— + 57,
(4.20) =S+ S
(4.21) S5 Th + Dally ) — Rap + 58T — 8 sfbnes + ’(())f’ £ =0.
h

The constitutive equations should be assumed for the functions r;, = {¥,, S,
t,, q.) and t, = (0¥,/Ja;) + t!. The constitutive equations will then depend
on the variables h, = {\, a,, T}, by} and &,. We assume that the equations
take the form

(4.22) Wy = Un(Cy, hy, &),
(4.23) 'Slh = 'S‘h(CSs h/l~ Ei()"
(424) t, = th(Clw h/lv Eh)>

(4.25) ar = qu(Cq, hp, &),
(4.26) é;, = Ap(Ca, hy, &),

where ¢ = {C: C = {C, C,, C, Cy, C4}} are constants which define these
constitutive equations.
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The generalization in our formulation rests on the fact that our theory is
formulated for a given subfamily K. In the particular case when K = & we obtain
the classical continuum theory.

It is possible to carry out two different procedures for obtaining a continuous
field from the discrete one given on the family A.

The first procedure, called further the A-procedure, consists in the interpola-
tion of the sets of the discrete values. It can be performed with the help of maps
«, {} introduced above, which replace the discrete fields {v,, an, Th, by} by
some continuous ones.

We should also introduce some additional maps which will be useful for in-
terpolation of the remaining variables which appear in our description. Thus, let
us introduce the following spaces

V,={m: m={my}, hel}, V, ={o(X): X € B},

—\—, = {‘I‘Z r= {’ph, Sh, t, qh}. h e ]}
V. = {r(X) : »(X) = {¢(X), s(X), t(X), q(X)}, X € B},
Ve={6: E={&}, hel}, Vi={X:XeB}
Vy={{f, R, p}: {fx, Ren, pr}, h € T},
Vr = {{f(X), r.(X), p(X)} : X € B}.
~ Let us consider the following maps which act on the introduced spaces p :
Vo= Vyupu:Ve—=V, pe: Ve — Ve, v : Vi — V. The introduced maps are
linear by assumption and with the help of these maps, discrete fields are replaced

by continuous ones. However, in order to obtain satisfactory approximation, the
continuous fields obtained above should satisfactorily fulfill the following condi-

tions
my = fg(ll". v, = /gi,"* dV . Sy, = /g.« dV,
l\.[l ]\-h ]\-h
Dailtini) = [ tiadV = [ tuNeda,
];-h ’--}.1\.11
(4.27) Dyi(qni) = /(/?-J-(l\f' = / g Nk dA ,
I;'lr “",\-l:
./‘h - / f A h)r,h = ‘/Te v, Pspi = / Pi ‘[As
K Ky, '?".’\'h
where qur = J(a; DGy thee = J(a;alnu are quantities determined with

respect to the reference configuration. Finally, we obtain continuous finite-di-
mensional fields on the continuum with the help of the A-procedure.
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The second procedure, called further the L-procedure, is connected with a
limit transition. Let B = [J,c; i, K; € K be a division of the body 5. Let us
consider a sequence of {K,,}, m = 1,2,3,... of such divisions and X; = K.
Thus, for each m, B = U;¢; Kmi, Kni € K. Let us assume that constants C
are already determined for the family A

For each K',,, we introduce the sets of indices [}, / fn ;- Consequently, we have
sequences {1}, {Kn}, {12}, {IL4), b € I, m = 1,2,3,.... With the help
of these sequences we can carry out a limit L for the equations (4.18)—(4.21)
and the constitutive equations (4.22)-(4.26). However, in order to make this
operation realizable, let us assume that variables which appear in (4.18) - (4.21)
have representations in the form given by (4.27). We assume also that during
this operation lim,, .. 6(/,,;) = 0, where ¢ is a diameter of the set i,,;. It is
assumed that the constants related to the constitutive equations do not undergo
any change.

During this limit transition h, — h appears, where h = {y;, (Jx.;/0X,), 1T
(07T'/0X,)} in the considered case. The final form of this limit depends on the
previously assumed functions aj, by,. In particular, limits connected with these
functions can lead also to higher gradients of y and 7'.

The limit form of Egs. (4.18)—(4.21) can be obtained by dividing them first
by volume of A, marked by Vj. Next, during the limit transition we obtain
bimn — 0, (mp/Vy) — o, Dy(qri) — Divq, Dyi(thn) — Divt. Finally, we
obtain the well known expressions for the local forms of balance equations and
the Clausius - Duhem inequality [16].

Let us note that the L procedure leads to the infinite-dimensional fields on the
continuum. However, the starting point of this procedure has decisive meaning.
Namely, the first element A’y of the sequence {K,,} is assumed. This element
influences the final form of the constitutive equations.

The first element of the sequence {A,,} will be related to the volume of
averaging. This problem will be discussed in the next section. The volume of
averaging is especially connected with the form of the constitutive equations.

5. Volume of averaging related to the continuum model

The primary motivation for discussing the continuum theory suggested in the
paper is to create a possibility of determining the equations of the continuum
(for instance (4.18)—(4.26)) from a more elementary level. This elementary level
can be connected with a discrete system of material points or with a continuum
which is much more complicated.

Let us assume that on the more elementary level, the behaviour of a body is
described by a dynamical system. Let d be a variable of this system, V' = {d} is a
set of admissible values of this variable, and let o : [0, 1] — V' be an evolution
function of the dynamical system.
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On the other hand, let d = {{xn, an, Xn, @n, Th, bn, &} : h € I},
V= {d},f={f, R, py} and let T: [0, T] — V be an evolution function
which is determined by equations (4.18)-(4.26).

At this moment we can return to notations from the Sec. 2 where we have de-
fined two dynamical systems and a dimensional reduction method. The SDS in-
troduced in Sec. 2 can be now identified with SDS(C) = {K, d, f, {BE, r(C)}},
where A is the previously discussed family of subsets of the body and influences
the option of variables d and forces f. BE means the set of balance equations
(4.18)—(4.21) and r(C) represents the parametrized family of constitutive equa-

tions (4.22) - (4.26). The pair { BE, r(C)} corresponds to g—g(C) which describes

evolution of S1)S. The dimensional reduction method has the same form as pre-
viously DR = {SDS, {r}, app}.

In this section we discuss the continuum dynamical system (') S which should
be obtained as a result of the dimensional reduction. This system can be charac-
terized by C'DS(C) = SDS(C). Thus, we can choose an elementary dynamical
system /7[0S which can be a discrete or a continuous one but more complicated
than SDS(C). Then, {£DS, DR} creates an RDS(C) = C'DS(C).

Now, we are able to define a volume of averaging related to the continuum
model. Let K be a family of sets A; and B = |J; ;, A;n K; = (. Let ¢ be a
dynamical system whereby the discrete field related to K is determined. Next, let
the L-procedure or the A-procedure be applied in order to attain the continuum
model. Then, the average of values u(/\;) represents a volume of averaging for
the continuum model obtained, where g is the volume measure.

In a natural way, we can generalize this approach to a multiscale description.
Then, (C'DS), = {(CDS),—1,(DR), -1}, where (C'DS),_; represents the more
elementary dynamical system and (/) I?),_; means a dimensional reduction which
is then applied.

6. Volume of averaging connected with the martensitic transformation

The martensitic transformation, especially the one related to the shape mem-
ory alloys, exhibits a complicated structure and moving interfaces. As it has been
discussed previously, different scales should be taken into account in a mechanical
modelling of this transformation. Let us try to discuss what these scales should
mean.

In a small scale, we can observe the single martensite variants. They can create
fine twins or selfaccomodating groups. In a larger scale, such structures usually
create a complicated composition. However, in a large scale a coalescence of
martensite variants can appear, and only one martensite variant is also possible.

Let us consider, for instance, the CuAl alloy. We observe twenty four marten-
site variants which create six selfaccomodating groups [22]. In Fig. 1, the struc-
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F1G. 1. Structure of austenite and martensite in CuAl alloy.

ture of austenite and martensite unit for CuAl alloy is shown. They have nine
atomic layers which characterize this unit and define fully this martensite variant.
The austenite structure and stress-induced martensite variants for CuAlNi alloy
is shown in Fig.2, where eighteen atom layers define the martensite unit [23].
Consequently, a linear dimension which characterizes the small volume of aver-
aging in the considered cases should exceed the dimension of the martensite unit
and should be between 10~°m and 10~¥ m. On this level of description, single
martensite variants and single interfaces will be distinguished.

In Fig. 3 the selfaccomodating group is shown for CuAl alloy. In this structure
different kinds of single martensite variants are composed. Another structure
related to the fine twinning of martensite for CuAINi alloy is shown in Fig. 4.
Compositions of this kind of structures bring a considerable nonhomogeneity.
Therefore, the scale of averaging for theories which do not distinguish different
martensite variants should be connected with such a volume in which the compo-
sition of martensities can be approximated by a homogeneous structure. Taking
into account observable structures [24, 25], one should assume that the linear
dimension related to the volume of averaging is between 10~%m and 10~*m for
models with the larger scale.

In papers [12, 13] a continuum model related to the small volume of averaging
is introduced. As a consequence of this kind of averaging shuffles are taken into
considerations. They are introduced with the help of the relative displacement
vectors w, which are shown in Fig. 1. The role of shuffles is valid on this level of
description. They take place in determining the martensite variants. They have
also some influence on the kind of internal rotation of the martensite variant
towards the habit plane. Thus, the dynamical system related to this model has
variable d = {x, x, wy, wy, 1', a, [, 6}, where «, (3, ¢ are internal variables
related to dissipation connected with shuffles, related to jumps of the creating
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['16. 3. The selfaccomodating group of martensite variants in CuAl alloy.

martensitic structure over an anergetic barrier and stabilization of the martensite,
respectively.

On the other hand, we can introduce variable d given in previous section,
where £ can be in particular connected with the mass of martensite in the whole
structure. Then, the model of larger scale of averaging is considered. Such models
have been discussed in literature [20, 21].

http://rcin.org.pl
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['1G. 4. The fine twinning which appears in CuAINi alloy.

With the help of the procedure given in Sec.4, a connection between these
two models could be determined. However, such procedure will certainly be not
simple. It requires, first, precise identification of the constants and functions re-
lated to material properties for the model with the small scale. Then, another
difficult problem appears. This is connected with a satisfactory form of approxi-
mation given by (2.4), a form of dependence of functions in (4.22)-(4.26) on C
and choosing an appropriate kind of internal variables £.

7. Final remarks

The suggested formulation of continuum mechanics makes it possible to obtain
a continuum model as a dimensional reduction of a discrete system. It seems to
be convenient to consider a discrete dynamical system as a physical basis for
continuum model. Furthermore, multiscale approach for continuum description
can also be introduced in this way.

The main stress has been laid on the description of dynamics. It is displayed
by the introduced method of dynamical reduction by means of maps 7., 7., and
by introduction of internal state variables in dimensionally reduced systems. Such
an approach is suggested by the example of a moving microstructure in case of
the martensitic transformation. Then, it is difficult to use, for instance, the ho-
mogenization method since we do not know the dynamical laws of microstructure
evolution.

Furthermore, it is hoped that the suggested procedure will be convenient in
determination of the constants and functions connected with the material consid-
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Cri

ed. It is valid especially for small scale of the averaging models. Then, we have

not too many possibilities to obtain such constants and functions experimentally.
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