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THE pAPER is intended as a review of the work carried out at the institute to which the authors be-
long, regarding the theory of viscoplastic shells in both versions of small and finite strains. Within
the first version, the kinematics incorporated is assumed to be linear allowing for an additive
decomposition of the strain rate. For the axisymmetric case, a hybrid strain-based functional is
presented. Contrasting this, in the finite strain case, the shell kinematics is considered as geomet-
rically exact. Here, the shell theory itself is seven-parametric and allows for the application of a
three-dimensional constitutive law. The constitutive law used is that of Bodner & Partom which
falls within the class of unified constitutive models. The multiplicative decomposition of the defor-
mation gradient is employed, but no use is made of the so-called intermediate configuration. The
elastic constitutive law is of a logarithmic type. An enhanced strain finite element formulation is
developed and several examples of finite deformations of various shell geometries are presented.

1. Introduction

MANY TECHNICALLY important structures can be modelled as shells, i.e. as curved
bodies where one dimension, which is called the thickness, is much smaller than
its other dimensions. In some applications, the material behaviour of metal-
lic shells can be modelled by viscoplastic constitutive equations which describe
rate-dependent deformation behaviour. Despite their technical importance, not
so many publications deal with viscoplastic shells. In this paper we will present
an overview on the work carried out at the institute to which the authors belong
with regard to viscoplastic shells and their numerical analysis.

The paper will be split into two parts. In the first part we will briefly discuss
a general, but geometrically linear theory of viscoplastic shells. The viscoplastic
deformation behaviour can be governed by any of the more recently published
so-called unified models with internal variables. Furthermore, we will demon-
strate the application of the shell theory to the formulation of a family of mixed
axisymmetric Finite Shell Elements (FSE). In the second, larger part we first
will extend the constitutive viscoplastic theory to finite deformation. Then we
will present a recently developed shell theory with 7 parameters. We will address
the topics of its numerical implementation leading to very efficient FSEs. We
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will present some instructive numerical examples and give an outlook on further
research directions in this field.

There exits an almost unlimited literature on elastic shells. For reference
purposes, let us cite the papers by NaGHDI [1], VALID [2] and BerNADOU [3].
There also exists a comprehensive literature on rate-independent elastoplastic
shells which we will not address here. However, relatively few publications deal
with viscoplastic shells. CorRMEAU [4] investigates thick elastoplastic shells using
a von Mises-type viscoplastic flow rule. He uses general linear shell kinematics
and formulates an isoparametric shell element. HuGHEs and Liu [5, 6] develop
a geometrically nonlinear degenerate shell element. They use a quite general
anisotropic viscoplastic constitutive model and solve an impressive number of
examples. PARISCH [7] starts as Hughes and Liu from three-dimensional nonlin-
ear continuum mechanics. To account for the nonlinear distribution of the stress
components across the shell thickness, he develops a layered model with piece-
wise linear distributions through the shell thickness. Effectively, his formulation
comes close to a fully three-dimensional Finite Element Method (FEM).

KoLLMANN and MUKHERJEE [8] have developed a very general geometrically
linear viscoplastic shell theory. They give their entire formulation in rate form
and start from a two-field variational principle [9] which for the purely elastic case
has been published by Open and RepDY [10]. Their shell theory has been used
for the formulation of an axisymmetric hybrid strain element by KoLLMANN and
BERGMANN [11]. Using the same shell theory, a family of mixed axisymmetric shell
elements has been formulated by KoLLMANN ef al. [12]. KLEIBER and KOLLMANN
[13] have extended the shell theory to damage, proposing a generalization of the
damage model by GURSON [14]. An and KoLLMANN [15] have suggested a theory
of finitely deformed viscoplastic shells.

Finally we will address the formulation of viscoplastic constitutive models.
Here we will consider only the so-called unified models with internal variables.
In such models it is assumed that in the material, inelastic strain rates evolve
at any stress level. However, for small stresses these inelastic strain rates are so
small that no macroscopically visible inelastic strain is accumulated. Considering
this feature, most of such unified models are formulated typically without the
notion of a yield surface. Almost all known viscoplastic models are formulated in
the context of small strains. Therefore, the total strain rate tensor is decomposed
additively into an elastic and an inelastic part. The mathematical model comprises
evolution equations for the inelastic strain rates. As arguments of the constitutive
functions, not only the stresses appear but also a set of suitably defined internal
variables. It is clear that in addition to the evolution of the inelastic strain rates,
also evolution equations for these internal variables have to be specified.

A very early model is due to PERZYNA [16]. Further models have been formu-
lated by BopNER and PartoMm [17], CHABOCHE [18], KrREMPL and coworkers [19]
and STECK [20]. Only very few attempts have been made to generalize viscoplastic
constitutive models to finite deformation. RuBIN [21] has extended the model by
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Bodner and Partom to finite strains. Following NAGHDI and Trapp [22], he uses
a formulation in strain space. His primary variables are the right Cauchy - Green
deformation tensor and its plastic part. Therefore, Rubin gives a formulation
on the reference configuration. A formulation on the current configuration has
been proposed by NisHIGUCHI et al. [23]. They assume a priori an additive de-
composition of Almansi’s strain tensor into an elastic and an inelastic part. The
elastic part of the deformation is governed by a hypoplastic constitutive equation.
The inelastic constitutive equations are formulated with an unusual objective rate
which is an extension of the Jaumann rate. A finite element implementation and
numerical examples are presented in [24].

An important issue in finite inelasticity is the time integration of the inelastic
constitutive model. Specific considerations have to be taken to fulfill the constraint
of inelastic incompressibility. ETEROVIC and BATHE [25] and WEBER and ANAND
[26] use the exponential map for this purpose. Further, ETEROVIC and BATHE
[25] and MIEHE and STEIN [27] use a logarithmic strain measure. SimMo [28] has
systematically exploited the geometric structure of the elastoplastic problem and
thus derived compact and closed forms of the tangent operator in the continuous
and discrete cases.

2. Theory and numerical analysis of geometrically linear viscoplastic shells

In this section we first describe the essential features of the general inelastic
shell theory by KoLLMANN and MUKHERJEE [8]. Then we show the implementation
of a family of mixed axisymmetric shell elements. Next, we present the inelastic
constitutive model by BoDNER and ParTom [17]. Finally, we give some numerical
results.

2.1. Geometrically linear inelastic shell theory

In this section we give a very brief description of the underlying inelastic shell

theory [8]. A shell B is the Cartesian product of a two-dimensional surface S ¢ R?
with a closed interval [—-h/2,h/2] C R, i.e.

(2.1) B:=8x[-h/2,h/2] C R3.

The two-dimensional surface S is denoted as the shell midsurface (SMS). The
quantity / is called the shell thickness. Since in this section a geometrically linear
theory is considered, there is no distinction between the actual configuration B,
t € R and the reference configuration By (By = B; = B). We introduce curvilinear
coordinates §* on S, where Greek indices range from 1 to 2 and Latin ones from
1 to 3. For simplicity it is assumed that the shell thickness is constant on S.

On the SMS covariant and contravariant base vectors A, and A“ are intro-
duced in a standard manner. The first and second fundamental tensor on the
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SMS are denoted by A and B, respectively. The determinant of the tensor B is
denoted as B. Next, the normal unit vector A; on S and a normal coordinate z
are introduced. The covariant base vectors of the shell space B are given as

(2.2) G, = MA,,
(2.3) G; = Az,
where

(2.4) M:=1-:B

is the shifter tensor and I denotes the unit tensor on S. The determinant of the
shifter tensor is given by

(2.5) M=1-ztrB+ 2?B,

where tr denotes the trace operator.

The displacement vector u* (quantities with a star (as e.g. u*) are referred
to the shell space 5 while all unstarred quantities (as e.g. ) are defined on the
SMS B) of any point in the shell space has a representation

(2.6) uv=u+zw,

where u is the displacement vector of § and w is the difference vector. In the
present paper it is presupposed that the difference vector w is independent of
the displacement vector u of the SMS.

The following component representations for the strain tensor € in the shell
space B are available [8]

M EaB = €uap + z2Kap,
(27) M‘EaS = 1/)& + 2 0a

€33 = €33.

The quantities e,3, K3, Yo and p, are components of tensor and vector fields,
respectively, which are defined on S. Note that the kinematic assumption (2.6)
leads to transverse shear strains, which are linear in the normal coordinate z,
and to a transverse normal strain which is constant over the shell thickness. We
mention that completely analogous relations exist between the velocity field and
the strain rate field.

Next a general frame of the inelastic constitutive equations with internal vari-
ables is presented. Only such materials are considered which are isotropic and
homogeneous. A fundamental constitutive assumption presupposes that the total
strain rate tensor € can be decomposed additively into an elastic and inelastic
part

(2.8) E=¢
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The tensor € of the elastic strains is related to the stress rate tensor & by Hooke’s
generalized law

(2.9) G =2G €+ Mtré9)I.

Here G and A are the Lamé constants. The inelastic strain rate tensor € obeys
in the isothermal case an evolution equation of the following form

(2.10) e" = f(o,q"), k=1,2...n.

Here f is a tensor-valued function of the current values of the stress tensor o and
aset ¢*), k =1,2,...n of suitably selected internal variables. The internal vari-
ables are either scalars or second order tensors. For these otherwise unspecified
internal variables also evolution equations exist

(2.11) (j(k) = g™ (o, q"), k,r=1,2,...n.

Here again ¢, k = 1,2,...n denote functions which are depending on the
corresponding internal variable ¢*) either scalar-valued or tensor-valued.

We introduce vectors (in the sense of matrix calculus) of generalized strain
rates v and of generalized velocities v. The relation between the strain rates and
the velocities is

(2'12) ﬁ = L’W'& )

where L., is a generalized strain-rate velocity operator. The general representa-
tion of this operator can be found in [8].

KOLLMANN and MUKHERIEE start from a three-dimensional variational two-
field principle [9] which is formulated in velocities and strain rates. Performing the
integration over the shell thickness, this variational principle can be reduced to a
two-dimensional form. The concise version of the variational principle reads [11]

1.7 y oF .o T, oNT
f 57 Dyy Y= Dy Lyyw+ Fpp v+ f

S

213) 6 { L N i;] dS} =0.

Here dS is the area element on the SMS S. Further, D.,., is a generalized elasticity
. T .NT
matrix for the shell, F';, a generalized load rate vector, f a generalized
vector of inelastic pseudo-force rates and L a linear operator. Details of
YU

these objects can be found in [8, 11, 12]. We mention that = is the assumed
strain rate field while v is the velocity field. The assumed strain rate field can be
discontinuous between inter-element boundaries.
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One principal advantage of the variational principle (2.13) is that it contains
only strain rates and velocities but not stress rates. In inelastic shell analysis
assumptions such as e.g. (2.6) concerning shell kinematics are generally made.
These assumptions lead to information on the distribution of the total strain
rates over the shell thickness such as e.g. (2.7). However, unlike the analysis
of elastic shells, the distribution of the stresses over the shell thickness is not
known a priori but it changes in time and space. Therefore, this distribution is
a part of the unknown solution. It is not possible to conclude from the stress
resultants and moments, which typically evolve from any shell theory including
stresses, on the stresses in inelastic shell analysis. It has to be mentioned that
KOLLMANN et al. [12] have shown in numerical experiments that for elastic shells,
stress-like quantities such as e.g. mebrane forces and bending moments exhibit
the same order of convergence (with mesh refinements) as the radial deflection
of the SMS.

2.2. Implementation of mixed finite shell elements

We start with the discretization of the variational principle (2.13). KOLLMANN
and BERGMANN [29] have introduced different shape functions for the generalized
velocity vector v and the generalized strain rate vector =y

—~ ~

(2.14) v=Nv, ~=NAq,

where a hat (7) indicates nodal values.
Then, the mixed FE model can be derived from the variational principle (2.13)
by standard procedures

(2.15) K3 +K,0=0, KI§=_F—Fy,

where the following quantities have been defined:

K., = f N'D,.NdS,
S

K, := ] N'D,,L,,NdS,
(2.16) _ .
Fi := /NTchl,S',
S
. T
Fryi= [ (LYN) fds.
S

It is possible to find an implementational scheme of the mixed model which
fits any FE-code based on the standard displacement formulation. Details of this
implementation can be found in [12].
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In the following we describe the results obtained for a conical element as orig-
inally proposed in the context of the displacement method by ZienkiEwicz and
coworkers [30] and extended to a mixed hybrid strain formulation by KoLLMANN
and BERGMANN [11]. It is important to choose approximations where the polyno-
mial order of the approximation of the strain rate field is at least equal or higher
than the approximation of the velocity field. We denote our elements by two
numbers, which are separated by the capitals PSS, where PSS indicates that the
shell theory is based on the assumption of plane stress and plane strain. The first
number indicates the polynomial degree of the shape functions for the strain rate
field, and the second one - that of the velocity field. Pursuing numerical tests for
elastic cylindrical shells it could be shown that the mixed elements (1PSS1 and
2PSS2) are completely locking free down to a thickness ratio h/R = 4.10710,
where R is the radius of the cylinder.

2.3. Model of Bodner and Partom for infinitesimal strains

BobNER and PArRTOM [17] assume an additive decomposition of the total rate
of deformation tensor d = € into an elastic and a plastic part

(2.17) é =€ +¢&F.

We denote the deviator of the stress tensor by devo. The flow rule takes the
form

(2.18) eP = wdevo .

HACKENBERG [31] has given the following formulation of this model which is
convenient for numerical purposes. Define the following quantities:

/3
II:= Edevcr cdevo = /3., ,
. 2 2
. = —af y = —[1
(2.19) ¢ \/3\/]2“ 3w,
. édevc
T2
Then (2.18) can be written as
(2.20) P = du.

RemARk 1. Note that (2.20) is the standard form for associative plasticity
which is important for time integration. O

REMARK 2. We point out that in our formulation the flow function ¢ is equal
to the equivalent inelastic strain rate. m
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The parameter w in (2.19) is given as

ha- V3 1n+1 72\
The function qb takes the form
atEs . 1n+1/2\*"

Here Z is an internal variable which models isotropic hardening. The following
evolution equation holds for this internal variable

(2.23) Z =292 - D¢
Zy

with initial condition

(2.24) Z} =7p.
t=ty

The quantities Dy, n, m, Zy and Z; are material parameters which have to be
determined from experiments for any material. We note that these parameters
are temperature-dependent.

For our numerical work we use parameters given by BODNER and PARTOM [17]
for a titanium alloy at room temperature. They are summarized in Table 1. For
time integration an implicit algorithm has to be applied as shown e.g. in [32].

Table 1. Material parameters for titaninm alloy.

Parameter Value Dimension
E 118000 MPa
v 0.34 -
Zy 1150 MFPa
Zy 1400 MPa
D} 1-10° s
n 1 -
m 100 -

2.4. Numerical results of inelastic computation

As a test example we have computed a cylindrical shell made of the titanium
alloy. The shell has an axial length of 1000 mm, a radius of 250 mm and a thickness
of 10mm. It is closed at its ends. The shell has been discretized using 70 equally
spaced 1PSS1 elements. The loading history of the shell is depicted in Fig. 1. The
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internal pressure is increased within 1s linearly from zero to the maximal value
of 13.0 MPa. Then this pressure is held constant over the time of 9s. Finally, the
pressure drops linearly within 1s to zero. In Fig. 2 the deflection of the shell is
depicted for the following times: ¢ = 0.55s,¢ = 5s,¢ = 5.55s and ¢ = 10s.
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1 1 1 1 1
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Fia. 1. Load-history for the cylindrical shell.
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Fia. 2. Radial deflection of the cylindrical shell.
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At t = 1s the loading of the shell is completed. In the middle section a pure
membrane deformation prevails. Only at the edge in the region 350 mm < z <
400 mm bending effects can be noticed. During the hold time 1s < ¢ < 100s
considerable additional deformation due to viscoplastic effects takes place. It is
remarkable that the region of noticeable bending effects spreads into the interior
of the shell. During unloading (10s < ¢ < 11s) the elastic part of the deformation
is recovered. After unloading no additional inelastic deformation can be observed.

56 ———

4.5

3.4

22

Inelastic Strain Invariant (10 -3)

0.0 1 B | S Il
0.0 2.0 4.1 6.1 82 10.2

Time (sec)
F1G. 3. Recorded history of the second invariant of the inelastic strain rate at = = 408.948mm
and r = 254.840mm.

Figure 3 shows the recorded history of the development of the second invari-
ant of the inelastic strain rate tensor at a point of the shell (z = 408.943 mm,
r = 254.840mm), where bending effects dominate. The second invariant of the
inelastic strain rate is defined as

(2.25) L(EP) := \/gép LEP.

During the first second of the loading history the equivalent inelastic strain rate
is very small. Then it increases sharply with time. At the beginning of the hold
time the second invariant of the inelastic strain rate drops continuously. With
unloading it sharply drops to zero.

Finally in Fig. 4 the distribution of the axial bending stress o.. over the thick-
ness of the shell at z = 408.943mm is given.

At t = 0.55s during the loading period the distribution of the stress is linear,
i.e. the deformation is purely elastic. At the end of the loading phase ¢ = 1.0s,
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F1G. 4. Axial stress of the cylindrical shell.

a slight curvature of the stress distribution can be observed. During the hold time
until £ = 10s, a redistribution of the bending stress occurs and the curvature of
the stress distribution is increased. Finally after unloading at ¢ = 11s the residual
stress has developed. It has to be noticed that in the theory of Bodner and Partom,
neither loading or unloading conditions nor a yield surface are present.

3. Finite deformation of three-dimensional viscoplastic continua

In this section we present a concise theory of a finitely deformed elasto-vis-
coplastic continuum. Then we apply this theory for an extension of the infinites-
imal viscoplastic model by Bodner and Partom to finite deformation.

3.1. Three-dimensional elasto-viscoplastic continuum under finite deformation

After consideration of finite deformation of viscoplastic bodies we discuss in
general the elastic and viscoplastic constitutive models. Then a hyperelastic model
and a generalization of the model of Bodner and Partom presented in Sec.2.3
will be given.

3.1.1. Kinematics of finitely deformed elasto-viscoplastic bodies. A motion of the body B
is a one parameter mapping ¢, : By — B; where ¢ € R is the time and B; is the
current configuration at time ¢. For any X € By we have ¢(X) = z € B,. For any
X € B we denote the tangent spaces of the reference and current configuration
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as T'x By and TrABt, respectively, and the coordinate charts, which are taken to be
convected, by '. The deformation gradient is defined as

F := XB() — TIBt,

(3.1) _
F=T¢=gi®G!7 i=1,2937

where we have G; = X, g, = x;, G;-G’ = ¢!, g,-g’ = &!. Here, derivatives
with respect to 6 are denoted by a comma, scalar product of vectors by a dot,
and ¢7 is the Kronecker delta.
Note that the deformation gradient is a two-point tensor. Further note, that
we have suppressed in (3.1) the dependence of the deformation gradient on time.
It is convenient to introduce the right Cauchy-Green deformation tensor as

(3.2) C=F'gF,

where g is the metric tensor in the current configuration 8;. Speaking in geometric
terms [33], the right-hand side of (3.2) can be interpreted as the pull-back of the
metric tensor of the current configuration to the reference configuration, i.e.
C = ¢°(g).

Next we introduce the multiplicative decomposition [34, 35, 36] of the defor-
mation gradient into an elastic and a plastic part

(3.3) F=F.F,,

where the assumed incompressibility of the inelastic deformations means that
F, € SL*(3,R), SL*(3,R) denotes the special linear group with determinant
equal one.

REMARK 3. The multiplicative decomposition (3.3) is often accepted as equiv-
alent with the introduction of an intermediate configuration 5. In contrast to this
understanding which has caused a lot of discussion in the literature, we define
(3.4) Fp := Tx By — Tx By,

Fe §= ITXBO = T:L'Bl .
That is, the inelastic part of the deformation gradient is a map from T'x By onto
itself. It is, accordingly, a material tensor uniquely defined by the evolution equa-
tion of an appropriately defined material plastic rate. If the constraint of plastic
incompressibility is assumed, then det F, = 1 holds; i.e. Fy is an unimodular
tensor. 0

Equation (3.3) motivates the introduction of an elastic and a plastic right
Cauchy - Green deformation tensor
C, = FigF,,

35
ol Cp:= FFp.
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The elastic right Cauchy-Green deformation tensor C. can be interpreted as
pull-back of the metric tensor g with the elastic part F. of the deformation
gradient.

The deformation gradient F is an element of the general linear group GL*(3,R)
with positive determinant. Therefore, we can attribute to its time derivative a left
and right rate

.

=1F
(3.6)

F=FL.
Both rates are mixed tensors (contravariant-covariant). They are related by means
of the equation

(3.7) L=FIF.

Geometrically Eq.(3.7) is the pull-back of the mixed velocity gradient from the
current configuration to the reference configuration, i.e. L = ¢*(1).
Since Fp, € SL*(3,R), we can again define a right rate according to

(3.8) Fp, = FpL,

which proves to be more appropriate for a numerical treatment in a purely ma-
terial context. If a constitutive function is specified for the right rate L, of the
plastic part F, of the deformation gradient, then Eq. (3.8) constitutes an evolution
equation for Fy,.

3.2, Elasto-viscoplastic constitutive model

We start with general considerations where we use thermodynamical argu-
ments to formulate a general frame for the elastic part of the constitutive model.
Then we modify the elastic model for the sake of numerical efficiency. Next, the
infinitesimal model of Bodner and Partom presented in Sec.2.3 is modified and
generalized to finite strains.

3.2.1. General considerations. Let T be the Kirchhoff stress tensor. Consider the
expression of the internal power

(3.9) W=T:1,
where 1 is defined in (3.6); and the relation holds: a : b = trab’ for a, b being

second order tensors and tr denoting the trace operation. The expression is
rewritten using material tensors as

m

(3.10) W=g2:L.
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The comparison of (3.9) with (3.10) leads with the aid of (3.7) to the definition
of the material stress tensor

(3.11) E=¢"(1)=F, 7F,;"T.

The tensor E is, accordingly, the mixed variant pull-back of the Kirchhoff tensor.
It coincides with Noll’s intrinsic stress tensor and some authors call it Mandel’s
stress tensor.

A common feature of unified inelastic constitutive models is the introduction
of phenomenological internal variables. We denote a typical internal variable by Z.
Assuming the existence of a free energy function according to ¢ = (Ce, Z), the
localised form of the dissipation inequality for an isothermal process takes the
form

D= T:1— ot
(3.12) Qrcf¢

=Z:L- et 20,

where o, is the density at the reference configuration.
Making use of the relation

Ty Tep- - — ~-TyTep-1 -T -1
(3.13) Cc—FpTL CFpl+FpTCLFp1—Fp L,CF; - F; " CLpF;

one may derive

(3.14) % = 2CF; 1 09 a-Fp T (L - Lp)+ ad

P JCe
Insertion of (3.14) into (3.12) leads to

wr =) — alr/)(ce7z)
(3.15) D= (H-zg,efCF L E ).L

OU(Ca D) I(Ce. Z)

+ 20 C F—l 9Ce tLp — Oret 9z 2

By defining Y as the thermodynamical force conjugate to the internal vari-
able Z
d(Ce, Z)

oz ’
and making use of standard thermodynamical arguments, from (3.15) follows the
elastic constitutive equation

(3.16) Y i= —pret

(Ce, Z)

ad)(c_—e’ J] F;T= 20ret FgC JCe P

L~ - -1
(3.17) & = 200 CF; ' =5 °F;
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as well as the reduced local dissipation inequality
(3.18) Dpyi=2:L,+Y:Z>0,

where (3.16) has been considered. D}, is the plastic dissipation function. From
(3.18) follows an essential result that the stress tensor & and the plastic rate Ly
are conjugate variables. Observe that the tensor L, is defined in (3.8).

3.2.2. The elastic constitutive model. We assume that the elastic potential can be de-
composed additively into one part depending only on the elastic right Cauchy -
Green deformation tensor C. and the other one depending only on the internal
variable Z

(3.19) P = Ye(Ce) + Yz(Z).
Defining the logarithmic strain measure
(3.20) o:=InCe, C. = expax

and assuming that the material is elastically isotropic, one can prove that the
relation holds
0e(Ce) _ Ohe(ar)

(3.21) G =

where () is the potential expressed in the logarithmic strain measure o. The
proof is given in [37]. Equation (3.17) results then in

(3.22) B = 200 FTMF‘T.

Note that ). is an isotropic function of o.. The last equation motivates the in-
troduction of a modified logarithmic strain measure

(3.23) o= F,'aF,.

Since the following relation for the exponential map holds
(3.24) F, ' (exp )F, = expa,
Eq.(3.22) takes the form

01 (ax)

(3.25) = ZQrefﬁ‘ -

[

REMARK 4. A comparison of (3.17) and (3.25) reveals the computational
advantages of the latter formulation. For evaluation of (3.17) the inverse of the
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tensor F;,r has to be computed. The final expression for (3.25) contains only the
derivative of the elastic potential with respect to the modified logarithmic strain
tensor o. 0

It is interesting to note that (3.24) together with (3.20), (3.2), and (3.5), lead
to a direct definition of &. The relation holds

(3.26) & = In(C;'C).

For computational simplicity a linear relation is assumed and, therefore, the
elastic constitutive model (3.25) takes its final form

(3:27) E=KtraTl+ pdeva®,
where
(3.28) a’ =In(CCh),

K is the bulk modulus and p the shear modulus.

3.2.3. Extended model of Bodner and Partom. We make now use of the form of the in-
elastic constitutive model of BoDNER and PArTOM [17]. In Sec. 3.2.1 we concluded
from (3.18) that the tensors & and L are conjugate. A basic issue is now to put
the mentioned constitutive model into a frame which is compatible with this fact.
Essentially we have to consider the stress tensor = as the driving stress quantity
while the plastic rate for which an evolution equation is to be formulated is taken
to be Ly. We, therefore, derive the finite formulation of Egs. (3.19), (3.20) by the
substitutions

e
g — 4o,

3.29 '
(3.29) eP - Lg.

This leads to the following set of evolution equations
(3.30) L, = 6u";
M

&

Z_O(Zl - )Wy,

Wp HQ;S(H,Z))

(3.31) II= «‘/%devE cdevE,

=
)

Here, Zy, Z1, Dy, N, M are material parameters.
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The choice of the transposed quantity in (3.20) is motivated by the updating
formula for the stress tensor which is given in Sec.4, Eq.(4.31). Moreover, the
generalization of a flow rule of the more classical von Mises type to nonsymmetric
arguments would lead to a flow rule of the form (3.30). Thus, the flow rule chosen
fits the classical models of associated viscoplasticity.

Note that by its very definition in (3.11), the tensor = is physically equivalent
to the Kirchhoff stress tensor in the sense that both have the same invariants.

4. The nonlinear shell theory

After presenting basic features of the theory of finitely deformed shells, let us
now give some details of a new shell model containing 7 parameters. Then the
reduction of the three-dimensional principle of virtual work to a shell formulation
will be presented.

4.1. Preliminaries of finite shell theory

We adopt the definition (2.1). However, we distinguish carefully between the
reference configuration By and the current configuration B;. For any X € B and
any z € B, we recall the relations for the tangent base vectors at the reference
and actual configurations

(41) G,‘ . X'i, g, =T;.

The corresponding metrics at the actual and the reference configurations are
denoted by g and G, respectively. Their components are given by G;; = G;-G
and g;; = g,-g,, respectively.

As in Sec. 2, we introduce in the reference configuration the shell midsurface
as reference surface M where we again presuppose constant shell thicknes A.
Following the standards, the coordinate 13 perpendicular to M, will now be
denoted by z € [-h/2,k/2], h € R™, and the tangent vectors of 7.M in the
undeformed reference configuration by A, (o = 1,2) and N, with N-A, = 0.
We denote their image at an actual configuration by a, and a3, where in general
az-a, # 0 and |a3| # 1. Thus we have A, = G,|.=¢ and a, = g_|.=¢. Further,
A refers to the metric of the reference midsurface with covariant components
A.p = A,-Ap, a,5 are then the related components at the actual configuration.
Their contravariant counterparts are denoted as usual by A°? and a®”.

In addition to the curvilinear base vectors, we consider the fixed Cartesian
frame e; and define the quantities

(4.2) Coi = Aa-ei 5 C3; = N-ei,
to get the following relations
(4.3) A, = chie, N = cye;, and €; = Coi; A™ + c3; N,

which will be of use later on.
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By B we denote the two-dimensional curvature tensor of the undeformed refer-
ence surface with components B, = —A,+N z. We also make use of the shifter
tensor M (see Eq.(2.4)) and its determinant M (see Eq.(2.5)). The following
exact expressions hold

Go
GO(

A, + 2N, =(1-:B)A, = MA,,

(4.4) S ¥
M A", G; = N.

4.2. Shell strain measures

The shell theory is based on the following fundamental assumption. We assume
that any configuration of the shell space is determined by the equation

(+.3) (9, z) = (%) + (= + 22X (I*)as(¥°),

where z¥ denotes the corresponding configuration of the midsurface. Then the
ordered triple (z°, a3, y) defines the configuration space of the shell.
The following basic features of the above assumption are pointed out:

1. The assumed shell kinematics belongs to a general class given by the relation
(¥, z) = 2°(I9*) + f(2)a3(¥*) where f(z) can be an arbitrary function of z.
This class of kinematics differs entirely from that used e.g. by NaGHDI [1], where
z is expanded into a series of z.

2. The assumed shell kinematics is the simplest possible which allows for a
linear distribution of the transverse strains (shear and normal) over the shell
thickness. The constant part of transverse strains over the shell thickness is de-
scribed by a3 whereas Yy determines the linearly varying part. Note that fibres
perpendicular to the reference midsurface M remain straight after the deforma-
tion.

3. As a consequence, three-dimensional constitutive equations can be applied.
Accordingly, the formulation is suitable for small as well as for large strain cases
in elasticity or elasto-viscoplasticity.

4. The shell kinematics enables to circumvent the use of a rotation tensor.
Shell formulations using a rotation tensor with 5 parameters as in [38, 39, 40]
or with 6 parameters as in [41, 42, 43, 44] does not furnish directly information
about the tranversal strains in thickness direction. Such an information is ob-
tained using further constitutive assumptions such as incompressibility or plane
stress assumption. Accordingly, formulations with a rotation tensor, besides being
complicated due to the structure of the rotation group, seem to be less adequate
for the object of this paper. In addition, as previous numerical studies show, in
the present formulation the limit case of very thin shells can be achieved without
loss of accuracy.
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By (4.1) and (4.5) the tangent vectors become

_ 03:0 ()0.3 2 0\
Ja = By aga T ¥ Gga®
(46) = a, + (: + 32)()0'3.& + ZZX,<:ya3a
g3 = (1+2zy)as.

+ (z + 2%y)

For the deformation gradient defined in (3.1); we obtain

47) F=g,0G"+g;60N
a, © G* + [(: + :2\')0.3'0. + szr\yua3] @G+ (1 +2zx)a3 @ N .

By defining the tangent map of the midsurface F* := F|,_
(4.8) F:=a,®A"+a;0 N,
with a, = F'A,, a3 = FON and by defining further the tensors

b=a3,®A" +2xa3 @ N,

(4.9) Ca
¢ = (Xa30 + X,003) © A7,

we arrive at the following expression for F:

(4.10) F=( +zb+22c)M .

Next, we introduce the displacement field u for the SMS and the difference

vector w as

u® = 20— X°,
(4.11)

w:=a3— N,

with X° being a point on the reference surface M. With (4.11), it follows from
(4.8) and (4.9) that

F=UA+u)a A"+ (N+w)oN,
(4.12) b=-B+w,® A" +2y(N+w)o N,
c= —\B+[xyw, + xo(N+w)e A",

Making use of (4.10), the right Cauchy - Green strain tensor of the shell space
given in (3.2) takes the form

@13) € =MT[FF + 2(F b+ bTF) + 2(bh + e+ cTF)

+ 22(bTe + c'b) + z4cTc] M.
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The last expression motivates the definitions

(4.14) Skabaid
' K:= Fb+bTF

with the help of which we write for (4.13)
(4.15) C=MT[C+:K+..|M

In what follows we assume that the shell is thin in the sense that only the first
two strain measures C® and K are dominant. The inclusion of all other strain
measures is of course possible but is left out for the sake of simplicity.

We consider now the following decompositions

(4.16) u = ue; w = we; .
Then the tensors C° (4.14); and K (4.14), take the form

C® = CyyAP @ A* + C3,A° @ N+ C,3sN@ A + CaN @ N,

(4.17)
K := KigA® © A* + K3,A° 9 N + K,3sN © A” + KN @ N.

Considering (4.16), the following representations of the components in (4.17)
based on the Cartesian components (4.16) can be obtained [45]:

Cop = Anp + Caitlio + Caillip + Ui olU;ig,
Coz = C3iUi o + Coiw; + U; oW,

Cia = Cas,
Czz = 1 + 2c3,w; + ww;,
(4.18) Kaﬁ = Baﬁ + C3; o Ui g+ C3; gl o T CoiWip

+ Cpi; o + Ui Wi g + Ui pWia,
Koz = (€3 aWi + C3iWi o + Wi o) + 2X(Caitvi + C3ili o + Willi o),
K3 = Kos,
Ki3 = 4x(1 + 2c3,w; + w;w;).

Equations (4.18) are in fact quite compact expressions, well suited for a numerical
implementation.

4.3, The principle of virtual work

Let S be the second Piola - Kirchhoff stress tensor of the shell space.
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The principle of virtual displacement in three-dimensions reads

(4.19) f%s:éch—/f-éde— /t-é:cd,9=0,
B

B By

where f, t are the body and the surface forces, respectively, dV = M dodz
(see Naghdi [1]) and do is a surface element of the shell midsurface given by
do = VAdI' d¥?, A = det(A,p). Tractions are prescribed on the part 0B; of
the boundary dB (0B; C 9B). We further assume that the shell midsurface M
has a smooth curve M as boundary with the length parameter s. The boundary
of the shell consists of three parts: an upper, a lower, and a lateral surface. If we
denote the upper surface by dB™, the lower one by 9B~ and the lateral one by
0B° and make use of the notation M* = M|._, o, M~ = M|,__}, », and M* for

M at the lateral surface, we may write for the surface elements St = M *do,
dS— = M~do and dSS = MSdzds.
We first consider the external virtual work.

(4.20) Wext := [ f-bxdV + | t-ézdS.
/ /

aB
With the definitions

h/2
p = / FMdz + M* ¢ + M-t
—h/2
h/2
hoorwn ho
= f fMdz + MYt - 2 M
—h/2
h/2
/ 22 fM dz +
—h/2
h/2
= [ eards,
~h/2
h/2
F = / M dz,
J-ns2
h/2
¢ = /zztsf\/[sdz,
—h/2

h2 h?

— Mttty — M.
4M1t +4 171,

i)
I

(4.21)

=
I
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Equation (4.20) reduces to
(4.22)  Wext = / [p-&xo + (I + xq)-baz + (q-a3)6x] do
M

+ / [ps-éa:o + (' + x¢°)-da3 + (qs-a3)5x] ds
IM,

as the two-dimensional form of the external power. In (4.22) it is presupposed
that on the entire upper and lower surfaces tractions are prescribed. However,
we assume that only on a part dM; of the boundary M of the SMS tractions
are prescribed.

To consider the internal virtual power we notice first that it is more appropriate
to make use of the relation

(4.23) s=cCc'z
since the inelastic constitutive model, as shown in Sec.3.2.1, is formulated in

terms of . We define first the pull-back of S under M which gives a stress tensor
defined with respect to the midsurface

(4.24) s*=m'clEmT.
ReEMARK 5. Note that S° still depends on the normal coordinate z. a
Equations (3.25), (4.23) and (4.24) motivate the following definitions
+h/2 +h/2
n:= / ZS”Ndv = / M~ IC"1 (M) M-TM dz,
—h/2 —h/2
(4.25) o . /
m:= / M~ C™ 1271’ “TM d=
~h/2

with the help of which as well as with (4.22), the principle of virtual work given
in (4.19) takes the form

(4.26) / [n :6C" +m: 5K] do — / [p‘ézo + (I + xq):daz + (q-ag)é'x] do
M M

- / {ps.éxo + (I + y¢’)-daz + (qs-a3)6x] ds = 0.
oM

For given external forces, the integrals (4.21) can be expressed in almost closed
form. For very thin shells the terms xg-das, g-a3dx in (4.26) can be neglected
as being of higher order. However, in order to allow for the use of complex
constitutive laws and path-dependent behaviour (e.g. cyclic loading), the evalu-
ation of (4.25) is carried out in practical computations numerically. That is, the
constitutive equations are considered pointwise over the shell thickness.
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4.4. Numerical implementation

In this section computational issues in conjunction with a possible finite el-
ement formulation are discussed. The time integration procedure of the consti-
tutive model at hand is outlined and necessary operations of local iterations are
discussed. A closed form of the algorithmic tangent operator is presented.

4.4.1. Time integration and local iterations. We consider two consecutive times ¢,, and
t,+1 with time increment A = t,.; — t,. Since the unimodular tensor Fy is
an element of the Lie group SL*(3,R) and the tensor L; is an element of the
corresponding Lie algebra, the exponential map can be used for time integration.
Therefore, the following update formula is considered

(4.27) Fplni1 = Fp|n exp[AlLy)]

for some L, in the interval Af, the choice of which is defined by means of the
integration procedure. This algorithm preserves the condition of plastic incom-
pressibility exactly. From (4.27) follows directly the update formula for the elastic
strain measure (3.26)

(4.28) CCy'|ns1 = Clus1 exp(—AtLy)Cp ™!, exp(—AtLy).

Due to (3.30) we update the tensor Ly, as

(4.29) L, = ¢v".

Since isotropy was assumed in Sec.3.2.2, the tensors E and &' or E and
CCp_1 are coaxial. Thus the single terms in (4.28) can be rearranged and the
logarithms can be taken to give [45]

In(C Cp™Yr1 = In [Cpr1Cp | exp(-241L7)]
(4.30) o, = (@™ - 24107,
(atria])T = In Cn+le_1|n )

Next, we give the update of the stress tensor as, where (3.27) is considered
for the definition of the trial stress

(4.31) B, = 2™ - 24T,
- Etrial _ 2At(;5[.lun+1 ,
(4_32) E:trial = A'tr(atrial)TI + [ ((—d-trial)T . Els_tr(atrial)T>

for some ¢ in the corresponding interval.
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From (3.31); and (4.31) follows
(4.33) I, = 1" 3A46.
We are now looking for the determination of ¢ in accordance with (2.23) to

(2.19)3 as well as with (4.33). We adopt the mid-point rule according to which we
have

(434) 1 = %(H,,+1 Iy %(n wial _ 3a104 4 T0,);
Z — Zps1— 2y :
(4.35) At

7 = %(Z,M + 7).

We insert Egs. (4.35) into (2.23) and (3.31), to obtain an explicit equation for the
determination of the internal variable Z

mAtTL$ Z; + 2207,

(4.36) Z= .
mAtllo + 27

which depends explicitly on ¢> Inserting (4.36) into (3.31)3 yields a nonlinear
equation for the determination of ¢

o\ 2N
s 2 1N +1 [ Z(,¢)
(4.37) ¢=phew | -5 =5 ( i ) ,

where II is computed by means of (4.33). Equation (4.37) has to be solved iter-
atively by Newton’s method.

4.42. The algorithmic tangent operator. The algorithmic tangent operator is obtained
as the linearization of the update formula for the second Piola - Kirchhoff tensor
S with respect to the right Cauchy- Green deformation tensor. With (4.31) we
obtain

4.38 S = C (@ _ 24t ).
[t

The derivative with respect to C gives

P 0C_1 . . o= trial
4. P = rial 2A + -1 :
(4.39) 5C 5C Atppv) + C ac
(3(;‘:' o1l trial o= trial 0 o v BE:rial
- 24tp QT trial e trial oc C™v — 28ipgC o= trial  JC
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The tedious algebra given in [45] leads to the very compact and closed form

(4.40) gg—g;_ = ~(CY)T(CYHE Y, — 28t ()]

+ AUCTHTCT)® + BACTH(CTYT + By(CTH @) (CT )’

where we have introduced the following notation

ﬂl = I{ - %'U + At”2H¢ ) ﬁz =L -—- 3At‘ll2n¢’ ;

(4'41) . n+l ) n+1
d¢ ¢
= —2Atu? i i _

163 H (anma] Hn+1)

In (4.41)3
.09 oM 99 9z

(4.42) ad’ _ OII pritial -~ 9Z Hry trial

aleial_ 1_%@_%%

o1l 9 qﬁ a7 9 05
has to be considered.
4.5. Finite element formulation

We briefly discuss the interpolation of the shell geometry and then present an
enhanced strain element.

4.5.1. Interpolation of shell geometry. The geometric quantities describing the shell
surface (the fields B.g, cui, 3, \/K) are taken exactly at every integration point.
The natural coordinates ¥ describing the shell surface are mapped onto the
bi-unit square using bilinear interpolations.

On the other hand, the Cartesian components of the kinematical fields u, w
as well as y are interpolated using the bilinear interpolation functions.

4.5.2. An enhanced strain functional. We formulate first a strain-based element. We
appeal to the enhanced strain concept in the spirit of Simo and Rirai [46] applied
by them to linear problems. Accordingly, the right Cauchy - Green deformation
tensor itself is enhanced. This is in contrast with the nonlinear version of the
concept given by SimMo and ArRMERO [47] where the deformation gradient was
enhanced. Accordingly, we consider the following functional

L iyl i
(443) 3 /(C+CZ)‘1:.:6(C+C)(lV—ff-6de—/f-61d5=0,
B B aB



502 F.G. KoLLMANN AND C. SANSOUR

where we have

[ ]
d

ZQref—.&Lb = Ktra 1+ p (& - 1tr a1,
Jda H 3
(4.44)

& = In[C;'(C + C)]

and C' is the enhanced strain field. Since C' is assumed to be independent of the
displacements, Eq.(4.43) splits into the following two equations

(4.45) %/(c+cf)—15:6c¢iv_/f.5udv_ /t.auds =0,
B B By

and

(4.46) % /(C + CYIE: §CTdV = 0.
B

The choice of the interpolation functions for C' is crucial in order to arrive at
well behaving elements. Equation (4.15) motivates to restrict the incompatible
deformation tensor C' to the form C' = M~TC”M~! where C” is independent
of z. This is equivalent to an enhancement of the strains related to the shell
midsurface alone.

Equations (4.45) and (4.46) are still defined for the three-dimensional shell
body. The reduction to two dimensions is carried out in the same way as demon-
strated in Sec.4.3 (compare (4.21)). One has

/(n :6CY + m : 6K) do — / [p-ézo +(+ Xq)-633(q-a3)6x] do
M M

(4.47) = / [ps-5I0 + (F+ x¢*)- 63 + (qsﬂ3)6x] ds =0,
aM,
/n 5CY"do = 0.
M

The contributions of the external loads are defined in (4.21) while n, m are now
defined according to

+h/2 )
n:= / M™! (C + Ci)_l %M_TM dz,
—h/2
(4.48) o |
m = / M- (C + Ci)_l %M‘TMCZZ.

whi2
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The interpolation functions for the components of the incompatible deforma-
tion C” are taken to be of the form

Ch(€,m) = Cié + Cat,

Cha(€,n) = Cn + Cylr,

Chi(€,m) = Csé + Cgn + Caéy

Ch(¢,m) = Csé + Con + Croln,

Ch(é,m) = Cué + Oty

Ch(&,m) = Cuan + Craén .

The quantities £ and 7 are the local coordinates at the element level. Clearly, the
fields CY ... CY; are the components of the incompatible deformation tensor C”
with respect to the natural curvilinear base system G;.

The introduction of interpolation functions of the displacement fields as well
as of the enhanced strain fields in (4.47) leads to two coupled nonlinear sets of
algebraic equations. The enhanced strain field is assumed to be discontinuous
over elements and is eliminated at the element level.

Again (4.48) have to be linearized (compare Sec.4.4.2). The tangent operator

for the shell space given by (4.40) is a fourth order tensor which we denote by
H. The systematic linearization of (4.48) leads to the following expressions

f [An: 6C0 + Am : 6K] do = / (H(AC” + ACY) + H'AK : 5C”

(4.49)

M M
(4.50) + [H'ACCY + C%) + H?AK] : 6K) dor,
[an:6¢%do = [ (IRAC +Ac”) + HIAK] : 6C7) do
M M
The following definitions hold
+h/2
) = [ (T M), M d,
—h/)2
+h/2
(4.51) (HY)H = / MM @) MY MTY, M dz,
—h)2
+h/2
W = [ A (T ) (T, M .
—h/)2

The integrals in (4.51) must be evaluated numerically. Further details of the
implementation are standard and hence they have been omitted.
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4.6. Numerical results

4.6.1. Comparison with experiments. In the first example the verification of the model
presented in the previous sections is compared with experiments.

AP

- A

P

D

F1G. 5. Specimen under tension. Definition of the problem.

In [17] a specimen of pure titanium of 1 mm thickness, 8 mm width and 52 mm
length (Fig.5) was subject to different straining histories. BODNER and PARTOM
used in [17] a model based on an additive decomposition of the deformation rate.
The process of adjusting the calculated stress-strain curves to the experimental
ones led in [17] to the following material parameters:

K = 1.845 x 10° N/mm’,
= 4.4 x10* N/mm?,
Zo = 1150 N/mm?,
(4.52) 71 = 1400 N/mm?,
Dy = 10000 1/sec,
N =1,
M = 100.

Two loading velocities corresponding to a crosshead velocity of S mm/min and
10mm/min have been calculated with the model presented in this paper. It is
interesting to note that a material parameter 2, different than that calculated by
Bodner and Partom was needed to fit the experimental results.
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320.0

£=32-10-3 sec-!

256.0

192.0

Load

128.0

calculated
———ni experimental
64.0
00 | 1 1 1
0.0 0.5 09 1.4 1.8 23

Displacement
F1G. 6. Specimen under tension. Load-displacement curves.

In Fig. 6 the experimental results are compared with the calculated ones using
a time step of 0.5sec for a material parameter Z; = 1540N/mm?, where very
good agreement can be observed.

4.6.2. Square plate under uniform loading. In all following examples the material data

as formulated in (4.52) are used. A square plate is uniformly loaded as shown in
Fig.7.

simply supported (ss)

SS

b

F1G. 7. Plate under dead load. Definition of the problem.

>

Due to symmetry conditions, only one quarter of the plate is discretized using
32x 32 elements. The load is increased so as to result in a deformation velocity at
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the midpoint of 1cm/sec. Using a time step of 0.5 sec, altogether 30 time steps are
calculated when the maximal loading capacity of the plate is arrived. The response
of the plate is presented in Fig. 8 where the load versus the midpoint-diplacement
is plotted. The maximal deformed configuration is given in Fig. 9.

54 —

43 |-

32

Load

00 L 1 1 1
0.0 6.4 128 19.2 256 320

Displacement

F1G. 8. Plate under dead load. Load-midpoint displacement curve.

2
NN
R e
A
R
\\\\\\\\\’\‘\\\\‘

\\\\\\\‘

F1G. 9. Plate under dead load. Deformed configuration.

4.6.3. Cylinder with rigid diaphragms. A cylinder with rigid diaphragms is subject to
a line load as described in Fig. 10. The length of the load segment is 88.35 cm.
Only one eighth of the cylinder in modeled using 32 x 32 elements.

A loading cycle was calculated using a time step of 0.5sec where altogether
150 time steps are considered. The loading history is chosen so as to result
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rigid diaphragm

rigid diaphragm

-y

R =100

h =1

L =400
— AT=0.5

F1G. 10. Pinched cylinder with rigid diaphragm. Definition of the problem.

in a linear increase of the displacement at the top of 0.25mm/sec. In Fig.11
load-displacement curves are plotted for the point at the top as well as that at
the side. A configuration of the cylinder at the maximal deformation is given in

Fig. 12.

78.0

62.4 -

46.8 -

load

I 1 1

.0
-10.0 5.2 204 35.6

displacement

50.8 66.0

FiG. 11. Pinched cylinder with rigid diaphragm. Load-displacement curves.
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F1a. 12. Pinched cylinder with rigid diaphragm. Deformed configuration.

5. Conclusions

In this paper we give a thorough overview on the theory and numerical analy-
sis of viscoplastic shells. In Sec.2 we present a general theory for geometrically
linear elasto-viscoplastic shells [8]. This theory is based on a two-field varia-
tional [9] principle which contains velocities and strain rates as variables to be
varied independently. Families of mixed and hybrid strain elements are derived
for axisymmetric shells. It is crucial to choose stable approximation schemes for
the velocity and the strain rate field, respectively. Numerical experiments [12]
for elastic shells demonstrate that the mixed elements are locking free and ex-
hibit the same order of convergence for displacements and stress-like quantities
such as e.g. membrane forces and bending moments. Some numerical results are
presented for a cylindrical shell under internal pressure, where the viscoplastic
constitutive model of BoDNER and PARTOM [17] has been used.

In the major part of this paper (compare Sec.3 and Sec.4) we present a
general theory of viscoplastic shells under finite deformation and its numerical
implemetation by means of the FEM. For this purpose we first develop a gen-
eral theory of finitely deformed elasto-viscoplastic three-dimensional bodies. We
assume a hyperelastic model and based on the assumption of persisting isotropy,
we derive a very concise representation of the elastic part of the constitutive
model by introducing a logarithmic strain measure. Next, a shell theory with
seven parameters is formulated, which can account for distributions of the trans-
verse strains over the shell thickness varying linearly with the normal coordinate.
Therefore, this shell model enables the use of fully three-dimensional constitu-
tive models without using the typical “shell assumptions”. Basing on the principle
of virtual work, we formulate our shell equations. Furthermore, we discuss such
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computional issues as time integration and the computation of the algorithmic
tangent operator. Finally, an enhanced strain finite shell element is derived. Some
test examples are presented.
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