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On the convexity of the Goldenblat-Kopnov yield condition

A. GANCZARSKI and J. LENCZOWSKI (KRAKOW)

THE PRESENT PAPER is aimed at the formulation of sufficient conditions of convexity for the
Goldenblat-Kopnov yield condition. The essence of the proposed approach consists in the transpo-
sition of convexity of hypersurface from the six-dimensional stress space to the three-dimensional
space of the principal stresses, and in the presentation of a surface in the Haigh-Westergaard stress
space.

1. Introduction

WHEN THE CLASSICAL FLOW THEORY of plasticity is used, the yield surface is often
assumed to have the form of a potential representation, from which the strain
rates are derived. The second Drucker stability postulate implies that the consti-
tutive equations are always of the Green (hyperelastic) type. Hence, the strain en-
ergy and the complementary energy functions are always positive definite, whereas
the corresponding surfaces defined in strain and stress spaces, respectively, are
convex (see CHEN and HAN [3], also Zyczkowski [21]). For perfectly plastic ma-
terials, yielding itself implies failure, so the yield stress is also the limit strength.
Therefore, for the failure surfaces a similar problem of convexity exists.

Obviously, the above requirements are also imposed on the flow theory of
plastic anisotropic materials, as well as the anisotropic failure conditions.

2. The Goldenblat-Kopnov yield condition

Certain generalization of the Burzyfski yield condition to the case of aniso-
tropy has been proposed by GoLpENBLAT and Kopnov [5]:

(2.1) (IL;0:)" + (Wiju0i;00)° + (Wijkimn0ijOxOmn)” + ... =1,

where «, /3, are arbitrary numbers; nevertheless, only few combinations of them
have a practical sense. When the most frequent case of « = § =1, v = 0
is assumed, the yield condition (2.1) reduces to the Burzynski paraboloid yield
condition (see ZYCzKOWSKI [21]):

(2.2) Iijrioijon + 05 =1,

where the fourth-order tensor as well as the second-order tensor of plastic moduli
satisfy the symmetry conditions Hijkl = Hklij = Hjikl = Hijlk, and H,;j' = Hﬁ,
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respectively. Consequently, 21+6 of such components are independent. In case
of the orthogonal anisotropy (called orthotropy), a further reduction of the num-
ber of independent moduli is possible. Choosing the reference coordinate frame
coinciding with the principal axes of orthotropy, the fourth-order tensor becomes
independent of the mean stress and simultaneously, the second-order tensor be-
comes independent of the shear stresses (see THEOCARIS [19]). Moreover, 9 terms
associated with normal and shear stress products, as well as products of two shear
stresses of different indices vanish, and the following 943 terms remain:

2 2 2 2 2
(2.3)  Innoqy + ooy, + azaz03; + 4lla1207, + 411323033
2
+ 4131310173 + 2111120011022 + 2l12233022033 + 2113311033013
+ Iyo1 + Ilppogp + 133033 = 1.

The material under consideration requires 9+3 tests: simple tension 7}, simple
compression (; along each axis of orthotropy, and simple shear Y;; along each
plane of orthotropy (z, 7 = 1, 2, 3); for orthotropic materials when the coordinate
system coincides with the material symmetry directions, plastic shear stresses
along reverse directions on the same plane do not differ: Y, = Y7 = Y
(see THEOCARIS [19]). Replacing the index notation by the engineering notation,
Eq.(2.3) takes more friendly form:

2.4 a10—032+a203—012+a30$—0 2+a4'r2,+a5‘riT
y y yz

+ a7’ + ar0, + ago, + ago, = 1,
61,y 8Vy

where the new plastic moduli are defined as follows (see SOCHA and SzCZEPIN-
SKI [18]):
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The plastic moduli ay, a, ..., ag are linear combinations of the components of
fourth-order tensor II,;x; (see LEMAITRE and CHABOCHE [12], also MALININ and
Rzysko [14]) and second-order tensor II;;:

Iy = ay + a3, o = ay + ay, II3333 = a; + as,
2.6) T2 = —ay, 33 = —ay, [I3317 = —as,
212 = as/4, a3 = as/4, 3131 = ag/4,

Iy = ag, Iy = ag, I3 = ay.
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The function (2.4), being a special case of the yield condition presented
by Pariseau [15], can describe materials with different tensile and compres-
sive strengths. RaLsTon [16] employed Eq.(2.4) to crushing failure analysis of
column-grained ice which exhibits orthotropy and sensitivity to hydrostatic pres-
sure. However, if the yield stresses in tension are equal to that in compression
(isosensitive material), 7, = C, = X, T, = C, =Y, T, = C. = Z, the
coefficients a7, ag, ag vanish, so the linear terms in Eq.(2.4) disappear:

(2.7) ai(oy, — 02)2 + ay(o, — ar)2 + as(o, — Uy)2 + ayrjz
+ (LsTZZI + aﬁrgy =1,

whereas the coeficients a1, ay, a3 take the classical form of Hill’s yield condition
(see HiLL [6] also JACKSON et al. [9]):
(L o i)
zZ: X2 Y,)

171 1 1 1
%= i(ﬁ*ﬁ‘ﬁ)’ “=3
171 011
o = E(X—HW‘ﬁ)-
The classical Hill yield condition (2.7), consisting of the quadratic stress func-
tions, that generalizes the Huber- Mises yield condition, has failed to account
for the so-called “anomalous behaviour” of some commercial aluminum alloy and

steel sheets. Therefore, a special case of the Hill generalized yield conditions has
been developed (see HiLL [7]):

(2.8)

m

(2.9) aploy —o.|" + azlo, — 0 |" + azloy — oy|" + ag |7y
+ as |7 |™ + ag|Toy|" =1,

where the exponent m is equal to 6 or 8. The yield condition (2.9) is a general-
ization of the Hersey - Davis yield condition for m = 2 (and for m = 4), or the
Tresca - Guest yield condition in the limiting case m — oo.

3. Convexity conditions

Although the yield function defined by Eq.(2.9) has been mathematically ver-
ified, and its convexity has been proved in case of the planar anisotropy in the
principal stress space if and only if m > 1 and a1, @y, a3, ... are positive constant
coefficients (see BARLAT and Lian [1], also CHu [4]), in case of the general or-
thogonal anisotropy in the six-dimensional stress space and in the presence of
terms associated with hydrostatic pressure, convexity of the yield surface (2.4) is
not obvious.

Let us try to formulate convexity conditions for the yield functions (2.4) and
(2.9). The yield condition (2.4) is defined in the six-dimensional stress space, and
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if we can transform it to the three-dimensional space of the principal stresses,
we will get rid of terms associated with second power of the shear stresses. How-
ever, it should be noted that for anisotropic materials, the yield condition is
established in a certain reference coordinate system which is fixed with respect
to the orientation of the material anisotropy. We cannot change the reference
coordinate without changing the form of the yield condition. Moreover, the co-
efficients ay, as, a3, ..., ag are not components of any tensor so they are not sub-
jected to transformation rules of tensors. To avoid these inconveniences, first, we
have to recover a tensor form of the yield condition expressing the coefficients
ay, ay,as, ..., ag by components of the fourth-order tensor II;;x; and components
of the second-order tensor II;; of Eq.(2.6). Next, appropriate transformations
from the directions of material orthotropy to the directions of principal stresses
are done:

TNE I
(31) ikl = Hmnrpnimnjnnkrnlpa H,] = Hmnnimnjn )

where n;; are direction cosines of the transformation.

Such a transformation is strictly associated with an important problem of the
transposition of convexity from one space to another. SAvir [17] proved such a
transposition from the nine-dimensional stress space (in particular case, from the
six-dimensional stress space) to the three-dimensional space of principal stresses,
whereas LipPMANN [13] from the three-dimensional space to the six-dimensional
space.

When the new transformed coefficients af, a}, a5, ..., ag are calculated from
IT};; and IT}; by means of Eq.(2.6), the yield condition (2.4) referring to the
principal stress axes takes a simplified form:

3.2 d\ (01 — 02) + b (02 — 03)° + 4 (03 — 01)° + dhos + akoy + ahoy = 1.
1 2 3 7 8 9

Last step is the geometric representation of the surface (3.2) in the Haigh -
Westergaard stress space, where the three principal stresses (o, 03, 03) are re-
placed by the Haigh - Westergaard coordinates (£, p, #) (see Appendix B):

o £ cos 6
(3.3) o) Lot £ +\/§g cos(f — 27 /3)

o3 V3 £ cos(d + 2w /3)

Substitution of (3.3) into (3.2) when the classical trigonometric identities are used,
provides the formula for the surface radius:

\f VB2 + 12AC - B
g 4A J

(3.4) e(0,6) =
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where
A = a/sin®0 + absin®(0 + 7 /3) + ajsin®(0 — 7 /3),
(3.5) B = ajcos0 + agcos(f — 27 /3) + agcos(f + 27/3),

C=1-2(dh+af+ap).

V3
In case of independence of the hydrostatic pressure of the generalized Hill yield

condition (2.9) when m # 2, we have to set A = fl, B =0, C =1, and instead
of Eq.(3.4), the surface radius is found from the formula

1 1
G6) )= —5—F
V2 o/3
1 1

V2 g/ sin 0+ aysin™ (6 + 7/3) + aysin™ (6 - 7/3)

In case when the material isotropy () = a} = ¢§ = 1/20}) and m = 2 are
assumed, Eq.(3.6) reduces to the classical Huber - Mises yield condition:

(3.7 0= \Eag = const.

Quadratic form containing linear terms of the yield condition (3.2) repre-
sents an elliptic paraboloid with a symmetry axis parallel to the hydrostatic axis,
whereas the open end of the paraboloid is usually oriented towards the direction
of hydrostatic compression (see THEOCARIS [19]). It is clear that only one of the
coefficients ay, az, az in Egs. (2.5) can be negative (see HiLL [6]). Therefore, the
loss of convexity consists in that an elliptic paraboloid may become at most an
imaginary elliptic paraboloid, or in other words, a hyperbolic paraboloid. Conse-
quently, the conditions of convexity of the yield surface are formulated as follows:
the radius o(f, £) must be a real and positive number; Egs. (3.4), (3.5) yield

(3.8) 0(0,)>0 vV 0,¢,
and
V3 B?

In case of the generalized Hill yield surface, Eq.(3.6) represents an elliptical
cylinder or at most a hyperbolic cylinder for which both conditions (3.8) and
(3.9) (¢(/) >0 V¥ 6, and Imp = 0) are equivalent to each other, and lead to
the following inequality:

(3.10) A =d,sin™0 + absin™(0 + 7/3) + aysin™ (9 - 7/3) >0, V0.
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4. Examples
4.1. Convexity of Hill’s yield surfaces for the brass sheet 122

Most of anisotropic materials used in practice fulfil the convexity conditions
(3.8) through (3.10), however there are few of them which do not.

Let us check convexity of the yield conditions which are independent of the
hydrostatic pressure, namely (2.7) and its generalized form (2.9). MALININ and
Rzysko in [14] give plastic properties for a brass sheet of Russian commercial
symbol 1.22, 0.8 mm thick: 0g, = X = 120MPa, 0¢, = Y = 105MPa, 0y, = Z =
950 MPa. Authors do not mention the shear yield stresses.

The difficulty in experimental defining the off-diagonal components of the
fourth-order tensor resulted in a series of publications. Complicated tests were
suggested, nevertheless they did not give the explicit form of the respective yield
criterion. Therefore, several researchers used the simplifying assumption, when
the small off-diagonal components (when compared to the diagonal ones) may
be disregarded. This prediction, however, satisfactorily fits the experimental data
only for two-dimensional loading models. On the other hand, off-axis biaxial tests
indicate that vanishing of the off-diagonal components of the fourth-order tensor
may lead to unreliable results.

Hence, the following ad hoc extensions of the classical definitions are intro-

duced in the present paper: To;; = Y;; = 1/00i00;/3 for m = 2, and 70;; = Y35 =
/50:00;/2 for m = 6,8. In case of material isotropy og; = 0o; = 0p We get

values 79 = 0¢/v/3 (Huber- Mises) or 79 = 0g/2 (Tresca- Guest), respectively.
Eventually, the complete material data are shown in Table 1.

Table 1. Yield stresses of brass L22 [14].

m | X [MPa] | ¥ [MPa] | Z [MPa] | Y., [MPa] | Y:. [MPa] | Yi, [MPa]
2 120 105 950 182 194 64.8
Gor8 | 120 105 950 157 168 56.1

The Hill’s yield condition (2.7) applied to the brass L22 represents an elliptic
cylinder in the Haigh - Westergaard stress space. It turns out that semi-axes of the
ellipse strongly depend on the direction cosines of the transformation Eq.(3.1).
It has been seen from Table 1 that the direction of dominant material orthotropy
is oriented parallel to the z axis of the coordinate system, whereas the plane
2y exhibits slight orthotropy. Hence, the material is nearly transversely isotropic.
Moreover, the material exhibits the group of symmetry which satisfies periodicity
of at least one octant. Both coordinate systems associated with the directions of
material orthotropy and the directions of principal stresses were linked, for con-
venience, by the Euler angles (i, ¥, ¥) (see Appendix A). The complete analysis
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requires to check the yield condition versus all Euler angles in one octant, how-
ever it takes a lot of CPU time and memory. To avoid this inconvenience, the
authors suggest to take advantage of the plane orthotropy mentioned above, and
to check the yield condition for the pair of angles ¢, ; the third angle ¢ is not
essential, and may be disregarded within the following range: 0 < ¢ < 90° and
0 < <90°.

Let us follow the evolution of the yield condition in a simple case, when
only one of the Euler angles, say 7/, is subject to change, whereas two other are
kept constant. When ¥ = 45° we get the ellipse of moderate semi-axes ratio,
about 1:3, each change of ¥, either decrease or increase, increases this ratio.
Consequently, the ellipse is subjected to rotation and, simultaneously, becomes,
step by step, longer and more oblate. Finally, for ¢ = 0° or = 90°, one of the
semi-axes goes to infinity and the yield condition presents a hyperbolic cylinder
(Fig. 1). As it was mentioned before, it is convenient to map the convexity of yield
condition versus the pair of Euler angles: 0 < ¢ < 90° and 0 < ¥ < 90°, taken
as a two-dimensional domain. The obtained map (Fig.2) confirms the assumed
group of the material symmetry; moreover, the higher-order symmetry of 45°
versus angle ¢ is observed. The yield condition is convex in almost whole domain
except for narrow zones around its corners.

[GPa]
08

0.4

_0'8 | 1 |
0.8 0.4 0 04 0.8 [GPa]
F'16. 1. Evolution of Hill’s yield surface versus ¢-Euler angle: A —0°, B — 15°, C — 30°,
D —45° E —60°, F —75° and G — 90°, for brass L22 [14].

In case of the generalized Hill yield condition (2.9) describing plastic behaviour
of the brass 122, the yield surface (m = 8) is a prism of the semi-hexagonal
cross-section with oval corners (Fig. 3). The loss of convexity resembles the previ-
ous case, each decrease or increase of 1/ versus the value 22° makes the hexagon
more deformed until it becomes open.
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F1G. 2. Convexity map of Hill’s yield surface versus ¢, ¥ Euler angles for brass 122 [14].
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F1G. 3. Evolution of generalized Hill’s yield surface (m = 8) versus J-Euler angle:
A—18°, B —20°, C —22°, D —24° and E — 26°, for brass L22 [14].

The convexity map is shown in Fig.4. The area where the yield condition is
convex has been significantly decreased when compared with the case m = 2 (see
Fig. 2). Zones neighbouring the corners where the yield condition is not convex
have increased significantly: two of them which refer to the angle v = 0° lie
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Fi1c. 4. Convexity map of generalized Hill’s yield surface versus ¢, ¥ Euler angles for brass
122 [14].

around the axis of symmetry ¢ = 45° and consequently, only a very narrow zone
remains convex; moreover, two zones referring to the angle ¥ = 90° have joined
together and the yield condition has lost convexity in the whole range of p. Two
additional zones of nonconvexity, each of them oval in shape, have appeared for
moderate values of ¥ = 45°.

4.2. Convexity of the Goldenblat—Kopnov yield surface (2.4) applied as failure criterion
for the carbon woven roving-epoxy resin composite

Next example deals with checking the convexity of the function containing
terms associated with the hydrostatic pressure (2.4), applied as the anisotropic
failure condition of a composite. THEOCARIS [19] and Wu [20] cite the experi-
mental data for the composite with the reinforcement of a carbon woven roving,
for which the material data are presented in Table 2 (*).

Table 2. Anisotropic failure stresses of the carbon woven roving-epoxy resin composite [19, 20].

Failure stresses [MPa]
T Cx Ty Cy T. a. Yz Yia Yoy

1065.93 615.01 1065.93 615.01 42.40 143.20 21.20 21.20 532.96

(*) Hoa [8] recommends to take Y;, for woven roving as 0.5 of T;. This value coincides with the tensile
strength of woven roving tested at 45°.
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The failure condition (2.4) used for the carbon woven roving-epoxy resin com-
posite, for the Euler angles ¢ = 45°, ¥ = 45° forms an elliptic paraboloid, the
axis of which coincides with the direction of the hydrostatic compression (Fig. 5).
If we change ¢ or ¥, the previously mentioned rotation of the ellipses and simul-

taneous loss of convexity of the surface is observed.
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F1G. 5. The Goldenblat-Kopnov failure surface (Euler angles ¢ = 45°, ¢ = 45°) for carbon
woven roving-epoxy resin compaosite [19, 20].
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I1G. 6. Convexity map of Goldenblat-Kopnov failure surface versus ¢, ¢ Euler angles for carbon
woven roving-epoxy resin composite [19, 20].
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Analyzing the map of convexity in Fig. 6, further reduction of area of convexity,
due to anisotropy of the carbon woven roving-epoxy resin composite stronger
than the brass 122, is observed. Zones of nonconvexity, around corners, have
increased, and now reach almost ¢ = 35° or 1 = 55°, respectively. However, the
central zone of oval shape guarantees convexity of the failure condition for all
angles ¢ €< 10°,50° >, ¥ €< 10°,50° >.

5. Conclusion

In the present paper, the convexity of the Goldenblat-Kopnov yield/failure
criterion is analyzed. To illustrate the yield/failure surface in the Haigh - Wester-
gaard stress space, the fourth-order II;;,; and the second-order IT; ; tensors of
plastic moduli are transformed from the principal directions of material or-
thotropy to the principal stress directions. As examples of non-convex yield/failure
conditions, included or not included hydrostatic pressure effect, a commercial
brass sheet and a woven roving reinforced composite are chosen. A case of special
interest is the dependence of convexity of a yield/failure surface on the direction
cosines of transformation.

Appendix
A. Transformation of constitutive tensors to a new coordinate system

A tensor of rank four is subjected to the following rule of transformation:
(A.1) ikl = Tomrplimlindirllp
whereas a tensor of rank two fulfills the appropriate transformation rule:
(A.2) T}; = Tanlimljn

where for given ¢, 7, k, [, the indices m, n, r, p are to be summed from 1 to 3. The
formula (A.1) transforms the components of a tensor of rank four to new axes
according to transformation rule, however an equivalent transformation is more
convenient:

(A3) T'llj = t[:mn([zmqwzg

where actually indices m and n are to be summed from 1 to 6. In this way, a
transformation of the fourth rank tensor 71),,,., is replaced by transformation of
its representation matrix ﬁ,m, where symbols ¢;; are taken from Table 3 (see
LexHNITSKII [11], also BATHE [2]).

Let us consider a convenient parametrization when a new coordinate system
is obtained from the old one by rotation through Euler’s angles. The following



472

A. GANCZARSKI AND J. LENCZOWSKI

Table 3. Symbols ¢;; in transformation formulas.

iti | 1 2 3 4 5 6

1 I I I Il lialy izl

2 i} 3 3 Inln laly laly

3 5 15 I3 Inls lala I3l

4 | 21l | 2l | 2Unly | lalp + bols | sl + il | Bile + baly
S| 2Unlu | 2l | 2sls | Il + bels | Il +lals | Bide + 20
6 | 2nln | 2haln | 2hals | laln + halys | Ll + luls | lule + el

z

F1G. 7. The Euler angles.

sequence of rotations is taken into account (see Fig. 7); first rotation of the initial
coordinate frame around z axis through precession angle (0 < ¢ < 27), then
rotation around the nodal line s through nutation angle (0 < ¢ < 7), and finally
rotation around 2’ axis through angle (0 < @ < 2n), for which the corresponding
transformation matrices are as follows (see Karaskiewicz [10]):

cosp sing 0
(A4) A= | —sing cosp 0|,
0 0 1

http://rcin.org.pl
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1 0 0
B= |0 cos?y sind
0 —sind cos?

(A.4)

[cont.] ’

cosp siny 0
—sint cosy 0
0 0 1

o
Il

Hence, the matrix of direction cosines takes the form:
(A.5) li; = CBA.

In general case angles o, 1,1 are variable, but there are three basic cases.
Namely, if angles (» and v/ are constant, but angle 1) is variable, then the coordi-
nate frame is subjected to rotation around the fixed axis z'. If angles ¢ and o are
constant, but angle ¢ is variable, then the nodal line s is subjected to rotation
around the axis z on plane xy, and simultaneously axis 2’ describes a cone around
the z axis. If angles ¢ and v are constant, but angle ¥ is variable, then the nodal
line s is fixed and plane z’y’ changes its inclination versus plane xy.

B. Haigh-Westergaard stress space

A very convenient representation of the stress state is the Haigh - Westergaard
stress space which consists of the three principal stresses as coordinates.

Consider the straight line passing through the origin and equally inclined to
the coordinate axes (see Fig.8). Then for every point on this line, the state of
stress fulfills the equality oy = o, = 3. In other words, every point on this
line corresponds to a hydrostatic state of stress, this line is therefore named the
hydrostatic axis. Furthermore, any plane perpendicular to the hydrostatic axis is
called the deviatoric plane. Such a plane has the form:

(B.1) o1+ 02+ 03 = V3E,

where ¢ is the distance from the origin to the plane measured along the hydro-
static axis. The particular plane passing through the origin (for £ = 0) is called
the m-plane or the Meldahl plane.

An arbitrary state of stresses at a given point is decomposed into the hydro-
static and the deviatoric components, respectively:

(BZ) (01, 02,0'3) = (1, 1, 1)Tl'0'/3 + (s1, 52,83).

The vector representing the hydrostatic component £ = Tro/+/3 lies on the
hydrostatic axis, whereas the vector representing the deviatoric component of
length 0 = \/sy1sy + s2s3 + s3s) lies on the deviatoric plane.
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F1G. 8. The Haigh-Westergaard stress space.

Let us consider projections of both the deviatoric component and the coor-
dinate axes on the 7-plane (new and old unit vectors form the direction cosines

equal to 1/2/3, hence new coordinates expressed in terms of the old ones are

equal to o] = 1/2/30;):

s1 = \/ggcosﬁ, 8y = \/ggcos(Zvr/B - 0),
(B.3)

S3 = \/ggcos(ZTr/?, + 6),

where 0 > 0 > 7/3; then the state of stress (o), 02,03) can be expressed by
(€, 0, 0) called the Haigh - Westergaard coordinates:

a1 1 £ > cosHV
(B.4) o2 = £ +\£g cos(6 — 27/3) .

o3 £ cos(f + 27 /3)

http://rcin.org.pl
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