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Duality based solution of contact problem
with Coulomb friction

Z. DOSTAL and V.VONDRAK (OSTRAVA)

NUMERICAL SOLUTION of quasi-variational inequalities that describe the equilibrium of elastic bodies
in contact with friction is presented. The problem is first reduced to a sequence of well conditioned
problems with given friction that are reformulated by means of duality as quadratic programming
problems with box constraints. Then the algorithm for the solution of quadratic programming
problems with proportioning and projections is applied to the solution of the resulting contact
problem with Coulomb friction. The characteristic feature of this active set-based algorithm is
that it accepts approximate solutions of auxiliary problems and that it is able to drop and add
many constraints whenever the active set is changed. The results of our numerical experiments
indicate that the algorithms presented are efficient. The algorithm may prove to be useful in
parallel implementation.

1. Introduction

THE DUAL SCHUR complement domain decomposition method introduced recently
by FARHAT and Roux [5] turned out to be an efficient algorithm for parallel
solution of self-adjoint elliptic partial differential equations. Recently, we have
combined this method with our results [2] on quadratic programming with simple
bounds, in order to develop an efficient algorithm for the solution of variational
inequalities that describe the conditions of equilibrium of a system of elastic
bodies in frictionless contact [3]. The results of [2] turned out to be closely related
to the results of FRIEDLANDER and MARTINEZ [7] and were further extended in [4].

In this paper, we extend this approach to the solution of unilateral contact
problems of linear elasticity with Coulomb friction. The main feature of our new
algorithm for the solution of coercive problems is that it accepts approximate
solutions of auxiliary minimization problems, that it is able to drop and add
many constraints whenever the active set is changed, and that it treats the bodies
independently of each other, so that parallel implementation is possible. The
application of the duality theory to a discrete problem may be considered as
an implementation of the reciprocal formulation of [8]. The performance of the
algorithm is demonstrated on the solution of a model problem.

2. Discretized contact problem with given friction

We shall start our exposition from the discretized contact problem. Suppose
that K is the stiffness matrix of the order n resulting from the finite element
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discretization of a system of elastic bodies {2, ..., 2, with enhanced bilateral
boundary conditions. With suitable numbering of nodes, we can achieve that
K = diag(Ky,... ,K;), where each K; denotes a band matrix which may be
identified with the stiffness matrix of the body {2;,. We assume that K is positive
definite.

Let m denote the number of nodes in contact. The linearized conditions of
contact with given friction are supposed to be defined by the m x n matrices
N = (n;), T = (Li;), by the m x m non-negative diagonal matrix I' = diag(7;),
and by the m-vector ¢ = (¢;). The rows n;- of N are vectors defined by unit outer
normals that enable us to evaluate the change of the normal distance ¢; > 0
between two potential contact surfaces. The formula for the displacement x is
n;«X. The matrix N is sparse as non-zero entries of n;- may be only in positions
of nodal variables which correspond to the nodes involved in some constraint.
The diagonal entries 7y; of the diagonal matrix I' define what we can call nodal
given friction that corresponds to a couple of points in contact. In analogy to n;-,
the row vectors ¢;- of the matrix T are defined by the tangential vectors in these
contact points. The matrix T is also sparse. We shall use T for evaluation of the
tangential part of the relative displacement of the contact surfaces.

With these notations, solution of the discretized contact problem with given
friction amounts to the solution of the problem

(2.1) min max f(x, /1),

XEC pEM

where
f(x, 1) = %XTKX-—bTX'f'/JLTFTX, M= {,u‘ lp| < 1} and C = {x’ Nx < c},

In the last equation and in what follows, all the vector inequalities should be
read pointwise. Similarly, |¢| denotes a vector with entries y;. More details about
formulation and discretization of contact problems with friction may be found in
Refs. [8, 9].

3. Reciprocal formulation

First observe that

(3.1) min max f(x, ) = min max max L(x, 1, M),

where
(32) Ll mN) = f(x, 1) + XT(Nx —¢)
= %xTKx ~bTx+ pITTx + A\T(Nx —¢).
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For fixed 1 and A, the Lagrange function (3.2) is strictly convex in the first vari-
able, and the gradient argument shows that any minimizer of L(-, u, ) satisfies

(3.3) Kx—b+TT ) + N\ = 0.

This equation has a solution for any b, T, T, i, N, A because the matrix K is
positive definite. Simple computation shows that (3.3) is equivalent to

(3.4) x=K" (b-T'T" ;- N")).

After substituting (3.4) into the Lagrange function (3.2) and after some simpli-
fications that exploit the structure of the matrices, we get for fixed 1 and A the
problem to find

L NN ot Far e A r o (NK'b—c
69 migz (2 ,u)(rT)K (v 1m17) () - 07 (e )
The latter is the quadratic programming problem

(3.6) min F(2),

where

F(z) %zTQz—zTh, z=(2), Q (I,NT)K“I(NT,TTFT),

“1p
(NK b- C> and sz{z= (A)‘ A0, |u|51}-
I'TK b a

We shall consider here the problem (3.6) with a general choice of S = {z|1<
z < u}. The only solution z of this problem satisfies the Kuhn-Tucker contact
conditions

(3.7)

4. Proportioning

r; =0 for <z <uw,
4.1) rr =0 for z =1;,
7"-+ =0 for Z; = Uq,
where r = Qz — h, 77 = min{r;,0} and r;* = max{r;,0}. Let us recall that the
active set A(z) = {i| z; = l; V z; = v;} and the free set F(z) = {i| l; < z; < u;}.
The chopped gradient (3(z) and reduced gradient p(z) are defined by
wi(z) = ri(z) for 1€ F(z) and wi(z) =0 for i€ A(z),
(4.2) Bi(z) =0 for 1€ F(z),
Bi() =r; for z =1 and fi(z) =7} for z =wu;.
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Hence the conditions (4.1) are equivalent to p(z) = (z) = o, so that z is the
solution of our problem iff the projected gradient v(z) = ((z) + p(z) = o.

The algorithm that we proposed in [2] is a modification of the Polyak algorithm
that controls the precision of the solution of auxiliary problems by the norm of
violation of the Kuhn -Tucker contact condition in each iteration. If for G > 0
the inequality ||3(z)]|ec < G/||l©(z")||2 holds, we shall call z' proportional. The
algorithm explores the face W, = {y| yi=liory, =u; fori e [} with a given
active set [ as long as the iterations are proportional. If z' is not proportional, we
generate z'*! by means of decrease direction d* = —/3(z') in a process that we call
proportioning and we continue by exploring the new face defined by I = A(z'*1).
The class of algorithms driven by proportioning may be defined as follows.

ALGORITHM GPS (General proportioning scheme).

Let z° € S and G > 0 be given. For k > 0, choose z**! by the following rules:

(i) If z* is not proportional, define z'*! by proportioning.

(ii) If z* is proportional, choose feasible z**! so that F'(zF*1) < F'(z*) and 2/ ™!
satisfies at least one of the conditions A(z*) C A(z"*!), z'*! is not proportional,
or z*! minimizes F'(£) subject to £ € Wy, I = A(z").

The symbol C denotes proper subset. The basic theoretical results have been
proved in [2].

THEOREM. Let z* denote an infinite sequence generated by algorithm GPS with
given °, let S = {z| 1 < z < u}, and let F'(z) denote a strictly convex quadratic
function. Then the following statements are true:

(i) z* converges to the solution 7 of (3.6).

(i1) If the problem (3.6) is not degenerate, then there is k such that 7 = z

(i) If G > /k(Q), where Kk(Q) is the spectral condition number of Q, then
there is k such that T = z*.

Step (ii) of algorithm GPS may be implemented by means of the conjugate
gradient method. The implementations differ in stopping rules for the solution
of auxiliary problems and in application of projectors. In the following numerical
experiments, we used so-called monotone proportioning [2] which, starting from
v! =z, generates the conjugate gradient iterations for minimization of (3.6) on
current face until F'(Pvit!) > F'(Pv'), where P denotes the projection to S. If
the conjugate gradient iterations are interrupted on this condition, then a new
iteration is defined by z"*1 = Py or by some backtracking strategy. More details
may be found in [2].

k

5. Solution of the friction problem

Now assume that the given friction ~; is given by v, = @;|1*(x)|, ¢ = 1,...,m,
where ¢ = (&;) is the vector of friction coefficients and T* = (7*(x)) is the vector
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of normal stresses on the contact surface that correspond to the displacement x.
Denoting by x(7) the solution of the contact problem (2.1) with given friction
v = () and by T"(x(y)) the corresponding normal stress, the solution of the
contact problem with friction amounts to finding the fixed point of the mapping
¥ ;v — T*(x(7)). Existence results of the fixed point for sufficiently small friction
coeflicients may be found in 8, 12]. Hence we can find the solution of the contact
problem with friction by

initial 70,
(51) { n+1 n
Y=Y (Y").

Notice that A corresponds to the normal stress T™ and the vector I'i corresponds
to the tangential stress T* on the contact interface.

6. Numerical experiments
We have tested our algorithm on a problem of contact of two bodies of Fig. 1

that was discretized by a grid with 169 nodes, so that the discretized problem had
338 primal and 42 dual unknowns, respectively. The problem was solved for two

000000000000 TUUY g
0

F1G. 1. Test problem.

combinations of elastic constants with the friction coefficient @ = 0.3. We used
the value (¢ = 1, so that we interrupted the conjugate gradient iterations when
the chopped gradient began to dominate the reduced gradient. Relative precision
of the solution was 103. The solution turned out to be quite sensitive to the
relative precision ¢ of the solution of the inner problems with given friction. The
performance of the algorithm for various ¢ is given in Table 1 (Fig.2, 3). The
number of the conjugate gradient iterations seems to be relatively low, which
also indicates that the distribution of the spectrum of the Hessian of /'(z) is
favourable. Indeed, Fig. 4 shows that there are very few eigenvalues in both ends
of the spectrum. This observations extend the experimental results reported by
F.-X. Roux [14] for the dual Schur complement. All numerical experiments were
carried out in Mathworks Matlab with PDE Toolbox.
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Table 1. Performance of the algorithm.

Problem 1 (E; = 10° MPa, E; = 10° MPa) | Problem 1 (E; = 10* MPa, E, = 10° MPa)
iterations iterations
number number of inner number number of inner
of outer (cg steps) of outer (cg steps)
e=le=5|e=1e—-6|c=1e-7 e=1le-5|e=1le—6|c=1e-7
1 28 29 38 1 58 67 75
2 28 36 55 2 84 108 142
3 4 10 15 3 2 9 13
4 3 1 6
63 76 114 144 184 230
12 16
i m 14
12
¢ 10
6 8
6
4
4
T L : 10
M 1.1 1 0 i
5 4 3 2 a1 0 1 2 10 8 6 -4 2 0 2
1st iteration 2nd iteration
16 15
14
12
0 10
8
¢ s
4
z ]
o LI ﬂ /A o L ﬂ -l
876 543 21012 8 -7 6 -5 43 -2-1 0 1 2

3rd iteration 4th iteration

F1G. 4. Distribution of the spectrum of the Hessian.

7. Comments and conclusions

We applied a variant of our new algorithm [2] for the solution of quadratic
programming problems with simple bounds to the solution of static coercive con-
tact problem of elasticity with Coulomb friction in reciprocal formulation. A new
feature of the presented algorithm is the adaptive precision control of the solu-
tion of auxiliary problems and application of projections, so that both the contact
and slip interfaces may be identified in a small number of iterations. Theoretical
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results are reported that grant the convergence of the algorithm. The algorithm
also demonstrates the usefulness of the duality theory for practical computation.

Both theoretical results and results of numerical experiments indicate that
there are problems which may be solved very efficiently by the algorithm pre-
sented. If applied to the solution of a contact problem that involves several bod-
ies, then the algorithm may be considered as Neumann - Neumann type domain
decomposition algorithm which may be useful in parallel environment. Using
the results [4], the algorithm may be extended to the solution of semicoercive
problems.
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