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A NEW UNLFLED micromechanical approach to dynamics of micro-periodic composite solids is for-
mulated. The proposed approach introduces the concept of internal variables in order to describe 
the effect of the microstructure size on the global body behaviour. It is shown that the evolution 
equation for internal variables can be obtained without any specification of the material properties 
of the composite. 

1. Introduction 

IT IS KNOWN that the behaviour of the composite solids with periodic microstruc-
ture can be examined on two levels. Qn the micro-level the interactions between 
constituents of a composite are detailed while the global body response is in-
vestigated in the framework of macromechanics. The passage from micro- to 
macromechanics is realized by so-called micromechanical approaches, [1 ], lead-
ing to various mathematical models of the composite solid on the macro-level. 
The best known ones are those based on the concept of homogeneous equivalent 
body where the micro-heterogeneous composite is modelled as made of a cer-
tain "homogenized" material. The above models can be obtained by some special 
procedures, [1, 12], derived by means of the asymptotic methods, [3, 5, 11], by 
the Fourier expansions, [23], or using so-called micro-local parameters, [15, 32]. 
However, following the concept of a homogeneous equivalent body we neglect 
the effect of the microstructure size on the global body behaviour. This effect 
plays an important role mainly in the vibration and wave propagation analysis. 
In order to describe dynamic problems in the framework of macromechanics, a 
number of mathematical models, mainly based on the concept of the continuum 
with extra local degrees of freedom, or obtained by finding the higher-order terms 
of the asymptotic expansions, was proposed, [2, 9, 14, 15, 22, 24]. Models of this 
kind have a rather complicated analytical form and, applied to the investigation 
of boundary-value problems, often lead to a large number of boundary condi-
tions which may be not well motivated from the physical viewpoint. Between the 
models using the concept of a homogeneous equivalent body and those apply-
ing the continua with extra local degrees of freedom, are situated the models of 
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refined macrodynamics, [32]. The effect of periodic microstructure size on the dy-
namic body behaviour in the framework of refined macrodynarnics is described by 
certain unknown fields, called macro-internal variables (MIV). These variables, 
being governed by ordinary differential equations involving time derivatives, do 
not enter the boundary conditions. So far, the internal variables were mainly 
used in formulations of the constitutive relations, [7] . Applications of this con-
cept to the rnicromechanical approach in dynamics of periodic composite solids 
were recently investigated in a series of papers [4, 6, 8, 10, 13, 16, 18-21,26-30, 
33- 44]. 

In the aforementioned papers the rnicromechanical approach to macrome-
chanics, using the macro-internal variables, was based on certain heuristic as-
sumptions related to the specification of materials and the expected motions of 
the body. The aim of this contribution is to derive the governing equations for 
models with MIV without those assumptions. The main result is that the evolu-
tion equations for MIV can be obtained without any specification of the material 
properties of a composite solid. The considerations in Secs. 1-5 are restricted 
to the periodic composites. Certain generalization of the MIV -model, describ-
ing microstructures which may be non-periodic in some directions, are proposed 
in Sec. 6, where two kinds of what are called the quasi-internal variable models 
(QIV-models) are introduced. The investigations are related to composites with 
perfectly bonded constituents and are carried out in the framework of the small 
displacement gradient theory. 

Throughout the paper all capital Roman superscripts run over 1, ... , N (sum-
mation convention holds unless otherwise stated). Points of the physical space E 
are denoted by x, y or z and their distance by llx - Yll· The letter t stands for the 
time coordinate and t E [t0, t1] . By I I we define both the absolute value of a real 
number and the length of a vector. It is assumed that all introduced functions 
satisfy the regularity conditions required in the subsequent analysis. 

2. Analytical preliminaries 

Let [2 be a region in the Euclidean 3-space E occupied by the composite 
solid in the reference configuration. Setting V := ( -h/ 2, LI/2) x ( -12/2, 12/2) x 
( -13/ 2, 13/2) we assume that the solid in this configuration has the V -periodic 
heterogeneous structure (is V-periodic) and that the microstructure length par-

ameter defined by l := Jti + ｬｾ＠ + ｬｾ＠ is negligibly small as compared to the 
smallest characteristic length dimension L n of n. We shall use the notation 
V(x) = x + V; if V(x) c n then V(x) will be called the cell or the volume el-
ement of n. The set [20 := {x E D; V(x) c D} is said to be the macro-interior 
of n. For an arbitrary integrable function f( • ), defined almost everywhere on 
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n, we define the averaged value off(·) on V(x) by means of 

(2.1) < f(z) > (x) = ｬｬＯｾＯ Ｓ＠ J j (z) dv(z), x E Jlo . 
V (x) 

If f( ·) is a V-periodic function then < f(z) > (x) is a constant which will be 
denoted by < f >. Now we shall recall two auxiliary concepts which will be used 
in the subsequent analysis, [32]. 

Let <P( ·) be a real-valued function defined on [2, which represents a certain 
scalar field. Let us assume that the values of this field in the problem under 
consideration have to be calculated and/or measured up to a certain tolerance 
determined by the tolerance parameter ｣ ｾＬ＠ ｣［ ｾ＠ > 0. It means that an arbitrary 
real number <P0 satisfying condition 

I<'P(x) - <'Pol < ｣Ｚ ﾷ ｾ＠

can be also treated as describing with sufficient accuracy the value of this field at 
the point x. The triple (<P( • ), ｣ｾＬ＠ l) will be called the c: -macrofunction (related to 
the region Jl) if the following condition holds 

(\f(x, y) E J22
) [l lx - Yll < l :::} I<'P (x) - <P(y)l < ｣ ｾ｝Ｎ＠

Roughly speaking, from both the calculation and measurement viewpoints, every 
c-macrofunction restricted to an arbitrary cell V (x), x E J20, can be treated as 
constant. Now assume that <P( · , t), t E [to, t 1 ], for every t is a differentiable func-
tion defined on Jl, having piecewise continuous time derivatives. Moreover, let IJ! 
stand for <P as well as for an arbitrary derivative of <P and assume that the value 
of !J! has to be calculated and/or measured up to a certain tolerance given by the 
tolerance parameter crJi. If every triple (IJ!( • ), crJi , l) is the c;-macrofunction, then 
the n-tuple (<P( • ), ｣［ ｾ Ｌ＠ ｣ ｜ＷｾＬ＠ c; . , ... , l) is said to be the regular c;-macrofunction 

ｾ＠

(related to the region Jl). In the sequel we shall tacitly assume that all tolerance 
parameters ｣ ｾ Ｌ＠ ｣｜Ｗ ｾＬ＠ c; . , ... , as well as the microstructure length parameter l are 

ｾ＠

known and hence <P( · ) will be referred to as the regular c;-macrofunction. This 
concept will be also extended to vector and tensor functions by assuming that all 
their components in an arbitrary coordinate system are regular c-macrofunctions. 

To the concept of c:-macrofunction certain approximations are strictly related 
which will be used in this contribution. Let J( ·)be an integrable function defined 
almost everywhere on [2 and <P( ·) stand for an arbitrary c;-macrofunction (the 
tolerance parameter ｣［ ｾ＠ as well as the microstructure length parameter l are 
assumed to be known). Denote by ｏＨ ｣ ｾ Ｉ＠ a set of possible local increments LJ.<P of 
<P such that 1 LJ.<P 1 < cp. Due to the meaning of the c-macrofunction in calculations 
of integrals of the form 

j f(z)[<P(z) + ｏＨ ｣Ｚ ｾＩ ｝ ､ｶ Ｌ＠ x E Do , 
V (x) 
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terms O(t:4>) can be neglected. This statement will be called the Macro-Averaging 
Approximation (MAA). Using the MAA we assign to every f( · ) the tolerance 
relation ｾ＠ (i.e., the binary relation which is reflexive and symmetric) defined on 
a set of integrals over V (x) and given by 

(2.2) j f(z)[<P(z) + O(c4>)]dv ｾ＠ j f(z)<P(z)dv , x E Do. 
vw vw 

Since 

j f(z)dv<P(x) = j j(z)[<P(z) + O(t:4> )]dv, 
V(x) V(x) 

where now O(c4>) = <P(x) - <P(z) for every z E V(x), then (2.1) yields 

(2.3) j f(z)<P(z)dv ｾ＠ j f(z)dv<P(z), x E Do . 
V(x) V(x) 

It has to be emphasized that terms 0(€4>) will be neglected only in the course of 
averaging procedure, i.e., only in the tolerance relations of the form (2.2). Using 
the notation ｾ＠ in (2.2) and (2.3), we have tacitly assumed that every tolerance 
relation ｾ＠ is assigned to a certain integrable function f ( ·) and is not transitive. 
It means that in the formula 

(2.4) j f(z)<PJ(z)<P2(z)dv ｾ＠ j j(z)<PJ(z)dv<P2(x) ｾ＠ j j(z)dv<P1(x)<P2(x), 

V(x) V(x) V (x) 

where <1> 1( • ), <1>2( ·) are t: -macrofunctions, symbol ｾ＠ stands for two different tol-
erance relations. 

In order to introduce the second auxiliary concept used in the subsequent 
analysis, define by hA(·), A = 1, 2, ... ,the system of linear independent continu-
ous V-periodic functions (and hence defined on E) having continuous first-order 
derivatives. Let the above functions satisfy conditions 

< hA> =O, 

and constitute a basis in the space of sufficiently regular functions defined on an 
arbitrary cell V(x) and having on V(x) the averaged values equal to zero. We also 
assume that for every hA(·) there exists a V-periodic lattice AA of points in E 
suchthathA/av(x) = OforeveryxE AA.Itmeansthat(VhA)((:Jx)[hA/aV(x) = 0]. 
Under the aforementioned conditions the system hA(·), A = 1, 2, ... , will be 
called the local oscillation basis. 

The concepts of the regular t: -macrofunction and the local oscillation basis as 
well as the macro-averaging approximation (MAA) formulated above constitute 
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the fundamental tools of the micromechanical approach to the macrodynamics 
of composites which will be proposed in Secs. 3- 5 of this contribution. 

In Sec. 6 the aforementioned concepts and definitions will be adapted to the 
cases in which the composite solids have the periodic heterogeneous structures 
only in one or two directions. Setting D = II X (0, H), where II stands for 
the plane region, we shall deal in Sec. 6 with c-macrofunctions related to II or 
(0, H ). Similarly, the functions hA( · ) will be defined either on R2 or on R, and 
the averaging operation (2.1) will be restricted either to the area element or to 
the straight-line element. 

3. Foundations of kinematics 

Let u(. ' t) stand for a displacement field defined on D for every instant t. 
Define on Do the averaged displacement field by means of 

(3.1) U(x, t ) := < u(z, t) > (x), x E Do. 

By the local displacement oscillations we shall mean the vector functions wx( · , t) 
defined independently on every V(x), x E Do, such that 

(3.2) Wx(Y, t) = u(y, t)- U(y, t) + rx(Y , t), y E V (x), 

where rx( ·) satisfy condition 

< rx(z, t) > (y) = < U(z, t) >(x) - U(x, t), 

and will be specified at the end of this section. It can be seen that 

< Wx(z, t) >(x) = 0, x E Do , 

and hence, under the known regularity conditions, every function wx( • , t ) can be 
represented by the Fourier series in the local oscillation basis hA( ·), A = 1, 2, ... . 
Denoting the Fourier coefficients by 

(3.3) x E Do , 

we obtain 

00 

(3.4) Wx(Y , t ) = L WA(x, t)hA(y) , y E V (x), x E Do . 
A = ! 

The kinematics of the composites under consideration will be based on two as-
sumptions. 

Truncation Assumption (TA) states that the Fourier series (3.4) can be approxi-
mated by the sum of the first N terms for some N ;:::: 1, where N has to be 
specified in every problem under consideration. 
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From TA it follows that instead of (3.4) we assume 

(3.5) y E V(x) , X E no) 

where here and in the sequel the Roman superscripts run over 1, ... , N (sum-
mation convention holds). The functions hA(·), A = 1 2, ... , N are called the 
micro-shape functions. 

Kinematic Macro-Regularity Assumption (KRA) restricts the class of motions 
in every problem under consideration by assuming that fields U( · , t ), w A( · , t), 
A = 1, 2, ... , N , are regular c-macrofunctions. 

It can be seen that the formulation of KRA takes into account TA by means of 
which the number N of the micro-shape function is postulated in every problem 
under consideration. Under the KRA, fields U( · , t ), WA( · , t ), A = 1, 2, ... , N , 
are said to be the macrodisplacements and the macro-internal variables (MIV), 
respectively. The meaning of the term MIV will be explained in Sec. 5. The 
c-macrofunctions U( · , t ), WA( · , t) describe the kinematics of composites on the 
macro-level (macro-kinematics) and will constitute the basic kinematic unknowns 
in the framework of the proposed model. The results of this section are summa-
rized by the following lemma. 

LEMMA . Under TA the displacements on the micro-level are related to the 
macrodisplacements and the macro-internal variables by the formulae 

(3.6) 

The proof of the above lemma is based on the specification of fields rx( · , t ) 
in (3.2) to the form 

y E V (x), A = 1, .. . , N . 

Substituting the right-hand sides of (3.7) into (3.2) and using (3.5) we arrive at 
(3.6), which ends the proof. 

COROLLARY. From the above lemma it follows that the MIV are related to 
the displacements u( · , t) by means of the system of equations 

X E no, 

which under KRA and MAA can be replaced by 

(3.8) WA(x, t ) > = < u(z, t )hA(z) > (x), X E no. 

Formula (3.8) yields the simple interpretation of the macro-internal variables as 
certain weighted averages of displacements. 



http://rcin.org.pl

I NTERNAL VARIABLES IN DYNAMI CS OF COMPOSITE SOLID S 427 

4. From micro- to macrodynamics 

Let s( · , t) denote the Cauchy stress tensor field defined for every t on D \F 
where r is a set of all interfaces between the components of the composite. Let 
us define on Do the following averaged stress fields 

(4.1) 
S(x, t) := < s(z, t) > (x) , 

HA(x, t) := < s(z, t) ·V' hA(z) > (x), x E Do. 

In order to pass from micro- to macrodynamics, two extra assumptions will be 
required. 

Stress Macro-Regularity Assumption (SRA) restricts the class of stress fields in 
the problem under consideration to that in which the fields S( · , t ), HA ( • , t) are 
regular c-macrofunctions. 

Under SRA the fields defined by (4.1) will be called the macrostresses and 
the micro-dynamic forces, respectively. The meaning of the latter term will be 
explained at the end of this section. 

Let g( ·) stand for the mass density field (which is the V -periodic function 
defined almost everywhere on D), and assume that the body force b is constant. 
Let us denote by n(y) the unit normal outward to oV(x) at y. The starting point 
of the proposed micromechanical procedure will be the weak form of equations 
of motion in micromechanics. Thking into account the symmetry of the stress 
tensor, these equations can be assumed in the form of conditions 

(4.2) j s(y,t):V'u(y)dv = j [s(y, t)·n(y)]·u(y)da 

V(x) 8V(x) 

+ j g(y) [b- ii (y, t)] ·IT(y)dv 
V(x) 

which have to hold for every x E D0 and for an arbitrary test function IT(· ). In 
order to pass from micro- to macrodynamics we have to specify the set of test 
functions in ( 4.2). Thking into account (3.6) we assume that 

(4.3) 

where U( · ), WA( ·) are arbitrary linearly independent regular c-macrofunctions 
defined on D. 

Now we shall explain the meaning of the micro-shape functions in the mod-
elling procedure. 1b this end denote F(x) := V(x) n r, X E Do. Hence F(x) is 
a set of all interfaces in the volume element V (x) across which the tensor s( · , t) 
can suffer jump discontinuities. Let us also introduce the residual fields in every 



http://rcin.org.pl

428 Cz. W oiNIAK 

cell V (x) given by 

r(y, t ) := g(y) ii (y, t) - g(y)b- Div s(y, t ) 

j(y, t ) := [s](y, t )·n(y) 

if y E V (x)\ F(x), 

if y E F(x), x E Do , 

where [ s] is a jump of the stress tensor across r (x) in the direction of the unit 
normal n(y) to F(x). Obviously, in the framework of rnicromechanics the resid-
ual fields are identically equal to zero. It can be verified that, under the above 
notations, Eqs. ( 4.2) can be written in the equivalent form of conditions 

j r·iidv + j j · ii da = 0, x E Do , 

V(x) r{x ) 

which have to hold for an arbitrary test function u( ·) defined on D . In the 
framework of the proposed approach, we shall assume that the piecewise constant 
(discontinuous across F) distribution of heterogeneity is approximated in the 
vicinity of interfaces by the continuous one. Hence r = 0 and the integrals over 
F(x) drop out. Thking into account (4.3) and using MAA, the above conditions 
reduce to the following ones 

j rdv = 0, 

V(x) 

j rhA dv = 0, 
V(x) 

A = 1, ... , N, x E Do . 

The second of the above formulae represents the interrelation between the resid-
ual field rand the form and number of the micro-shape functions. More general 
models will be presented in the separate paper. 

Thking into account the above approximation we shall formulate the funda-
mental assertion of the rnicromechanical approach to macrodynarnics proposed 
in this contribution. For the sake of simplicity we shall also assume that the 
micro-shape functions hA(·) satisfy the extra conditions < ghA >= 0, A = 
l , ... , N. . 

Fundamental Assertion. Under TA, KRA, SRA and in the framework of MAA, 
the equations of motion ( 4.2) imply ·the following interrelation between the 
macrodisplacements U( · , t) and the macrostresses S( · , t): 

(4.4) Div S(x, t )- < g > U (x, t)+ < g > b = 0, 

as well as between the macro-internal parameters WA( · , t ) and the micro-dynamic 
forces HA(· , t): 

(4.5) A = l , ... ,N; 

the above relations hold for every x E Do and t E (to, t f ). 



http://rcin.org.pl

INT ERNAL VA RIABLES IN DYNA MI CS OF COMPOSITE SOLID S 429 

The relations given by ( 4.4 ), ( 4.5) will be called the equations of motion and the 
dynamic evolution equations, respectively. Since the moduli < ghA hB > are of the 
order O(l2) , then the above equations describe the effect of the microstructure 
size l on the body dynamic response. For this reason Eqs. (4.4), (4.5) are said to 
represent the refined macrodynamics of the composites under consideration, [30]. 
Let us observe that both in the quasi-stationary processes and for the problems in 
which the above effect can be neglected we obtain HA(x, t ) = 0. That is why the 
fields defined by the second of Eqs. ( 4.1) were called the micro-dynamic forces. It 
has to be emphasized that under the aforementioned assumptions, Eqs. ( 4.4 ), ( 4.5) 
are related to a composite solid wi th periodic microstructure made of arbitrary 
materials. Hence, the aforementioned equations represent the averaged laws of 
motion in the framework of the proposed refined macrodynamics. 

At the end of this section we shall prove the fundamental assertion. To this 
end let us substitute the right-hand side of ( 4.3) into ( 4.2). Using (2.1) we obtain 

(4.6) 

j s(y, t) : Vu(y) dv = j s(y, t) : VU(y) dv 
V (x) V(x) 

+ j [v hA(y) ·s(y, t)) ·WA(y) dv , 
V(x) 

j [s(y, t) · n(y)] · u(y) da ｾ＠ j [s(y, t ) · n(y)] . U(y) da 
8 V(x) 8V (x) 

+ f hA(y)[s(y, t ) •n(y)) • WA(y) da, 
8 V(x) 

j g(y) [b- ii (y, t)) ·ii(y)dv ｾ＠ j g(y) [b- ii (y, t )) ·U(y)dv 

ｖ Ｈｾ＠ ｖ Ｈ ｾ＠

+ j g(y)hA (y) [b- ii (y, t)) .wA(y)dv . 

V(x) 

Combining (4.6) and (4.2) and bearing in mind that U( · ), WA( · ) are linearly 
independent c-macrofunctions, we conclude that the equations of motion (4.2) 
imply the foll owing conditions 

(4.7) j s(y, t ) : \?U(y) dv = j [s(y, t)·n(y)] ·U(y)da 

vw avw 

+ j g(y) [b- ii (y, t)) ·U(y)dv, 
V(x) 
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(4.7) 

[cont.] 
J [s(y, t ). \7 hA(y)] . WA(y) dv = f [s(y, t ). n(y)] . w A(y)hA(y) da 

V (x) 8 V(x) 

+ j e(y) [b- ii (y, t )j .wA(y)hA(y) dv, x E D0 , 

V (x) 

which have to hold for arbitrary regular c:-macrofunctions U( • ), W A ( ·) defined 
on n. By means of (2.2), (2.1) and bearing in mind the remark following (2.3), 
the integrals on the left -hand sides of ( 4. 7) can be transformed as follows 

j s : \7U(y) dv ｾ＠ j s dv : \7U(x) = l1hl3S(x, t) : \7U(x) 

V (x) V (x) 

ｾ＠ j Sdv : \7U(x) ｾ＠ j S: \7Udv 

(4.8) 
V(x) V (x) 

= f (S·n)·Udv- j DivS·Udv, 

8V(x) V (x) 

ｪ｣ｳﾷ｜ｬｨ ａ Ｉｗａ､ ｶｾ＠ ｊ｣ｳﾷ｜ｬｨ ａ Ｉ､ ｶ ﾷｗ ａ ＨｸＩｾ＠ jHA.wAdv. 

ｖ Ｈｾ＠ ｖ ｾ Ｉ＠ ｖ ｾ Ｉ＠

For the sake of simplicity, in (4.8) and in the subsequent formulas the argument 
y E V (x) is not specified in all integrands. Using (2.2) and the first of formulas 
(3.7) as well as the conditions < ghA >= 0, < hA > = 0, the integrals over V(x) 
on the right-hand sides of (4.7) can be given 

j ･Ｈ｢ＭｩｩＩﾷｕ､ ｶｾ＠ j gdv b·U(x) - j e(V+hA W A)dv ·U(x) 

V(x) V(x) V (x) 

ｾ＠ l1l2l3 [< e > b·U(x)- < e >U(x, t)·U(x)] 

ｾ＠ j < e > (b- u) · u dv , 
V (x) 

(4.9) J g(b- u)•WAhA dv ｾ＠ J ghA dv b•WA(x) 

V(x) V (x) 

- j ･ＨｖＫｨ Ｘ ｗ Ｘ Ｉｨ ａ ､ ｶ ﾷｗａＨｸＩ ｾ＠ j ghAdv V(x, t )·WA(x) 

vw vw 
- J ghAh8 dv ｗ Ｘ Ｈｸ Ｌ ｴＩﾷｗ｜ｸＩ ｾ＠ J < ghAh8 >W 8 •WAdv. 

vw vw 
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Taldng into account (4.8) and (4.9) we shall represent (4.7) in the form 

j (DivS - < e>U + < e > b) ·Udv- j (S·n- s·n)·Uda = 0, 
V (x) · 8V(x) 

J ( < ghAhB >W B +HA) WA dv- f (s·n)hA ·WA da = 0. 
(4.10) 

V(x) 8 V(x) 

The first of equations ( 4.10) has to hold for every U( ·) and the second one for 
-A - - A ·· .. B 

everyW (·).Moreover, U(·), W (·), DivS(·,t),HA(· ,t) andU(·, t),W (· ,t) 
are c:-macrofunctions. It follows that using MAA, from Eqs. ( 4.10) we obtain 

(4.11) 

l1l2l3 [nivS(x, t)- <e>U (x,t)+ < e > b] ·U(x) 

- j (S · n - s · n) · U da = 0, 
8 V(x) 

l1l2l3 [<ehAhB>W B(x, t )+ HA(x,t)] ·WA(x) 

- (s·n)·W h da = 0. f - A A 

8 V(x) 

Introducing the local coordinate p E V we also obtain 

(4.12) f (S·n)·Ucla = j Div(S·U)dv ｾ＠ l1l2l3 Div [S(x, t) ·U(x)] 

8 V (x) V(x) 

ｾ＠ Div j s·Udv = Div x j s(x+ p,t)·U(x+ p,t)dv(p) 

ｖ Ｈｾ＠ V 

= j Div x [s(x + p, t ) · U(x + p, t)] clv(p) 
V 

= j Div(s·U)clv = j (s·n)·Uda. 

V (x) 8 V(x) 

Hence, the surface integral in the fir st of equations ( 4.11) can be neglected 

and we arrive at (4.4). Bearing in mind that w B(· , t ), WA(·) and HA(· , t ) 
are c:-macrofunctions, we conclude that the surface integrals in the second of 
equation (4.11) are values of a certain c:-macrofunction; at the same time hA = 0 
on aV(x) for every X E AA, cf. Sec. 2. It follows that for an arbitrary X E Do 
the above surface integrals attain the values which in the framework of MAA 
can be neglected. Hence the second equation (4.11) reduces to (4.5), which ends 
the proof. An alternative proof of the above fundamental assertion can be found 
in [35]. 
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5. MIV-model 

In order to describe the dynamic response of the composite body in the frame-
work of the MIV-model, we have to complete equations (4.4), (4.5) by introduc-
ing the constitutive equations for macrostresses S and micro-dynamic forces HA. 
Taking into account the definitions (4.1), the second of the formulae (3.7) and 
applying MAA to the integrals in (4.1), this can be done for arbitrary periodic 
composites the components of which are simple materials. To simplify the subse-
quent considerations we shall restrict ourselves to the linear visco-elastic materials 
governed by the constitutive equations of the form 

(5.1) s = C(z) : e + D(z) : e, e := 0.5 [vu + (Vul] , 

where C( · ), D( ·) are V -periodic piecewise constant functions the values of which 
are the fourth order tensors of elastic and viscous moduli, respectively, for the 
component materials. Define the linearized macro-strain tensor by means of 

(5.2) E(x, t) := 0.5 [vu(x, t) + (VU(x, t)l] . 

Now, we shall prove that the following formula holds for an arbitrary suffi-
ciently regular V -periodic tensor field F( · ): 

(5.3) 

Th this end let us observe that 

(5.4) < F·VhA> (x) = Ｍ ｾｾｾ＠ J hA[F]·nda- < hADivF> (x), 

r(x) 

where [F] is a jump ofF across all interfaces F(x), oriented by a unit normal n 
in V(x) . At the same time, for every A we obtain (no summation over A!) 

(5.5) < F·V'(hAWA)> (x) = < Div(F ® WAhA)> (x)- < DivF ® WAhA> 

ｾ＠ ｾｾｾ＠ f hA(F•n)® WAda 
8V(x) 

+ Ｈｾｾｾ＠ J hA[F]·nda-< hADivF> (x)) ® WA(x, t). 
r(x) 

For every x E AA the value of the first integral on the right-hand side of (5.5) is 
equal to zero. At the same time, this integral represents a certain c-macrofunction 
defined on D0 (since W A( · , t) is the c-macrofuoction) and hence bearing in mind 



http://rcin.org.pl

I NTERNAL VARIABL ES £N DYNAMICS OF COMPOSITE SOLIDS 433 

(5.4), we conclude that (5.3) holds true, which ends the proof. Using this result 
we also have 

Substituting (5.1) into definitions (4.1), taking into account the second of equa-
tions (3.7) and using MAA , by means of (5.6) we obtain 

(5.7) 

S(x,t)= < C >: E(x, t)+ < C·"VhA> ·WA(x,t) 

+ < D > : E(x,t)+ < D·"VhA> .wA(x,t), 

HA(x,t) =< "VhA·C>: E(x,t)+ < VhA·C·"Vh8 > ·W8 (x, t) 

+ < "VhA·D>: E(x, t)+ < "VhA·D·"Vh8 > ·W8 (x,t), 

for every x E Do and t E (to, t f ). The above equations will be referred to as the 
macro-constitutive equations for the linear visco-elastic composites. 

Equations (4.4), (4.5) and (5.2), (5.7) represent the macro-internal variable 
model (MIV-model) of micro-periodic composites made of perfectly bonded 
visco-elastic constituents. For the linear elastic materials the above equations 
reduce to those of the refined macromechanics, which were obtained indepen-
dently in (30] by means of certain heuristic hypotheses. For every micro-periodic 
composite solid (with constituents modelled as simple materials) the proposed 
model is uniquely determined by the choice of the micro-shape functions hA(·), 
A = 1, ... ,N. 

It has to be emphasized that for every class of motions specified by conditions 
(3.6), we obtain the pertinent MIV-model. In the analysis of special problems we 
have to take into account only these classes of motions which seem to be relevant 
from the viewpoint of the engineering applications of the theory. 

Substituting the right-hand sides of Eqs. (5.7) into (4.4), (4.5), we obtain the 
system of three partial differential equations for the macrodisplacements U cou-
pled with the system of 3N ordinary differential equations for the macro-internal 
variables WA. Hence, in formulations of the initial-bou!Jdary value problems, un-
knowns WA( · , t) do not enter the boundary conditions. That is why they were 
called the macro-internal variables (MIV) . It can be shown that for homoge-
neous bodies and homogeneous initial conditions for MIV , we obtain the trivial 
solution wA = 0, A = 1, ... , N , to every boundary value problem. Hence, the 
macro-internal variables play a crucial role in a description of the dynamic be-
haviour of solids with periodic microstructure, and that is why the models pro-
posed were referred to as the macro-internal variable models. It has to be empha-
sized that solutions to special problems in the framework of MIV-models have 
the physical sense only if the fields U( ·, t ), WA( · , t) as well asS(·, t), HA(· , t), 
for every instant t, are the regular c:-macrofunctions. This requirement can be 
verified only a posteriori. 
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6. QIV-models 

The MIV-model can be applied to composites which are periodic along every 
coordinate axis appearing in the problem under consideration. It means that the 
above models are applicable also to plane problems or to one-dimensional prob-
lems, provided that the corresponding basic cell of the composite is plane or 
one-dimensional, respectively. However, MIV-models cannot be applied if the 
dimension of the cell is smaller than the number of spatial coordinates in the 
problem under consideration. In this case the micro-shape functions are inde-
pendent of some of the spatial coordinates, and hence the surface integral in 
the second Eqs. ( 4.11) cannot be neglected and the formula (5.3) does not hold. 
In this section we shall modify the previously obtained results for two important 
special types of composite materials. 

6.1. Composiles reinforced by a system of parallel fibres 

Let [2 = n X (0, H), where n is a regular region on the plane 0XtX2. Assume 
that the composite has a material structure periodic only in the directions of the 
x 1-axis and .x2-axis. Let l1, !2 stand for the corresponding periods and define 
A= ( -! 1/2, LI/2) x ( -12/2, 12/2). Such situation takes place, e.g., for composites 
reinforced by a system of periodically distributed fibres parallel to the x3-axis. In 
these cases we shall deal with the A-periodic composites. Setting X:= (x1, x2) 
and A (X) := X+ A, we define the averaging operator on A(X) given by 

(6.1) < f(z,t) > (x) := lt\ j j( zt,z2,x3,t)dztdz2, 
A(X) 

which will be used throughout this subsection. Denoting l = .j ( l1 )2 + ( l2)2 we 
introduce the concept of c-macrofunction (related to the region ll) as a function 
?P( ·) defined on II and such that 

(V (X , Y) E (IIi)[ IIX - Yll < 1 => I?P(X) - ?P(Y)I < c<P]· 

A function (p can also depend on x3 and/or t as parameters. Moreover, the 
micro-shape functions hA( ·) are now independent of the x3-coordinate since the 
disturbances in displacements caused by the micro-periodic heterogeneity of the 
medium take place only in the x 0 -axes directions, a = 1, 2. The equations of 
motion for the class of composites under consideration can be obtained from 
Eqs. ( 4.11) by setting V = A x (- 5, 8), 5 > 0 and passing with 8 to zero, 5 -+ 0. 
Let a3 be the versor (unit vector) of the x3-axis. Introducing kinematic fields 
averaged over A (X) 

(6.1') U(x, t) := < u(z, t) > (x), 
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and the stress fields averaged over A(X) 

S(x, t) := < s(z,t) > (x) , 

(6.2) HA(x, t) := < s(z, t) ·'VhA (Z) > (x), 

RA3(x, t ) := < 33·s(z, t)hA(Z) > (x), 

we shall assume that U( · , x3, t), .. . , RA3( · , x3, t) are regular c:-macrofunctions 
(related to II) for every x3 E (0, H), t E (to , t 1 ). From (4.11), after some manipu-
lations we obtain 

(6.3) 
Div S(x, t) - < g > (x3) U (x, t)+ < g > (x3)b = 0, 

- RA3,3(x,t)+ <ghAhB>( x3)W
8 

(x, t)+ HA(x,t) = 0. 

For the sake of simplicity let us confine ourselves to the elastic materials, setting 
s = C(X, x3): e, e = sym'Vu, where C( · , x3) is A-periodic for every x3 E (0, H). 
Substituting the right-hand side of the above constitutive relations into (6.2), by 
means of Vu = U + hA'VW + \7 hA® W, and using the procedure given in Sec. 5, 
we obtain 

(6.4) HA = < 'VhA·C> < 'VhA·C·'VhB> 
[ 

S l [ < C>, < C·'VhB> , 

RA3 < hA 33 ·C>

1

, < h·4 33 ·C· 'V hE >
1

, 

where the elements of the above matrix can be functions of an argument x3. 
Equations (6.3), (6.4) together with (5.2) represent a model of the class of com-
posites under consideration. In general we now deal with composites which can 
be non-periodic in the x3-axis direction; if g( •) and C( ·) are independent of X3 
then (6.3), (6.4) are equations with constant coefficients. 

Substituting the right-hand sides of Eqs. (6.4) into Eqs. (6.3) we obtain the 
system of three partial differential equations of the second order for macro-
displacements U coupled with the system of 3N equations for wA. The latter are 
the second order partial differential equations with respect to arguments t and 
x3. Hence, in formulations of boundary-value problems, we have to prescribe on 
o[II X (0, H)] three conditions for three components of u. At the same time on 
II x {0} and II x {H} we have also to introduce 3N extra boundary conditions 
for 3N components of wA, A = 1, ... , N. It follows that wA can be treated 
as internal variables only as functions of the argument X = (x 1, x2). That is 
why they wi ll be called the quasi-internal variables. Hence, Eqs. (6.3), (6.4), (5.2) 
represent what will be called the quasi-internal variables model (QIV-model) of 
the fibre-reinforced composites. 
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6.2. Laminates 

Following the line of approach performed in Subsec. 6.1 we also define [2 = 
li x (0, H) and assume that a laminate under consideration has the periodic 
material structure (with a period l = !3) along the x3-axis. The averaging operator 
used throughout this subsection will be given by 

X3+/j2 

< f(z)>(x):= ｾ＠ j f(x1 ,x2, z3)dz3. 
X3-/j2 

Moreover, we introduce the concept of c-macrofunction I})(·) (related to the line 
interval (0, H)) by means of 

(V (x3, Y3) E (0, Hf)[Jx3- Y3J < l => jiJ)(x3)- IJ)(y3)j < c<Ji]. 

A function I})(·) can also depend on x1, x2 and/or t as parameters. The micro-
shape functions hA ( •) depend nOW only On the argument X3 since the oscillations 
of displacements caused by the periodic micro-heterogeneity of the medium take 
place only in the direction of the x3-axis. Setting V = ( -81, 81) x ( -82, 82) x 
( -l / 2, l/2) and passing to the limit 81 -+ 0, 82 -+ 0, we obtain from Eqs. (4.11) 
the equations of motion for the composite under consideration. Th this end we 
define by aa the versors of Xa-axes, a = 1, 2, and introduce the fields 

(6.5) 

and 

(6.6) 

U(x, t ) := < u(z, t ) > (x), 

WA(x, t) := < wx(z, t)hA(z3) > (x)f- 2, 

S(x,t) := < s(z, t ) > (x), 

HA(x,t) := < s(z,t)·'VhA(z3) > (x) , 

RAa(x,t) := < aa•s(z,t)hA(z3)> (x). 

Moreover, let U(x 1, x2, · , t), ... , RAa(x 1, x 2, · , t ) be regular c-macrofunctions (re-
lated to (0, H)) for every X = (x1, x2) E li and t E (to, t 1 ). In this case from 
(4.11) we obtain (summation over a = 1, 2 holds!) 

(6.7) 
Div S(x, t)- < g > (X) U (x, t)+ < g > (X)b = 0, 

- RA a,a(x, t)+ < ghA h8 > (X) Vl (x, t) + HA(x, t) = 0. 

Using the procedure explained in Sec. 5, from (6.6), after some manipulations, 
we arrive at (a , /3 run over 1, 2; summation convention over f3 holds!) 
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< C·3f3 hA > 1 
< \!hA • C • 3(3 h B > 
< hA 3 0 • C • 3(3 h B > 

X [ :B 1, 
wB .f3 

where the elements of the above matrix can depend on X E ll . Equations (6.7), 
(6.8) together with (5.2) constitute a model of the laminates which are periodic in 
x3-axis direction. In the directions of the x 1 and x2-axes, the material structure 
of those composites can be non-periodic. If e( ·) and C( ·) re independent of 
X= (x 1, x2) then (6.7), (6.8) are equations with constant coefficients. 

Substituting the right-hand sides of Eqs. (6.8) into Eqs. (6.7) we obtain the 
system of three second-order partial differential equations for U coupled with 
the system of 3N differential equations for w A. The latter are the second-order 
differential equations with respect to x 1. x2 and t. It follows that in formulations 
of boundary-value problems we have to prescribe on an three conditions for 
three components of u. Moreover, on an X (0, H) we have also introduced 3N 
extra boundary conditions for 3N components of w A, A = 1, ... , N. Similarly 
to Subsec. 6.1, the unknowns w A will be called the quasi-internal variables and 
hence the model given by Eqs. (6.7), (6.8) will be referred to as the quasi-internal 
variable model (QIV-model) of the laminated composites. 

6.3. Final remarks 

It can be seen that if the problem under consideration is independent of 
x3-coordinate then the QIV -model for the fibre-reinforced composites reduces 
to the MIV -model. Similarly, if the problem is independent of xh x2-coordinates 
then the QIV-model for laminates reduces to the MIV-model. The main feature 
of the QIV-models is that they can describe with a sufficient accuracy the con-
ditions on these parts of boundary which are intersecting the periodic structure 
of a composite material. Using QIV-models we can also describe certain class of 
composites which are non-periodic in directions normal to the basic cell. 

7. Conclusions 

Let us summarize the advantages and drawbacks of both the MIV- and QIV-
models of composites in the light of their possible applications to dynamics of 
composite solids. The main advantages can be listed as follows. 

1. The MIV- and QIV-models describe the effect of the microstructure size 
on the dynamic behaviour of a composite body, contrary to models based on the 
concepts of the homogeneous equivalent body. Hence, using these models we 
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can investigate dispersion phenomena and determine higher wave propagation 
speeds and free vibration frequencies in composite materials. It can be observed 
that the MIV-models describe the length-sca!e effect on the composite body be-
haviour only in dynamic problems while QIV-models-also in the quasi-stationary 
problems. 

2. The form of the governing equations of the MIV -models is relatively simple 
since all macro-internal variables as the extra unknowns are governed by the 
ordinary differential equations, involving only time derivatives of wA. Hence, the 
boundary conditions for the MIV-models have the form similar to that met in solid 
mechanics. Moreover, QIV-models make it possible to describe conditions on the 
boundary cross-sections of fibre composites and on lateral boundaries of laminates 
with the required accuracy. It has to be noticed that in the micromorphic models 
of composites, based on the concept of the extra local degrees of freedom (like the 
Cosserat-type continua), we deal with the large number of boundary conditions 
which may be not well motivated from the physical or engineering viewpoint. 
The same situation also holds for the asymptotic models involving higher-order 
approximations; this problem will be analyzed in a separate paper. 

3. The governing equations of an arbitrary MIV-model have constant coeffi-
cients which can be easily determined by calculating the integrals over V and do 
not require any previous solution to the boundary value problem on the unit cell, 
contrary to models obtained via the asymptotic methods. Coefficients in the equa-
tions of QIV-models can also be easily obtained by the calculation of integrals 
over the basic area or line element. 

4. The MIV- and QIV-models have a wide scope of applications since they 
can be postulated in the unified way for composites made of arbitrary simple 
materials. Moreover, the formal procedure presented in this contribution can be 
easily generalized to include the problem of finite deformations. 

5. In some special problems, the MIV- and QIV-models have an adaptive 
character similar to that of the FEM. It means that they can be formulated 
on different levels of accuracy either by applying different truncations of the 
Fourier series or by changing the form of micro-shape functions. Moreover, the 
error of the obtained solutions to boundary value problems can be evaluated 
a posteriori by the evaluation of the residual fields r( · , t) introduced in Sec. 4, 
provided that the stresses and displacements have been previously calculated in 
terms of macrodisplacements U and macro-internal variables wA with a sufficient 
accuracy. 

Among the drawbacks of the MIV- and QIV-models, the following ones seem 
to be the most relevant: 

1. The analysis of the microdynamic effects is confined almost exclusively to 
the behaviour of a composite on a macro-level. The passage to microdynamics 
by using formulae (3.6) may require a very large number N of the micro-shape 
functions, which make the problem very difficult to solve. 
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2. The choice of the Fourier expansion of local oscillations and its truncation 
leading to the proper MIV- or QIV -models for the problem under consideration 
is not specifi ed by the proposed approach. For some special problems (e.g. for 
laminated structures), the choice of the micro-shape functions can be based on 
the intuition of the researcher as a certain a priori postulated kinematic hypothesis 
not related to the aforementioned Fourier expansion. 

3. Every MIV- and QIV-model is restricted only to the analysis of a special 
class of motions which from a qualitative viewpoint has to be postulated a priori by 
the choice of the micro-shape functions. Hence the above models can be applied 
mostly to problems in which we are interested in a dynamic body behaviour, 
under motions which can be assumed a priori as relevant for the problem under 
consideration. 

Summarizing the above conclusions and taking into account the recently ob-
tained results in this field (cf. the references mentioned in Introduction), one can 
suppose that the MIV- and QIV-models of composite material structures deserve 
a certain attention both from the theoretical and engineering point of view. 
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