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SoUDIFICATION of an elastic sphere from melt in a quasi-static formulation has been investigated 
in "singular surface approach" and in "fi nite slab approach". Thermal stresses in the solid phase 
are derived for both approaches due to the uncoupled thermoelastic quasi-static theory. In the 
interfacial layer, which has been regarded as a boundary layer between the liquid and the solid 
phase, special constitutive relations for the purely mechanical problem are posed in order to have a 
continuous change from the liquid to solid phase. It has been found that the solutions corresponding 
to the "singular surface approach" are the zero order terms of the asymptotic expansions in the 
small parameter of the "finite slab approach" solutions. 

1. Introduction 

IN THE FIRST PART of the present paper [1] the different approaches treating 
the interface modelling during phase-change process (solidification or melting) 
are listed. A comparison between the two approaches: the "singular surface 
approach" and the "finite slab approach" is presented there. It is shown that 
under some physical hypotheses, the interfacial layer could be regarded as a 
"phase-change" boundary layer and its thickness depends only on the solidifica-
tion mechanism specific for a given materiaL The surface fields (internal energy, 
density, evolution time) in the "singular surface approach" are obtained to be the 
zero order terms in the asymptotic expansion (in a small parameter related to the 
layer thickness) of the correspondent fields in the " finite slab approach". In the 
same paper, as a particular case, the quasi-static solidification of a sphere and its 
interface evolution in time is observed. In the " finite slab approach" an averaging 
procedure is applied, in which integration along the thickness is performed to get 
mean quantities defined as surface fields, and some preliminary phenomenologi-
cal assumptions are necessary to obtain the field quantities. In some aspect this 
is shown in [1] for the internal energy and temperature distribution in the layer. 

The aim of the present paper is to continue the comparison between the 
"singular surface approach" and the " finite slab approach" for the quasi-static 
axisymmetrical growth of an elastic sphere from a liquid phase. In the framework 
of the quasi-static uncoupled thermoelastic theory, the results obtained in [1] 
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for the thermal problem will be used when solving the purely mechanical prob-
lem. For the case of solidification discussed here, it is appropriate to apply the 
uncoupled quasi-static thermoelastic theory (3). The extension of the model to 
the thermal stresses necessitates the assumption of some constitutive law for the 
thermal stresses inside the layer. It will be shown that the solutions for the defor-
mations, stresses and pressure corresponding to the "singular surface approach" 
are the zero order terms of the asymptotic expansion in a small parameter of the 
solutions obtained from the "finite slab approach". 

2. Formulation of the problem 

The crystal growth of an elastic sphere Gi with radius R in a spherical con-
tainer with radius R• filled with its melt Gt is considered as in (1). The phase 
change process is due to a continuous negative heat flux Q0 < 0 from a crystal 
seed of radius c; concentric with the spherical container. The solid and liquid 
phases are supposed to be at thermostatic equilibrium, isotropic, and the liquid 
phase is incompressible and ideal. A spherical coordinate system (r , <.p, B) is intro-
duced connected with the container. The problem is ID due to the symmetry with 
respect to <.p and e if the problem boundary conditions are independent of <.p and 
e. The interface evolution in time is r = R(t) and the interface coordinates are 
f1 := <.p , L2 := e. The second fundamental tensor of the surface is b11 = - R sin2 e, 
b22 = -R, b12 = b21 = 0 and the mean and Gauss curvatures are H = - 1/ R 
and J( = 1 j R2 and div s = 0 (all the notations are the same as those in (1 ]) . 

The solidifi cation process is treated in the solidific ation time scale, i.e., it is 
assumed to be quasi-static. The uncoupled quasi-static theory of thermoelasticity 
is applied for the solid phase. Then for both media the general balance Jaws for 
mass and momentum [1] give: 

(2.1) {! t = {! + = const, 

where {!t and {!s are the liquid and solid densities,e) respectively; 

(2.2) divTt = 0, divTs = 0, 

where T is the stress tensor. For the liquid phase, Tt = - pi, where p = p(r ) is the 
pressure and I is the identity tensor. From fluid incompressibility it follows that 
div Ut = 0, where Ut = ( Utr, 0, 0) are the displacements in the fluid. For the solid 
phase as in (3), Ts = AstrEsi + 2,usEs - (3As + 2,us)ets(es - ea)I, where As, ,Us 
and et5 are the material constants, Es is the deformation tensor with components 

(') Everywhere in the text index I refers to the liquid phase and index s - to the solid. 
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Us, = U s,. (r ) is the radial displacement and Oa is some reference temperature, 
e.g. Oa = Olr =<: · 

The boundary conditions for the unknown functions have to be imposed on 
o(J-;' 8Gi and on St - the interface boundary - for the "singular surface ap-
proach", or on st- and st+ - the two interface boundaries - for the "finite slab 

approach". Then on oG;, which means 7' = c and c -greater than the critical 
radius of a crystal nucleus [4] : 

(2.3) 
r!s = r!so = const, 

U 5 , = 0. 

0 ｾ｣ ｾ Ｋ＠ · - R*· n u t , I.e., r - . 

(2.4) P = Poo · 

3. Singular surface approach 

The interface 51 : F = r- R('t) = 0, is defined as the isotherm() = ()m and the 

surface normal velocity is Cn = R. On that surface the density and displacement 
are continuous, while the stress tensor suffers a jump [2] : 

(3.1) 

where 0' is the solid/liquid surface tension, and n = (1, 0, 0) is the unit normal. 
The uncoupled thermoelastic problem (2.2) with (2.3)2, (2.4), (3.1)2, and with 

the expressions (4.4) and (4.3) for 01 and Os found in [1], has the following 

solutions in Gi: 

(3.2) 

and in G; 

(3.3) 

b2 = bo + b1 r + 2 , 
'I" 

P = Poo' 
c 

Ut, = -2 ; 
T 

= 2(As + 1-ls) Ｈｾｏ＠ + b1)- 4!-ls:; + Asbl + A, 

= Ts88 = 2(As + 1-ls) ( ｾｾ＠ + b1) + 2!-l s :; + Asbl + A , 
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where 

0" [2As 4!-l s 2] b 
1 

- R - P=- 7[ + R3 c 0 + (3As + 2!-ls )as(()m - Oa) 
bt =b1 = ＭＭ ＭＭＭＭＭＭｾ ＭＭＭＭＭＭＭＭｾＭＭｾＭＭＭＭＭＭＭＭＭＭＭＭ ＭＭＭＭ

). 4!-l s 
3 s + 2!-l s + RJ c 

Here ｢ｾ＠ and C' correspond to the "singular surface approach". In the next 
section dealing with the "finite slab approach" we shall give another value of b1. 

4. Finite slab approach 

In this approach the two subregions Gt are divided by a narrow layer Zt with 
regular surface boundaries St, and a reference surface St is located between 
them, to which the mean interfacial fields will be referred. The surface boundaries 
St are defined as St" : r = R + z- and St : r = R + z + and a coordinate 
l E [z-, z+] is ascribed to the layer, such that r = R + l. 

Suppose that the physical assumptions i) - vi) from (1] hold. Therefore, the 
interfacial layer is a phase change boundary layer between the liquid and the 
solid phase with thickness 8Ro ｾ＠ 1 and z+ - z- = 8Ro, where 8 is a small 
parameter. Moreover, from (4.14) of [1] the quantities z+ and z- depend only 
on the thermal properties of the media in contact. All the interfacial fields are 
represented as polynomial functions of l, while their corresponding mean values 
F - in an asymptotic expansion of the small parameter 8: 

(4.1) 

where Fo relates to the "singular surface approach" solution. 
As a result, for the density in the solid bulk we get: 

(4.2) or 

which confirms the result of the " singular surface approach" (3.1)1 and the sur-
face density e5 in the interfacial layer is given by ( 4.17) of [1] . Similarly, the 
temperature solutions () 1 and () s in the bulks are ( 4.19), ( 4.20) of [1 ], which have 
as zero order terms the "singular surface approach" solutions ( 4.4) and ( 4.3) from 
[1]. The surface energy density rles is represented by (4.18) of [1] . It is evident 
that the zero order terms of ( 4.17) and ( 4.18) of [1] vanish, as it was assumed in 
the "singular surface approach". 
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Some additional assumption for the interfacial layer material rheology must be 
introduced before formulating the mean surface stress ws, i.e., the assumption: 

vii) The stress tensor T(l) has only non-zero diagonal elements T;j = 0, (i ::f: j). 
Then for the stress tensor in the layer we assume the form 

T(l) = - p(l)I + .X(l)trE(l)I + 2!t(l)E(l) - [3..\(l) + ＲｾｴＨｬＩ｝＠ a (l) [O(l) - Omin] I, 

where the material coefficients A, fl and a, p( l), the volume deformation tr E and 
the radial displacement u r are regular functions of l. The coefficients of these 
unknown functions are found by a matching procedure with the corresponding 
values from both media, and their final form is: 

(4.3) 

where 

2bo + 36, 
c:s = R + z- 1 ' 

With 

j ( l) = 1 + ( l I R?' As(l) = (1 + lj R)ls , 

the case of the linear momentum balance in the layer (from (3.2) of [1]) 

'ljJ = ev = 0, 'lj;s = esv = 0, w= - T, V= 0, WS = <-T(l)As(l) > 

is: 
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The unknown coefficients p2 and ｢ｾ＠ will be found after taking into account that 

and that < p(l) > = O.So-+ 0(8) is the classical surface tension: 

(4.5) 

(4.6) 

- 30" 
P2 = (8Ro)3 , 

｢ｾ＠ = bJ. + oB + O(o2
) ; 

here B can be calculated from (4.3). 
Evidently, if we replace b1 with ｢ｾ＠ and C with C" in (3.2)2, (3.3)1 and (3.3)2, 

the resultant displacements and the stresses will possess zero order terms with 
respect to 5 which will coincide with the respective ones from the "singular surface 
approach". Here, it is interestipg to note that in the layer all the considered 
functions are regular, i.e., they obey Eq. (4.1), but only the pressure function p{l) 
contains a term of order 0( o-1) like a "smoothed" Dirac function contributing 
to the surface tension as a mean interfacial quantity. In the singular surface case 
the interface is of zero thickness and we can regard the surface tension as a result 
of some Dirac function similar to the pressure function. 

5. Conclusions 

An extension of authors' previous paper [1] dealing with the elastic sphere 
solidification from melt in a quasi-static formulation has been obtained in two 
approaches: "singular surface approach" and "finite slab approach". Using the re-
sults for the temperature and density distribution everywhere in the solid/liquid 
system from [1 ], the purely mechanical uncoupled thermoelastic quasi-static prob-
lem is treated in both approaches. In the interfacial layer special constitutive re-
lations are posed for the stress tensor, displacements, material coefficients A, J.L 

and a, the volume deformation and pressure, in order to ensure their continuous 
change from liquid to solid. 

The comparison between the two approaches leads to the conclusion that 
the solutions for the density, temperature, thermal stresses, displacements and 
pressure obtained by the "singular surface approach" are the zero order terms in 
the asymptotic expansion of the corresponding solutions due to the "finite slab 
approach". 

The classical surface tension is due to the pressure function in the interfacial 
layer. It occurs that the pressure function is singular with respect to the layer 
thickness and depends only on the thermal parameters of the material. 
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