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Bending of a symmetric piezothermoelastic laminated plate
with a through crack

Y. SHINDO, W.DOMON and F. NARITA (SENDAI)

FoLLOWING the theory of linear piezoelectricity, we consider the response of a cracked composite
plate with attached piezoelectric polyvinylidene fluoride layers subjected to mechanical, thermal
and electric field loading. Piezoelectric layers are added to the upper and lower surfaces. Classical
lamination theory is extended to include piezothermoelastic effects, and the bending problem of
a symmetric piezoelectric laminated plate with a through crack is considered. Fourier transforms
are used to reduce the problem to the solution of a pair of dual integral equations. The integral
equations are solved exactly and the moment intensity factor is expressed in closed form.
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half of the crack length,

intensity of uniform electric field,

x, axis elastic modulus,

z component of electric field vector,

piezoelectric compliance coefficients,

bending composite plate stiffnesses,

t-j plane shear modulus,

mm, piezoelectric material has planes of symmetry in the z;- and z3-axes;
2 denotes that the zs-axis is a two-fold rotational axis,
intensity of uniform moment,

moment resultants,

electric moment resultants,

thermal moment resultants,

half of the total thickness,

thickness of the k-th layer,

zero-order Bessel function of the first kind,

moment intensity factor,

vertical shear forces,

absolute temperature,

temperature rises at bottom and top surfaces, respectively,
stress-free reference temperature,

rectangular displacement components,

equivalent shear,

middle surface displacement,

coordinate axes of laminate,

coordinate axes of lamina [for PVDF, z: rolling direction, z3: poling direction],
r; axis coefficient of thermal expansion,
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€1z,Eyy, €xy COmponents of strain tensor,
¢ =T — Tk, temperature rise,
6y angle between the lamina z axis and lamina principal z; axis,
vi; 1-) plane Poisson’s ratio,
Ozz,0yy,0xy components of stress tensor.

Superscripts

E  electrically induced component,
¢ thermally induced component.

Subscript

k  k-th layer.

1. Introduction

P1EZOELECTRIC materials and composites are an important branch of modern
engineering materials, with wide applications in actuators and sensors in smart
materials and structures [1]. Investigations on such smart materials and structures
include the works of LEE and JIANG [2], who presented a state space approach for
exact analysis of three-dimensional piezoelectric lamina, with the aim at devel-
oping an efficient analytical methodology for laminated piezoelectric structures,
and BATRA et al. [3], who performed an analysis of a simply supported rectangular
elastic plate forced into bending vibrations by the application of time harmonic
voltages to piezoelectric actuators attached to its bottom and top surfaces. How-
ever, it is reported experimentally that flaws or defects produced during their
manufacturing process in piezoelectric materials can adversely influence the per-
formance of piezoelectric devices [4]. When piezoelectric materials are subjected
to mechanical, thermal and electrical stresses in service, the propagation of de-
fects such as cracks may result in premature failure of these materials. To prevent
failure during service and to secure the structural integrity of piezoelectric devices,
understanding of fracture behaviour of piezoelectric materials and composites is
of great importance [5, 6].

In this investigation, the linear electro-thermoelastic analysis of a symmetric
piezoelectric laminated plate with a through crack under a uniform electric field is
discussed. The cracked composite plate with piezoelectric polyvinylidene fluoride
layers attached to its bottom and top surfaces is loaded by mechanical and thermal
bending moments. The electric field and the poling direction are perpendicular to
the plate surfaces, and classical lamination theory including piezothermoelastic
effects is applied. Fourier transforms are used to reduce the problem to the
solution of a pair of dual integral equations. The integral equations are solved
exactly and the moment intensity factor is expressed in closed form.
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2. Problem statement and basic equations

Consider a symmetric piezothermoelastic laminated plate containing a through
crack of length 2¢ constructed of /V layers of materials that exhibit the symmetry
of an orthorhombic crystal of class mm2 with respect to axes z;, z, 3 as shown
in Fig.1. Let the coordinate axes ¥ and y be such that they are in the middle
plane of the hybrid laminate and the z = x5 axis is perpendicular to this plane.

8=T,

y Z

F1G. 1. A symmetric piezothermoelastic laminated plate with a through crack.

The crack is located on the line y = 0, —¢ < & < c¢. The total thickness is 2h
and the k-th layer has thickness hy = z; — z;_1 (k = 1,..., N), where zp = —h
and zy = h. For the present investigation, in which a large uniform electric
potential is applied to one or more layers of the cracked laminate, it is assumed
that the electric field resulting from variations in stress and temperature (the
so-called direct piezoelectric effect) is insignificant compared with the applied
electric field [1]. The cracked composite plate is deformed by mechanical and
thermal bending moments. If the midplane is a plane of material symmetry, it
may be seen that the membrane and bending solutions of the problem would be
fully uncoupled.

By employing the usual assumptions of classical lamination theory [7], the
rectangular displacement components ., u,, u, may be expressed as follows:

(2.1) U = —2ZW.5 , Uy = —2W,y, u, = w(z,y),

where a comma denotes partial differentiation with respect to the coordinate and
w(x, y) represents the deflection of the middle plane of the composite plate. The
strain variations within the laminate are related to the middle surface displace-
ment w(x,y) by the expressions

(2.2) gz = —2ZW g, Eyy = —FW 4y, Exy = =Wy .
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The constitutive relations for a typical layer £ (k = 1,..., N), referred to
arbitrary plate axes z, y and z, become

Ozx Qu Qn Qs W g
(2.3) Tyy =-2|Qp Qn Qx W,yy
Ozy )y Qs @ Qss % 2w 2y
0 0 e 0 M
— [0 0 &5 0 4 A b B

OOE%kEZk j\—ﬁk

where (0., 0,,, 0,) are the components of stress tensor, [, is the z component
of electric field vector, and § = T'—T' is the temperature rise from the stress-free

reference temperature Tg. For Q),,, €; and \; we have

4
Q11 = Quicos* Oy +2(Q12+2Qes) sin? by cos® 01 + Qo sin’ by,

Q12 = (Q11+Q2—4Qss) sin” 01 cos® 01 + Qra(sin* 6y +cos* 6,
Q

16 = (Q11—Q12—2Qs6) sin 8 cos® 8 + (Q12— Q22 +2Qes) sin 0, cos b,

2.4
R @y = Quisin® 01 +2(Q12+2Qss) sin® 0y cos® b + @z cos* 0y,
Qs = (Q11—Q12—2Qss) sin> 8 cos Oy + (Q 12— Q22 +2Q¢5) sin 8, cos® b,
Qes = (Qu1+Q22—2Q12—2Qs¢6) sin” 8, cos® 0; + Qes(sin® 0; + cos® 0;);
- I
Qll = 1 - P—— 3
Q12 = bz
(2 5) 1- V22 )
) E
Qn = 1—2,
— V121
Qss = Gi2;

&3 = (Quds + Qradsp) cos® Oy + (Qrads + Qrdsy) sin® b,
(26) e = (Quds + Qrads)sin® 0 + (Q12da1 + Qaadsz) cos? 0y,
€6 = [(Q11 — Q12)d31 + (@12 — Q22)d32]sin by cos by ;

M = (Qua + Qrag)cos® ) + (Qraan + Qaz)sin by,
(2.7) A2 = (Quar + Qraap)sin? 0 + (Qraa + Qpan)cos by,
As = [(Qu — Qu2)aq + (Q12 — Qaz)az] sin by cos by ;

in which F; is z; axis elastic modulus, v;; is the i-j plane Poisson’s ratio, (G;; is the
i-j plane shear modulus, dj; are the piezoelectric compliance coefficients, «; is
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the z; axis coefficient of thermal expansion, and 6, is the angle between the
lamina z axis and lamina principal z; axis. Additionally, the elastic moduli and
Poisson’s ratios are related by

viz _ va1
(2.8) ok

Integrating the constitutive relations of Eq. (2.3) through the composite plate
thickness leads to the structure material stiffness relationships. The bending com-
posite plate stiffnesses are given as

N %k
2.9) Dy;=Y% / @ 22dz (5,5 =1,2,6).
b=la
Electric and thermal moment resultants are given by
ME N = (€
(2.10) MyEy = Z / €37 (E)rzdz,
M_;:Ey k=1 z,_, €3¢ k
M.f:c N Zk Xl
(2.11) ME Y= / Ay ¢ 0zdz.

q al ., T
Ma;y k=124 /\6 i

Combining the results of Egs.(2.9)—(2.11), the moment resultants (M., M,,,
M.,.,) can be written as

M. Dy Dy Dig Wias ME Mg,
(2.12) My, 2 == | D Dpn Dy Wyy (— My% 0 ng
Mry D16 D26 D66 2w,xy Mg ng

Note that Mny, M and D, Dy are identically zero for the cross-ply construc-

tion, since the coefﬁments €36, A6 in Egs. (2.10), (2.11) and Q,4, Q@ in Eq. (2 9)
are zero for ply angles of 0° or 90°,

The usual plate equilibrium conditions in the case of zero mechanical loading
are

MI(L‘,:L' + M:L‘y,y & Qz‘ = O
Myeo + My, y - Qy =0,

(2'14) er + Qy,y =0,

(2.13)
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where (), and (), are the vertical shear forces. Substituting Eq.(2.12) into Egs.
(2.13), (2.14) yields

(215) QI = — [D“u)’;,;;,:jU & Dz(,w‘yw =+ (Du o 2D55)w,ryy + 3D15wmy]
- [ME +ME 4+ M0+ M

ok TY,Yy X,z ;r.‘y,y] )

(2.16) Qy = — [D16’w,r_.w -+ ngw,yw + 3D26w,zyy + (D12 + 2D66)w.xry]
- [ME +ME + M° _+ M ],

ry,xr v,y TY,T vy, y
(217) Duw,mm + 2D12w,myy 4+ 4D15w,m.x.y
+ Dzz’w!yyyy + 4D26w'myyy + 4D66w,uyy

+(ME .+ ME  +2ME . + ML .+ M],, +2ME ) =0.

vy, vy YTy TT,TT yuyy
Assuming a symmetric cross-ply panel having angles of 0° or 90°, the governing
equation (2.17) simplifies to
(2.18) Duw,”M + 2D12w'”yy + Dzzw!wyy + 4D66w,“;w
+ME _+ME + M, + M

rzr,rx Yy, vy zZ,TT yu,yy

=0.

The hybrid laminate with a through crack is bent by uniform moments of
intensity M, at infinity and is subjected to an applied uniform electric field £, =
Ey in addition to the upper and lower surface temperatures § = —7g, 7j. The
plate is subjected to the linear temperature variation
To
‘F(— .

Because of the assumed symmetry in geometry and loading, it is sufficient to
consider the problem for 0 < z < o0, 0 < y < oo only. The boundary conditions
can be written as

(2.20) Vi=My,+Q, =0 (y=0, 0<z< ),
MUS':'O (y=01 0§~’E<C)»
u, =0 (y=0, c<zr<x),

(2.19) 0(z) =

(2.21)

where V, is the equivalent shear.

3. Solution procedure

We assume that the solution w is of the form

Dlz—Dzz ) DIZ—DII
3.1 w = Myz* +
G- 2(Dy Dy - DH) " 2(Dyy Dy — D3y)

Moy?

+ %/ [A1(s)e™* MY + Ay(s)e™ Y] cos(sz)ds,
0
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where A;(s) and A,(s) are the unknown functions to be determined later, and
~1 and ~y, are

(3.2) v = {(Dn + 2Dgg) + (Di"2 +4D13Dgs + 4Dgs — D“DZZ)I/Z}I/Z
Dy ,
2

(3.3) = { (D12 + 2Dgs) — (D}, + 4D12Dg + 4 Dgg — D“Dn)l/z}l/
' Dzz .

The boundary condition of Eq.(2.20) leads to the following relation between
unknown functions:

(34) 7 [Diz+4Dss — Dui] Ai(s) + 12 [Dra + 4Des — D3| Aa(s) = 0

Application of the boundary conditions (2.21) gives rise to a pair of dual integral
equations:

C [sA@)cos(sa)ds = T(Mo— ME — MS) (0<a <o)
@5 0.
fA(s)cos(sa:) ds =0 (c <z < x),
0

in which C', ME and M!, are known as
4Dgs + D13 — Dyyv3
NnDu(v? - 3)

~(Dn73 - D)

(3.6) = (D27t - Dip)

4Dgs + D1z — Dypr?
Y2 Dn(E — 3)

N
67) Mg = 3 P - )

(3.8) Z (’\2)" To(z} — z2-1)-

The unknown A(s) is related to A J‘(S) () = 1,2) as follows:
(3.9) A(s) = s[nAi(s) + 1242(5)] .

The set of dual integral equations (3.5) may be solved by using a new function
@(£) defined by

(3.10) A(s) =

Q%

1
e 0/ €20 (€) o (es€) de,
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where Jo( ) is the zero-order Bessel function of the first kind. Having satisfied
Eq.(3.5) for ¢ < & < oo, the remaining condition for 0 < z < ¢ leads to an Abel
integral equation for @(£). The solution for @(¢) is expressed by

vy

(3.11) o) = (Mo - ME - M{,) /2.

The moment intensity factor is obtained as
ME + M?
(3.12)  K;= lim {27(z — €)}'/* My, (z,0) = My(rc)'/? (1 - W)
z—ct 0

4. Numerical results and discussion

The thermoelastic response of a cracked piezoelectric laminated plate sub-
jected to mechanical, thermal and electric field loading is considered. The hy-
brid laminate chosen is a graphite/epoxy composite with a symmetric construc-
tion of [0°/90°/0°/90°], where [ ], denotes symmetry about the middle surface.
Each graphite/epoxy lamina is of constant thickness. Two double thick layers of
polyvinylidene fluoride (PVDF), piezoelectric polymers poled in Fz-direction,
are added to the upper and lower surfaces to make a ten-layer hybrid composite
structure. Material and geometric properties for the graphite/epoxy lamina and
the PVDF layer are given in Table 1.

Table 1. Properties of graphite/epoxy and PVDF.

Graphite/epoxy
Ey = 181GPa, E, = 10.3GPa
Gy = 7.17GPa
vz = 0.28
a1 =0.02x 107°1/K, ey =22.5x 107" 1/K
hog = hy =1.25x107*m (k=2,..,9)
ocp = gk = 1580kg/m® (k =2,...,9)

Polyvinylidene fluoride (PVDF)

Ey = Ey = 2GPa, G2 =0.752GPa, v; = 0.33
ap =03 =120 x 10~° 1/K
ds = d3; = 23 x 1072 m/V
hp=hy=hyp=25x%x10""m
op = p1 = o1p = 1800kg/m?

Figure 2 exhibits the variation of the normalized moment intensity factor
|K;/My(mc)'/?| against the electric field 5y for My = SNm/m and T} = 40° C.
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The existence of the electric field /2. = Fj produces smaller values of the moment
intensity factor.

| K,/ My (7)1

Ey (X10" V/m)

Fig. 2. Moment intensity factor | K7 /Mo(wc)/?| versus Eq.

Only the converse piezoelectric effect has been considered here, whereby an
electric field is applied to piezoelectric layers in order to suppress the structure’s
overall deformation and singular moment near the crack tip. However, advantage
can also be taken of the direct piezoelectric effect by employing another piezo-
electric layer as a sensor. By coupling the two effects with appropriate feedback
control, a smart structure can be achieved [1]. Work in this area is currently being
pursued.

5. Conclusions

The response of a cracked composite plate with attached piezoelectric poly-
vinylidene fluoride layers under mechanical, thermal, and electrical field loading
has been analyzed theoretically. Classical lamination theory including piezother-
moelastic effects is applied and the results are expressed in terms of the moment
intensity factor. The moment intensity factor decreases with the increase of the
electric field. The results presented demonstrate the feasibility of suppressing
thermomechanically induced flexure and singular moment near the crack tip via
the piezothermoelastic effects.

http://rcin.org.pl
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