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Macroscopic measure of the rate of deformation 
produced by micro-shear banding 

R. B. ｐｾｃｈｅｒｓｋｉ＠ (WARSZAWA) 

PHYSICAL MODEL of shear strain rate produced by active micro-shear bands in metals is formulated 
and mathematical idealization of micro-shear bands system by means of the theory of singular 
surface of order one is proposed. Extension of the known averaging procedure over the repre-
sentative volume element traversed by a strong discontinuity surface is presented. As a result, the 
macroscopic measure of velocity gradient produced in the course of clastic-plastic deformation 
with micro-shear banding is derived. The corresponding macroscopic measures of the rate of de-
formation and material spin, necessary to formulate constitutive description, are also determined. 

1. Introduction 

INTEGRATED STUDIES on physics and mechanics of large plastic deformations of 
metals accounting for micro-shear bands require careful analysis of the averag-
ing procedure and proper setting of the resulting description of the effects of 
micro-shear bands within the continuum theory of materials. Formulation of a 
complete theory based on the precise micro-to-macro transition remains an open 
and challenging question. The aim of the paper is to approach this problem merely 
from the point of view of the contribution of micro-shear banding to kinematics 
of finite elastic-plastic deformations of metallic solids. The related macroscopic 
measures of velocity gradient, rate of deformation and material spin, which are 
necessary to formulate constitutive equations of elastoplasticity at finite strain, 
have been determined. The derivation is based on the foll owing novel concepts: 

(i) Mathematical idealization of a system (cluster) of active micro-shear bands 
as propagating singular surface of order one, having properties of a vortex sheet. 

(ii) Formulation of the physical model, which enables to relate the macroscopic 
shear strain rate with microstructural features of active micro-shear bands and to 
identify the jump in velocity across the vortex sheet. 

(iii) Extension of the known averaging procedure by introducing the repre-
sentative volume element (RYE) traversed by the singular surface of vortex sheet 
type. 

The possibility of modelling of the narrow zone of localization as a surface of 
strong discontinuity in the velocity field was suggested by THoMAS [1] and applied 
further by V ALANIS [2] and Su [3] . The authors observed that the concentration 
of dislocation movement on a few slip planes can cause abrupt changes of the 
velocity field on the micro-scale and may lead to velocity jumps accompanying 
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plastic deformation in macro-level. The theoretical characterization of a shear 
band, as a surface of discontinuity, across which the jumps in velocity, stress 
gradient and temperature are allowed, was considered recently by OLMSTED et al. 
[4] for the one-dimensional problem of unidirectional shearing of a slab, which is 
used typically in a variety of investigations of the so-called "adiabatic shear bands" 
formation. The results of this study can be applied to derive in a more rigorous 
manner the constitutive equations, accounting for micro-shear bands with their 
characteristic geometric pattern, which were obtained previously under certain 
simplifying assumptions, [5-7]. Standard symbolic notation is used throughout 
the paper with tensors denoted by boldface characters. 

2. Physical motivation 

The results of metallographic observations reveal that in heavily deformed 
metals or even at small strains, if they are ーｲｾ｣･､･､＠ by the change of defor-
mation path, a multiscale hierarchy of shear localization modes progressively 
replaces the crystallographic multiple slip or twinning. Different terminology is 
used depending on the level of observation. In our study, the term " micro-shear 
band" is understood as a long and very thin (of order 0.1 ｾ ｭＩ＠ sheet-like re-
gion of concentrated plastic shear, crossing grain boundaries without deviation 
and forming a definite pattern in relation to the principal directions of strain. 
It bears very large shear strains and can lie in a "non-crystallographic" position. 
The term "non-crystallographic" means that micro-shear bands are usually not 
parallel to a particular, densely packed crystallographic plane, of conventionally 
possible active slip system in the crystallites they intersect. This change of de-
formation mode contributes to the development of strain-induced anisotropy and 
modifies remarkably the material properties. The experimental information about 
mechanical behaviour and related structural features is reviewed, e.g. in [6, 8 and 
9], where comprehensive lists of references are given. The experimental observa-
tions show that micro-shear bands, formed e.g. in rolling, are usually inclined by 
about ± 35° to the rolling plane and are orthogonal to the specimen lateral face, 
although there can be considerable deviations from this value within the 15° to 
50° range, cf. [8] and [9]. 

3. Macroscopic averaging and continuum mechanics description 
in plasticity of metals 

The physical constraint on any continuum mechanics approach to metal plas-
ticity, i.e. the physical dimension of the smallest representative volume element 
(RVE) of crystalline material for which it is possible to define significant overall 
measures of stress and strain during plastic deformation, was thoroughly dis-
cussed by HILL [10-13] and HAVNER [14- 16]. According to [10] , p. 8: " ... the 
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dimensions must be large compared with the thickness of the glide packets sep-
arating the active glide lamellae (generally of order 10- 4 cm in many metals at 
ordinary temperatures). Thus, the linear dimension of the smallest crystal whose 
behaviour can legitimately be considered from the standpoint of the theory of 
plasticity is probably of order 10-3 cm." On the other hand, HAVNER [14-16] 
argues that, to an observer who can resolve distances to 1 f.L m, the deformation of 
crystal grains (with the mean grain diameter of order 100f.L m) within plastically 
deformed metal polycrystals is relatively smooth. At such a scale of observation, 
called microscopic level, one can just distinguish between slip lines on crystal 
surfaces. This slip lines appear on the submicroscopic level as slip line bundles 
and slip bands of the order of 0.1 1-1m width, containing numerous glide lamellae 
between which amounts of slip as great as 103 lattice spacings have occurred. 
Therefore, the minimum dimension of the RVE in the continuum microscopic 
description of elastic-plastic deformations of crystalline solids is taken in [14] to 
be of the order of 1 f.Lm, i.e. > 103 lattice spacings. Consequently, the linear di-
mension of the RVE corresponding to the macroscopic level is often assumed to 
be of the order of several millimeters, for moderately fine-grained metals, e.g. 
in [15] the macro-element is assumed as a polycrystalline unit cube having the 
unit linear dimension Lo ｾ＠ 1 mm. This discussion is valid under the general as-
sumption that the dominant mechanism of inelastic behaviour is crystallographic 
slip. In such a case, the theory describing kinematics and constitutive structure 
of finite elastic-plastic deformations of crystalline solids is well established and 
the transition between the microscopic and macroscopic levels is well understood 
(cf. e.g. HILL [11-13), HAVNER [14-16) and MANDEL [17-18), as well as, HILL 

and Rrc E [19], PETRYK [20] and STOLZ [21]). In particular, relations between 
macro-measures of stress, strain and plastic work are related with the volume 
averages of their micro-measures. It has also been shown that certain structural 
features of the constitutive relations, as the normality rule or certain constitutive 
inequalities, are transmitted upwards through a hierarchy of observational lev-
els unchanged, irrespective of the heterogeneity, no matter what is its origin (cf. 
HILL (22]). 

In the averaging procedure, discussed in [ll-20), quasi-static deformation 
processes with negligible body forces are typically assumed. This means that within 
the reference volume V0 of the macroscopic RVE (macro-element), the nominal 
stress field sm, representing micro-stresses, and their rates sm are self-equilibrated 

(3.1) Divsm = 0, Divsm = 0 in Vo 
and with boundary conditions 

(3.2) Vosm = t..,, Vosm = L on 8Vo, 

where vo is the externally directed unit vector normal to the reference volume at 
a point on its boundary 8V0. The averaging procedure and micro-to-macro tran-
sition, studied within the framework of finite strain theory by HILL [11-13] and 
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HAVNER [14-16] lead, in particular, to the following relations for the macroscopic 

measures of the deformation gradient F and its rate F, which are expressed, with 
use of Gauss' theorem (divergence theorem), by means of the surface data 

(3.3) F = { f} = ｾ Ｐ＠ 1 GradxmdVo = ｾ Ｐ＠ j Xm 0 vo dAo, 
Vo 8V0 .. 11 . 11. (3.4) F = {f} = Vo GradxmdVo = Vo Xm 0 vo dAo. 
V0 av0 

Here the symbol Xm denotes a microscopic field of motion of the material point 
Xm in the reference configuration of the RVE into its current position Xm 

(3.5) 

and the microscopic velocity Vm is determined in the current configuration 

The Gauss theorem ap.£!ied above, was specified for any vector field w = w(Xm) 
defined on the closure V 0 = V0 u 8V0 and being of class C0(V 0) and piecewise of 
class C1(V0), so that w is continuous on the closure Vo and piecewise continuously 
differentiable on V0 (cf. e.g. SMITH [23]). Similarly, the following relations for the 
macroscopic measures of the suitably smooth tensor field of nominal stress S 

(3.7) S = { Sm} = ｾ Ｐ＠ 1 Sm dVo = ｾ Ｐ＠ 1 X 0 t 11 dAo , 
V0 av0 

. 
its rate S 

(3.8) 

and the Kirchhoff stress T 

(3.9) T = {T m} = {fsm} = ｾ Ｐ＠ 1 x 0 tvdAo 
8 Vo 

can be obtained by application of Gauss' theorem and (3.1), cf. [11). 
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4. Basic kinematical relations 

In plasticity of single crystals, it is usually assumed that dislocations traversing 
a volume element produce a change of its shape, but they do not change its 
lattice orientation. This leads to the fundamental assumption in elastoplasticity 
models for metals, which says that distinction should be made between kinematics 
of the continuum and kinematics of the underlying crystallographic structure. 
The macroscopic counterpart of such a situation in finite deformation plasticity 
of polycrystals is Mandel's concept of the intermediate, relaxed, configuration, 
called isoclinic one, in which the chosen director triad preserves always the same 
orientation with respect to the fixed axes of the laboratory reference frame. In 
such a case, we can understand that the director vectors are introduced as a tool 
to monitor at any instant the state of the strain-induced anisotropy. Different 
visualizations of such a triad are discussed e.g. in (17], and (24-29], where more 
detailed discussion and further references can be found. The assumption that 
the continuum is endowed with the structure in the form of the director vectors 
leads to the concepts of the local, relaxed, intermediate isoclinic configurations, 
plastic spin and structure corotational rate. Due to this, the decomposition of the 
deformation gradient F becomes unique, (17] 

(4.1) F= E P, 

where E denotes the elastic transformation from the intermediate isoclinic con-
figuration to the current one, and P is the plastic transformation from the refer-
ence configuration to the isoclinic one. The following basic kinematical relations 
hold: 

(4.2) L = EE- l+ EPP- lE- 1 
) L= D+W, 

(4.3) D= n e + DP, W=We+W, 

(4.4) De = {EE- 1}s, DP = {E pp- 1 E-1 }s ) 

(4.5) w e = {EE- 1} a, W = {E P p- 1 E- 1} a , 

where L = FF-1 is the velocity gradient, D and W correspond to the rate of 
deformation and material spin, respectively, and the superscripts· e and p refer to 
elastic and plastic states, whereas the symbols { t} s and { t} a denote the symmetric 
and skew-symmetric parts of the second-order tensor t. A similar decomposition, 
such as in ( 4.1 ), was proposed earlier by LEE (30] within the context of finite 
elastic-plastic deformation of continuous body, without explicit definition of a 
structure or director vectors and isoclinic configuration. Such an approach is 
completely different from that presented above and can be considered as an 
alternative to the plasticity theory of structured solids. 



http://rcin.org.pl

390 R.B. PI;;CHERSKI 

5. Physical model of shear strain rate produced by active micro-shear bands 

Consider certain RYE containing the region of progressive shear banding, de-
picted schematically in Fig.l a, where the traces of successive clusters of micro-
shear bands are shown. The arrow points to the direction of expansion of the 
region. According to the results of experimental observations presented in [8- 9] 
and [31 ], an active shear band consists of the clusters of micro-shear bands of 

ol b) 

m.s.b 

\__ 
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X· I --
LMS 

cl 

FIG. 1. Schematic illustration of the multiscale, hierarchically organized system of shear banding: 
a) The section of the unit cube of the RYE, having the dimension Lo ::::::: 1 mm, traversed by the 

region of shear banding progressing in the direction pointed by the arrow. b) The cluster of 
active micro-shear bands with the active zone of the thickness H M s ::::::: (10 -:- 100) IJ.m and 

the width LMs being of the same order. Beneath, the fundamental mechanism of plastic shear 
strain generated by the active micro-shear bands (m.s.b.), which operate within the active zone, 

moving along the distances x; , i = 1, 2, 3, ... , N M s, during their "lifetime", and produce the total 
displacement L1 M s of the top of the active zone relative to the bottom, is depicted. c) The active 
zone of a single micro-shear band of the thickness hm, ::::::: ｏ Ｎ ｬｾｊＮｭ＠ and the width lm, of the same 
order. Below, the picture of an elementary dislocation model of plastic shear in the active zone 

is shown. The displacement Bm, of the top of the active zone with respect to the bottom is 
produced by n dislocations moving at the distances ｾ ［ Ｌ＠ i = 1, 2, 3, ... , n. 
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the thickness of order (10 --;-- 100) f-Lm, which at this level of observation can be 
considered as elementary carriers of plastic strain. On the other hand, an active 
micro-shear band is produced as the effect of spatial and time organization of 
large number of dislocations, which generate and move collectively within a long 
and thin sheet-like regions, crossing grain boundaries without deviation and hav-
ing the thickness of order 0.1 f-Lm . Therefore, from the point of view of kinematics, 
the micro-shear band can be considered as a thin region of concentrated plastic 
shear. During the passage of the active zone, of thickness hms and width lms, the 
local perturbation, Ems' of the microscopic displacement field is produced which 
travels at the head of the micro-shear band with the speed Vms as a distortion 
wave, cf. Fig.1 c. According to [31), lms can be interpreted as the mean diame-
ter of the dislocation islands observed on TEM micrographs. Therefore, one can 
assume that approximately lms ｾ＠ hms. According to the discussion in [32), the 
width lms corresponds also to the dimension of the range of stress pulse produced 
by dynamic pile-up of a group of dislocations, which is necessary for the transmis-
sion process through the grain boundary and activation of a micro-shear band. In 
Fig. 1, two successive "magnifications" of the shear banding area are "zoomed in" 
and the related fundamental mechanisms of plastic shear are illustrated. The first 
one, depicted in Fig. 1 b, corresponds to the cluster of micro-shear bands, having 
the active zone of thickness HMs and the width L Ms, in which the passage of 
large number of active micro-shear bands results in the local perturbation, i1Ms, 
of the microscopic displacement field Um = Xm- X m , which moves with the speed 
V •. The second "magnification", shown in Fig. 1 c, represents the aforementioned 
active zone of a single micro-shear band. 

Consider an elementary dislocation model of plastic shear produced in the ac-
tive zone at the head of a single micro-shear band, as it is depicted in Fig. 1 c. Ac-
cording to the known approach, the shear strain results from the generation and 
movement of large number of dislocations through the active zone, (cf. GILMAN 

[33] and DIETER [34]), and the following relations hold 

(5.1) 0 = ｾ ｩ ｢＠
1 

lms ' 

n b n 

Ems = L 0i = lms ｌ ｾｩＬ＠
I I 

where O; is the displacement of the i -th dislocation at an intermediate position 
between ｾ ｩ＠ = 0 and ｾ ｩ＠ = lms, whereas Ems corresponds, according to Fig. 1 c, 
to the displacement of the top of the active zone relative to the bottom for n 
dislocations. The corresponding shear strain 1 reads 

(5.2) 
_ Ems _ bn -

I - hms - lmshms ｾＧ＠

n 

where (" is the average distance that dislocations have moved. Assuming that the 
distance ( and the number of dislocations n can change with the variable T, 
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corresponding to the duration of the microscopic process of plastic shear, 
pertinent shear strain rate can be calculated 

(5.3) d1 _ b ( - dn) 
-d - l I n 'Vd + ｾ＠ -d ' 

T ms1ms T 

where 

(5.4) 

the 

is the average dislocation velocity. Finally, the shear strain rate, produced in a 
singular micro-shear band, can be expressed in terms of the speed Vms of the 
head of micro-shear band 

(5.5) b ( -dn) 
'Urns = l ms n 'Vd + ｾ＠ dT . 

According to (5.3), generation and movement of new dislocations contribute to 
the plastic strain rate. If we assume that the movement of a constant number of 
mobile dislocations plays the prevalent role, (5.3) transforms into the well known 
Orowan relation 

(5.6) 
n 

where f! denotes the dislocation density. In the case of micro-shear bands prop-
agation, the systems which are not necessarily parallel to densely packed crys-
tallographic planes are activated. The critical stress in such planes is very high 
and therefore, the generation of new dislocations may contribute remarkably to 
plastic shear strain rate. In such a case relation (5.5) seems to be justified. It is, 
however, difficult to follow experimentally the interplay of both the mechanisms 
of generation and movement of dislocations to provide a unique assessment of 
their contribution to the plastic strain rate (cf. e.g. KoRBEL [35]). 

Consider a certain number of active micro-shear bands N M s of similar ori-
entation and produced within certain time period, 7 = TJ - T; , which can be 
considered as an infinitesimal increment, Llt , of " time-like parameter" in the 
macroscopic description. As it is depicted schematically in Fig.l b, such a system 
(cluster) of micro-shear bands produces the microscopic shear strain lms• which 
is given by the following relation 

(5.7) 

where E ms is the total displacement produced by a single micro-shear band 

(5.8) 

TJ 

E ms = hms1 = j V m s dT, 
Tj 
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and 

(5.9) - t 
XMS = - n-' 

denotes the average distance that N M s micro-shear bands have moved, during 
their " lifetime", in the active zone. Assuming that the distance x M s and the 
number of active micro-shear bands N M s can change during propagation of the 
active zone of the cluster, we have from (5.7) 

(5.10) . B m s (N ..!.. _ N. ) 
lms = LMs HMs MSXMS + XM S M S , 

where the dot denotes differentiation with respect to the " time-like parameter" t. 
Let us observe that the rate :f M s can be identified with the speed Vms of the head 

of a single micro-shear band, :f M s = Vms, under the simplifying assumption that 
Vms is approximately the same for each micro-shear band in the active zone of 
the cluster. Then, the speed of propagation of the disturbance of the microscopic 
displacement field, Vs, produced in the active zone of the cluster of N M s active 
micro-shear bands, is given by 

(5.11) V Ems (N _ • ) 
s = LMs MSVms + XMsN MS , 

and the shear strain rate reads 

(5.12) 
. Vs 
lms = HMs . 

If the number of active micro-shear bands in the active zone can be assumed 
constant, the relation for the speed Vs is given by 

(5.13) Tl' Ems N 
vs= -L MSVms 

MS 

and (5.12) takes the form, which is formally similar to the Orowan relation (5.6) 

NMs 
(!M S = L H ' 

M S MS 
(5.14) 

where eMs corresponds to the active micro-shear bands density. It is a matter 
of further investigations upon the evolution of clusters of micro-shear bands to 
confirm the usefulness of this hypothesis. 
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The experimental observations and certain analogy with martensitic transfor-
mations, lead to the hypothesis that micro-shear bands propagate with the veloe-
ity Vms of constant value, which is close to the shear wave speed Cs (velocity of 
sound) in the considered metal or alloy. Thus, the following relation is physically 
justified 

(5.15) (
J.l)l/2 

Vms = 'Tl Cs = 'Tl g , 'Tl E (0,1), 

where 'Tl corresponds to the factor accounting for the effect of dissipation re-
lated with nucleation and movement of dislocations in the activated systems. The 
value of"! can be determined, at least theoretically, from (5.5)2. However, it is 
difficult to evaluate experimentally, in a consistent way, all the structural param-
eters occurring in (5.5)2 . Therefore, the direct measurements of Vms seem to be 
more appropriate. For instance, the results of shear band speed measurements 
in C- 300 steel (a high strength maraging steel) have been reported recently by 
ZHOU et al. [36). The highest speed observed is close to 1200 ms- 1, i.e. approxi-
mately 40% of the shear wave speed c3 of the specimen material. This gives the 
estimate of 'Tl ｾ＠ 0.40. The investigated shear bands correspond to the clusters of 
micro-shear bands. According to (5.13), the speed of a single micro-shear band 
should be much higher, what will produce also higher value of ry . The complemen-
tary evaluation of structural parameters, E ms, LMs and NMs, of the investigated 
shear bands is necessary to obtain more exact specification of "1 · 

6. System of active micro-shear bands as a surface of strong discontinuity 

The foregoing discussion of physical nature of micro-shear banding process, 
as well as the recent results of the microscopic observations in situ, presented by 
Y ANG and REY [37) and REY et al. [38), support the following hypothesis: 

Tlte passage of micro-shear bands within the active zone of the cluster, results 
in the perturbation of the microscopic displacement field travelling with the speed 
Vs, which produces a discontinuity of the microscopic velocity field in the RV£ it 
traverses. The progression of clusters of micro-shear bands can be idealized math-
ematically by means of a singular swface of order one propagating through the 
macro-element (RV£) of the continuum. 

The necessary mathematical formalism of the theory of propagating singu-
lar surfaces is given, e.g. by TRUESDELL and TOUPIN [39), ERINGEN and SUHUBI 

[40) and Kos!NsKI [41). The theory allows to identify the postulated discontinuity 
surface of the microscopic velocity field Vm in RVE as a singular surface E(t) 
moving in the region V0 of the reference configuration of the body, where for 
each instant of "time-like parameter" t E I c R, the surface E(t) c Vo has the 
dual counterpart S(t) c V, in the spatial configuration. There exists the jump 
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discontinuity of derivatives of the function of motion Xm, i.e. of the microscopic 
velocity field [im] :f 0 and the deformation gradient [ f] :f 0, which are assumed 
to be smooth in each point of Vo x I outside the discontinuity surface: 

(6.1) [ f] = r+ - f - :f o. 

According to [39] and [41], the considered surface of strong discontinuity of 
microscopic velocity field fulfills the properties of a vortex sheet with the jump 
discontinuity of the first derivatives of Xm given by 

(6.2) [v ] = Vss, for U :f 0, 

where s and n are, respectively, the unit tangent and the unit normal vectors to 
the discontinuity surface S(t), while U corresponds to the local intrinsic speed 
of propoagation of S(t ), (cf. [39], p.508). Similarly, for the material counterpart 
of a singular surface E(t ), the compatibility relations take the form 

(6.3) [f] =- Vs s 0 N 
UN 

for UN :f 0, 

where N is the unit vector normal to the discontinuity surface E (t) and UN is 
the normal component of the surface velocity (cf. [40], p. 96). 

7. Problem of macroscopic averaging and continuum mechanics description 
of micro-shear banding 

Application of the generalized form of Gauss' theorem for the gradient of 
the microscopic velocity field im, which is sufficiently smooth in each poirit of 
Vo x I except the singular surface, where the discussed jump discontinuity [Xm] 
appears, leads to (cf. e.g. [41], p.68 or [42], p.427) 

(7.1) j Gradim dVo = j Xm 0 Vo dAo- j [Xm] 0 N dAo. 
Vo 8V0-E(t) E (t) 

Due to (7.1), the averaging procedure (3.4) of the microscopic velocity field Xm 
over the macro-element V0 can be generalized to the macroscopic RVE traversed 
by a singular surface of order one. The macroscopic measure of the deforma-. 
tion gradient F and its rate F are expressed by means of surface data in the 
following way 

(7.2) F = ｾ Ｐ＠ j Xm 0 v 0 dA0 , 

8V0-E(t) 
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where according to (3.3) F = F, and 

(7.3) F = ｾ＠ j Xm ® Vo dAo = ｾ Ｐ＠ j Gradim dVo 
8V0-L'(t) Vo 

+ ｾ＠ j [Xm] ® N dAo. 
L'(t) 

Similarly, application of the generalized form of Gauss' theorem for the stress 
field sm over the macro-element V0 with the singular surface, gives the formula 
for the average nominal stress 

(7.4) F =: ｾｯ＠ j Xm ® tv dAo = ｾｯ＠ j sm dVo + ｾｯ＠ j E, ® [ tN] dAo, 
avo-E(t) Vo E(t) 

where 

(7.5) E, E E (t). 

The dynamical compatibility condition for the jump of the tractions [ tN] across 
the singular surface in the reference configuration E (t ) takes the form (cf. e.g. 
[40], p.34) 

(7.6) 

Let us consider the processes in which the jump of inertia forces across the 
singular surface is negligible. This corresponds to the situation, in which the 
movement of the singular surface, being the mathematical idealization of the 
progressing shear banding zone, is approximated by a quasi-static process. In 
such a case UN = 0 and the jump in the tractions, [ tN ] , must vanish to ensure 
the equilibrium condition, what results in vanishing of the integral over E (t ) in 
(7.4) and restores the classical averaging formula (3.7) (cf. N EMAT-NASSER and 
HORI (43], p. 37). 

Assuming that the singular surface of order one has the properties of the 
vortex sheet with the velocity jump of magnitude Vs, and accounting in (7.3) for 
(6.3)1, we obtain 

(7.8) • 1 J 1 J F = Vo Gradim dVo + Vo Vss ® N dA0 . 

Vo L'(t ) 

If we choose the current configuration of RVE, at time t, as the reference one, . 
the rate of deformation gradient F becomes then the rate of relative deformation 
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. 
gradient, F(t)(t ), at time t (cf. [44], p.54) and the averaging formula (7.8) will 
take the following spatial form: 

(7.9) ｬ ］ ｾ＠ ｪｶ ｭ ﾮ ｶ ､ａ ］ｾｪｧｲ｡､ｶ ｭ ､ｖ Ｋｾｪ ｖ ｳ ｳ ﾮ ｮ ､ａ Ｌ＠
8V -S(t) V S(t) 

. 
where l denotes the macroscopic measure of velocity gradient l _ F(t)(t) = 
F(t)F- 1(t), averaged over the macro-element V traversed by the vortex sheet S(t) . 

The averaging formula (7.9) enables us to account for the contribution of 
micro-shear banding in the macroscopic measure of velocity gradient produced 
at finite elastic-plastic strain. According to (7.9), the velocity gradient Lis decom-
posed as follows: 

(7.10) l =L+LMs, LMs = ｾ＠ j Vss ®ndA. 
S( t ) 

Assuming that the singular surface S(t) forms a plane traversing volume V , with 
the unit vectors sand n held constant, (7.10)2 results in 

(7.11) 

where the macroscopic shear strain rate ｾｍｓ＠ is determined, according to (5.11) 
and (5.12), by the microscopic variables as an average over the RVE 

(7.12) ｾｍ ｓ ］＠ ｾ＠ J ｈ ｍ ｳｾｭｳ＠ dA = ｾ＠ J f:: (NMsVms + XMsN MS) dA. 
S( t) S(t) 

Further experimental and theoretical studies are necessary to identify the struc-
tural variables appearing in (7.12) and to prepare more workable formula for the 
macroscopic shear strain rate produced by micro-shear banding. For instance, the 
following simplification could be verified. Consider the situation, when the num-
ber of the micro-shear bands N M s operating in the active zone does not change 
much during the deformation process. Then, according to (5.14) and (5.15), the 
relation (7.12) takes the form 

(7.13) ｾｍ ｓ ］＠ ｾ＠ j ｈ ｍ ｳ ｾ ｭｳ＠ dA = ｔｦｾ ｳ＠ j HMs BmsgMS dA. 
S(t) S( t) 

For the RVE being the unit cube of the dimension Lo, (7.13) reads 

(7.14) 
• BmsNMs Bms 
I MS = Tf L L Cs = "7 D d Cs ' 

0 MS nsa SB MS 
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where nsa is the number of the clusters of micro-shear bands in the RVE, and 
Dsa is the mean distance between them, so that L0 = nsaD58, while dMs 
is the mean distance between micro-shear bands in the cluster of the thickness 
HMs = NMsdMs, under the assumption that LMs ｾ＠ HMs (cf. Fig.1). 

The derived relations (7.12)-(7.14) are valid for a single system of micro-shear 
bands. This can be generalized for the case of a double shearing system 

(7.15) 
2 

L = L1 + L ＭＩＧｾ Ｕ ｳＨ ｩ Ｉ＠ 0 n(i ) , 

i =l 

where -)' c;} 5 is the macroscopic shear strain rate and s (i), n (i) are the respective 
unit vectors of the i-th shearing system. It is worthy to note, that (7.15) is valid 
under the assumption that the active micro-shear bands in both systems operate 
in the time period, which can be considered as an infinitesimal increment of 
"time-like parameter" in the macroscopic description. Otherwise, the sequence 
of events should be taken into considerations. The above relations provide the 
following macroscopic measures of the rate of plastic deformations and plastic 
spin produced by active micro-shear bands 

(7.16) 

The discussed averaging procedure over the RYE with the singular surface allows 
us to account for the characteristic geometric pattern of micro-shear bands which 
is transmitted upwards through a multiscale hierarchy of observational levels. 

8. Concluding remarks 

To capture the gross effects of active micro-shear bands, the simplified ap-
proach based on the mode of plane deformation of rigid-plastic solid was ap-
plied in [5 - 6]. The contribution of the mechanism of crystallographic multiple 
slip was approximated by the classical h flow Jaw and the contribution of ac-
tive micro-shear bands was idealized by means of an additional double-shearing 
system. This resulted in the additive composition of the rates of plastic deforma-
tions as a combination of two modes of pure shear in the plane of plastic flow. 
The assessment of possible incorporation of the rate equations of plastic flow 
into an elastic-plastic material model was discussed in [6] and [7] . The approxi-
mate description of infinitesimally small ·elastic strains and large plastic deforma-
tions accounting for macroscopic effects of micro-shear banding was proposed in 
[45 -47]. The derivation of the macroscopic measure of the velocity gradient L 
given in (7.9) and its additive decomposition (7.10)1 makes it possible to formu-
late in a more rigorous manner the constitutive equations of elastoplasticity with 
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an account of micro-shear banding. Due to (4.1)- (4.3), (7.10)1 and (7.16), the 
following kinematica1 relations hold 

D = ne + np = ne + ｮ ｾ＠ + ｮ ｾ＠ s ' 

W = We + wP = We + ｾ＠ + wPMS, 
(8.1) 

where ｮ ｾ＠ and ｾ＠ correspond, respectively, to the rate of plastic deformation 
and plastic spin produced by crystallographic multiple slip. The application of the 
aforementioned relations for constitutive modelling of elastic-plastic behaviour of 
metallic solids is presented in [47]. 

This work is focused mainly on the question how the effects of characteristic 
geometric pattern of micro-shear bands can be transmitted to the macroscopic 
level and included into the kinematics of finite elasto-plastic strains. Nevertheless, 
the kinetics of micro-shear banding phenomena with the related dynamic condi-
tions on the strong discontinuity surface (7.6) and the pertinent micro-to-macro 
transition analysis is also very important. The results obtained by RANIECKI and 
TANAKA [48] within the context of continuum mechanics description of martensitic 
phase transformations, with use of the concepts of a surface of strong discontinu-
ity and thermodynamical driving force, provide useful analogies. Further studies 
are necessary to shed more light on these problems. In particular, the possibility 
of application of the idea of thermodynamical driving force for the formulation 
of tire criterion of micro-shear band formation deserves further examining. 

A fundamental role in the rigorous analysis of the linkages between basic 
properties at two levels of description of elastic-plastic solids plays the theorem 
of product averages, which was studied in a general form by HILL [13]. The com-
prehensive bibliography of earlier papers, confined to small strains, is discussed 
in the work of NEMAT- NASSER and HOR1 [44]. The problem of extension of this 
theorem to the RVE, which is traversed by a propagating strong discontinuity 
surface, requires further studies. 
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