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Asymptotic expansion of solution of the torsion problem
for an elastic rod with a cavity and a thin bonded multilayer

G.S. MISHURIS (RZESZOW)

THE FIRST TERM of the asymptotic expansion of the solution of the torsion problem for an elastic
rod is derived using the method of a matched asymptotic expansion. The prismatic rod is weakened
by an internal cavity with angular points, one of which is situated on the exterior boundary. The
exterior boundary of the rod is reinforced by a thin elastic multilayer. Difference between the
exact and approximate solution of the problem are estimated by the norm of the Sobolev spaces.
Relations for stress intensity factors in the angular points are found and verified.

1. Introduction

STRUCTURAL ELEMENTS reinforced by thin surface layers have found wide appli-
cation in modern technology. Such elements can seriously change the elastic and
strength properties of the structures. The corresponding boundary value prob-
lems have been investigated in [2, 3, 4, 20]. In those problems it is assumed that
curvature of the thin layers is small. In this way, note paper [9], in which “av-
eraged” boundary conditions are obtained for a thin surface layer with arbitrary
curvature by the operator method. All the mentioned problems are related to the
so-called boundary value problems with regular perturbations of the boundaries
[7, 8].

However, in the cases when stress concentrators are situated near the thin
layer, singular perturbations of the boundaries appear. The methods of solution
of such problems have been proposed in [6, 12, 19]. One of them is the method of
matched asymptotic expansion. It consists in the solution of the limiting (internal
and external) problems, and later — in their coordination in some intermediate
region [6, 12].

In paper [15] the method of solving the boundary value problems in infinite
domains represented by wedges and layers is proposed. For some values of the
parameters, homogeneous problems discussed in [15] have nontrivial solutions,
which are of some class of solutions of the internal limiting boundary value prob-
lems. These solutions can be calculated by functions belonging to the kernel
of special singular integral operators [14, 15]. In [13] the numerical method of
deriving the functions from the kernel of the operators has been introduced.

In the paper, a singular perturbed boundary value problem is considered,
which corresponds to the torsion problem of a prismatic rod with a cavity and
a thin multilayer. A similar problem for a homogeneous rod with a linear crack
was investigated in [1].
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2. Formulation of the problem

Let us consider a domain (2, with compact closure 2, C Rz, smooth exterior
boundary [, (for example, /. € C'!), and piecewise smooth interior boundary /7
(092, =I.Ul}). By I we denote the closed curve: [1={P¢€ {2, : dist(P,02;)=h},
(see Fig.1).

FiG. 1.

Assume that A, B € [{ are corner points which divide the closed curve [ =
It uly, and
0 0>

(i) dist(A, ) =h<1, rg >1, dist(B, 1)~ 1,
@ G LI, =w2Fda, Ay T7), =268,
(iii) kri(A) = kpe(A) = kpa(B) =0,

where ¢4, 05 € (0,7/2), kr,(A), Jl\.']}j: (A) are curvatures of the curves /1, and
)

[ in point A, but ro, = sup{r : B, C (2.} is the Chebyshev radius of the
domain (2, (here df2, = [, and B, is open disk of a radius r).

Let (s.n) be a local coordinate system connected with the curve /7. Its origin
is at the point A € [}, and n > 0 along the outer normal. A Cartesian coordinate
system (', y) coincides with the local system (s,n) at point A (A = (0,0)).

If meN, po,p; € Ry (J = 1,2,...,m) are some positive constants, and
0=hy<h <..<hj<..<hy1 < hy = h, then we consider the step
function:

g s,n)ESANh; <n<h;y,
(2.2) p(s,n) = {/JH (s,) ; J i+l

fo (s,n) € A —o0 < n <0,
and from the assumption it follows

(2.3) 0< Og}igrgn{#j} =p < ple,y)<u= Og}ig”{#.f} < co.

http://rcin.org.pl



ASYMPTOTIC EXPANSION OF SOLUTION OF THE TORSION PROBLEM 37

We shall use also the symbols (7 = 0,1, ...,m):

2 = 20 {(x,y) : plx,y) = u;lt,

(2.4) .
I'jv1 = {(s,n):(s,n) € 2, An = h;}.

We shall seek a harmonic function u(x,y) in each domain Qf; (the torsion
function [18]), satisfying along the interior boundaries /', ( = 1,2....,m) be-
tween different materials the conditions:

9, ;
25) (-, =0 (i = pimai-aiy, = L@ Y)-

But along d{2, we have

d d
(26) Hmn %”m[n = f-m(il*,y), ,UO%U(’HF; = "_f(;t('tv 7/)3

with some functions f; , fi € C"°°(I}) (see [18]), so that the following conditions
are satisfied:

: : a ., d .,
2.7) k). fF0.0)= 0, =[50, h,), 5 fo(0.0) ~ 1.
For solvability of the problem we should assume, in addition [18], that
m+1
(2.8) Z /fj(S)dS =0,
=0 I

where [,,,1 = I, but to secure the uniqueness of the solution we normalize it
by the condition:

(2.9) u(B) = 0.

Using the results from [10], one can show that the linear problem (2.4)—(2.8)
has the unique solution wy, in the space W, (2, B) = {u € W (£2,)Au(B) = 0}.
It can be easily seen on the basis of the results of [5], that the solution belongs
to C'°°(§2}). Besides, we can prove that u, € C'(£2;), however, uj, ¢ WZ(§2;). To
verify the first fact, it is sufficient to investigate the asymptotic behaviour of the
solution near any point situated on the interior boundary /'; ( = 1,....m); but
to check the second conclusion, we should know the behaviour of the solution in
the neighbourhood of points A or /5. We shall consider in detail only the second
proposition. Namely, let us represent the solution near these points in the form:
up = y(r/e)uy, + (1 — y(r/e))u,, with some small ¢ > 0 (¢ < hy). Here and
further on, by \ € ("*(IR.), we shall understand a cut-off function defined by

1 05t €13,
2.1 = -
(210) () {0, 2/3< t < 0.

http://rcin.org.pl
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Let us note that the function u.|; = y(r/e)unl; € Ly(R+), where [ is an ar-
bitrary radius with origin at point A (B) so that [ N {2, # (. Then applying
the Mellin transform technique to the corresponding problem for the function
w. = \(r/2)uy, and taking into account the assumptions on curvatures (2.1), we
obtain

up(h,r, @) = da + c,;z/;]r“ F(g)+ O(‘T“SA), r— 0

(2.11) . .
up(h,r, ¢) = dp + cgrg r*2F(¢) + O(r°8), r —0,

where (r, ¢) are local coordinates connected with point A (or B), and the angle
¢ calculated with respect to the bisector of the corresponding corner angles, are
situated in the domains §2} ({27, respectively), but

sin ¢ v
sin(rv/2)’
cos(m — @9 — |@|) ¥
signg cos(7/2— ¢o)v '

where ¢g = ¢4(¢B), dg = 0 (uy, € 1/1/21(!2;,_, B)), but constants v4 ,vp € (0,1)
are the first zeros of the function:

6] < /2,
(2.12) F(¢) =
T/2<|¢l < T~ o,

= Ho—

fo + p1’
which are the nearest to the imaginary axis. Since kg = 0, the relation for the
function '(¢) at point B has a similar form for |¢| < 7 /2 as well as for |¢| > 7 /2.
Here the values of the parameters ¢4,6p € (1,2) in (2.11) are calculated as
follows:

A.(s) = KcosPgs — cos(T — ¢g)s, KA kg =0,

84 = min{v? 74},  bp=min{vP, 15},

where z/ff). ug‘) are the second zeros of the function A.(s), but 74 ,7p are the
first zeros (74 .7 > 0) of the function: A (s) = s~ [k sindgs + sin(m — ¢p)s],
with the respective value of the parameter « (£.4, £g).

The constants ¢4 ,cp in (2.11) play an important role in fracture mechan-
ics [17] (stress intensity factors). The next mechanical parameter which can be
calculated from the solution wu, of the problem (2.5)—(2.9) is the stiffness [18]:

= ute ) (22 + o2 i_ﬁ) )
(2.13) ( —2// (. y) (.z +y°+ (.z 3y U up(h,z,y) ) df2.
2

However, the numerical process used for solving the problem (2.5)-(2.9) is
difficult in view of the existence of the small parameter £, and of the singularity of
the solution in the neighbourhood of point A situated near the exterior boundary
of the domain. Further on, we find the first term of the asymptotic expansion of
the solution wy, which is close to u), in the norm i"l»’zl(Qh), and makes it possible
to obtain the values of coefficients ¢4 , ¢p, (' from (2.11), (2.13).
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3. Limiting boundary value problems
3.1. External problem

Now we consider similar problem but the domain will be somewhat different.
Namely, by {/y we denote the simply connected domain with boundary 9/, =
2 U My U My, where Mg = {(z,y) : 0 < y < h Az = 0+}. Along the
curves /\15‘: we define functions jﬁj (s) = 0, hence, the condition (2.9) holds true
and the function along the boundary {2 is continuous. Problem (2.5)-(2.9) in
the domain {2 also has a unique solution ug, belonging to W, 1(£20, B). Besides,
ug € C(123), ug € C(§2), but ug ¢ C($20). This is because the domain 2 has
not the segment" property (see [10]), and uy € W} (§2, B) is a multifunction
near the parts Mo of the boundary df2 (as (x,y) tends to a point (0,y.) on
the boundaries M from different sides of the domain (/y, the function wug has
different limiting values).

The solution ug exhibits the asymptotic behaviour (2.11); near point B with
a constant cH, but in the neighbourhood of the point A

(3.1) wg(h, x,y) = £dF + O(r™), r — 0, O0<tp<T—04.
Hence, u( cannot be considered as an approximation of u, near the zero point.
3.2. Green’s function

We shall also need the Green function G 4(r, y) for this problem in the domain
2y, with delta-functions concentrated near point A. It will be normalized by the
relation (2.9). Asymptotic behaviour of the Green function near point B is of
the form (2.11) (similar to u; and ug) with dg = 0 and the constant ¢ = gg, but
near the zero point

(3.2) Galh,z,y)=+Inr+ gS: +.0(r"4), r— 0, O0<top<Tm—04,

where g are some constants.
Let us note that the Green function G4 is uniquely determined, and can be
calculated using the representation

Ga = x(r/h)+signg«Inr + v,

where the function vy € W, (£2y, B) satisfies Poisson equation with the right-hand
side: signg«(InrAy(r/h) + 2(rh)~'\'(r/h)) and the boundary conditions (2.5),
(2.6) with functions f;(s) = i[\(r/h)ln r] along the curves /;. All these func-
tions are smooth, and | ”(:/) = 0, fo (A), 'l(A) = (, in view of the assump-
tion (2.1) for curvatures of the curves near point A. Hence, the problem for

the function vy € W} (f2y, B) and the problem of the Subs.3.1 for the function
ug € W '21({ 2o, B) are similar from the point of view of their numerical realization.
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3.3. Internal problem

Now let us consider the infinite domain (& = Goi U (7, represented in Fig. 2,
and try to find nontrivial harmonic function w(z’, y’) satisfying the homogeneous
internal boundary conditions (2.6) along the boundaries ;41 = {(z,y") 1 ¢’ =
y; = h;/h, 2’ € R} between the domains G;_;, G (j = 1...,m), and homoge-
neous conditions (2.8) along the boundaries (,, 11, Co

Cm+1 €3 C2 /

] ¢z
Gal| | G2 | Gy ’\ ba

Ml | | ¥ g\

| \ R

FIc. 2.

At infinity we assume, in addition, that w = O(Inr), » — oo. There are two
linearly independent harmonic functions satisfying such conditions: w;(z’, y’) =
const — even function with respect to argument z’, and odd function w,(2’, y").
The function w,(z’, y") can be calculated, using the inverse Fourier transform,
by the nontrivial solution z(¢) of the singular integral equation obtained in [15]
(the corresponding equation (3.16)). From theorem B.4 [15], it follows that =z

i (Ry)forany le N, pe[l,0), a>0,8< vy, and

2(6) = Iné + z + O(£?), £ —0,
2(€) = 2o ™VA + O(E™"S ), £ — oo.

(3.3)

Here, W (‘1’)“ (IR ;) is the space of functions, which are summable (together with

their [-derivatives) with a special weight (see [14]). The space W™ A(R4) does
not coincide with usual Sobolev spaces ‘IV'T/";(RWL). In turn, the method of numerical
calculation of this nontrivial solution has been proposed in [13]. Finally, wo(z", )
can be determined (with accuracy to a multiplier) from the relation:

B4 wley) =2 / [chy'€ + [Ep My ()] 'shy'é] 2(¢) sin(a'€)dE,
0
(z',y") € Gy,
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ino—0

(3-4) ol !y = l s g COS(?«' . ¢A i (;5)5
[cont.] “’2(. "/) B 7”._'/_5 . (._)Sm(ﬁ-l /2) COS('TT/Z = (f)o)ﬁ;
[ deds, @y e Gy,
0

where 0 < 6 < 14, the function M, (£) can be calculated by recurrence formulae
from [15], and besides, M,(€) = O(672), £ — 0, M,(£) = — (1)1 +O(e~%),
£ — .

Using this information, we can show that the asymptotic behaviour of the
function wy(x’, ) near the zero point is of the form (2.11), with the constant

e =217 2 (1 = wa)sin(r v4/2), d,, = 0, and v instead of the parameter

0; but at infinity we obtain

Inr + 4+ z, (', y") € Gy,

ln|2/| +9+205 (&.9)€G;,;
r — 00, +z' > 0,

(3.5) w2, y) =+ { + 0@,

where v = [”(1) is the Euler constant.

4. Main result

Using the method of matched asymptotic expansion (see [6, 19]), we shall con-
sider function wy(s/h, n/h)+const as an approximation of the solution u,, in the
neighbourhood of point A, but a linear combination of the functions wy(4, =, y),
Ga(h,x,y)in the remaining part of domain (2. Let a € (0, 1) be some constant,
and
@D @y = 1= X0/ ) ok, 2, y) + DGalh, 2, y)]

+x(r/h)[Dwy(s/h,n/h) + E).
Unknown constants /), £ should be calculated in such a way that both parts
(internal and external) of the solution (4.1) will coincide on the distance r =
h22:
ug(h, @, y)+ DGa(h,x,y)— Dwy(s/h,n/h)-FE = O (/r.mi"{m“’z—z"‘}) ;
(4.2) VIug(h, z,y) + DGa(h, x,y) — Dwy(s/h,n/h) - K]
=) (hmin{r,\a,2—2u}—u) i

for h /3 < r < 2h*/3 uniformly with respect to the angular coordinate #; then
. dy + dy
© 2zp+q - Inh) —gf —gg’

43y D E= %[dg —dy + D(gg — 9¢)]-
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Let us note, that the function uf ) from (4.1) belongs to the space W3 ({2, B),
and the constants in the main terms of asymptotics (2.11) near points A, B are:

z*mDh“"‘ ['(1 = v4)sin(r v4/2), ég =c§ + Dygp.

Tr...

(44) =

THEOREM 1. Let o € (0,1) and h < 1, then for the function uh) € W}($2, B)
the following estimates hold true:

“Uh _ ”h ||Vll hmm{n(m 1),2— 3&})

o

C-C - (hmmw,;-u,z—sa}),
o(
o(

hmm{a(m—v,4)»2—a(2+vA)})

hmm{n(r4+u4) 2— a(Zku,‘)})

P ro o f. First of all note, that the difference between wu;, and ﬂgl) in each
domain (2] satisfies the Poisson equation with the right-hand side RV (h, z, y):

RO(h, 2,y) = 'R(ll)(h. T, y)— 'Rgl)(h. x,y),
Ri“(/r. v, y) = [uolh, 2, y) + DGs(h,z,y)— Dwy(s/h,n/h)— ElAx(r/h")
+2V[uglh, 2, y) + DGa(h,2,y) — Dwy(s/h,n/h) — E]Vx(r/h®),

Rgl)(/l. x,y) = Dx(r/h*)A,; ywa(s/h,n/h),
and fulfills the boundary conditions (2.5), (2.6) with the functions
‘/"‘.[(” = \x(r/h*)f; + (-1 — ,(4,-)[‘11.0 + DG4 — Dwa(s/h,n/h)
d
—EJ a”\(1//1 )

x(r/h*) fo — o [ug(.r, y)+ DGa(x,y) — Dwy(s/h.n/h)

~B| 5x(r/h%),
T =\ /h®) frn + fim [u.o(.r. y)+ DGa(x,y) — Dwy(s/h,n/h)

d v
~E]%\(7-/h“).

I

F(1)
Jo

instead of f,. Such a problem (for the function wu; — u, )) has also a unique
solution in the space W} (12, B).
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Taking into account (4.2), we can obtain for h — 0

'R,(ll)(hw z, y) - O(hmin{a(r,,—2),2—40})’
suppR\"Y = {(z,y) € 2 : h*/3 < r < 2h*/3},

but to estimate the function Rgl)(/z.,a-,y) (suppR(zl) ={(z,y) € :0<r <

h* /3}), the Laplace operator should be considered in the curvilinear coordinate
system (s, n):

1 J Ow,

A, ywy(s/h,n/h) = Tk [571— ((l E ni\(s))%)

Denoting £ = s/h,n = n/h, we can conclude, in view of assumption (2.1) on the
curves /, and taking into account the asymptotic formula (3.5) for the function

w;, that ‘Rgl)(h. T,y)= ’Rgl)(f. n) + O(h), where

ROE =00, p—0.  RIEM=00)., p— o

The functions f'J(

Yin the boundary conditions (2.5), (2.6) can be represented
as a sum ,/_'J(” = ./'1,1 % f"ﬂ, which at & — 0 have the properties:

fa = O(h®), suppfi1 = {(z,y) € 2, : 0 < r < 2h/3},

fiz = O(hmin2=-3aalra=Dhy - quppfis = {(x,y) € 2 : h*/3 < r < 2h%/3).

I

We can then conclude that

RU in{o(r4-1),2-3a (1 _ -

IRVl Lg(any = O(hmintetra=2=3e}y, IR ry(ny = OCh®),
(1 in{a(r4— —Sax =(1 ¥

17Dy = Ohmintatra=t/m2=Se/2y | FO|, o = OG22,

Now, the first conclusion of Theorem 1 follows from the results [10]. However,
the constant in the estimate (|[uy, — @\ | < Const Amin{e(za=12-32}) cannot be
effectively obtained. It depends on the norm of the inverse operator of problem
(2.5)-(2.9). The second relation follows immediately from the Holder inequality.

For estimation of the constants ¢4, cp in the main terms of the asymptotics
(2.11), we shall use the Maz'ya, PLAMENEVSKY method [11]. Following [11] (see
also [17]), we can define “non-energetic” harmonic function ¥ € L,(f2,) sat-
isfying the homogeneous problem (2.5)-(2.9) with asymptotic behaviour (2.11)
near point /3, but in the neighbourhood of point A satisfying the condition

(4.5) W3 (z,y)=r A F (@) + O@*),  r—0,

http://rcin.org.pl
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where function £'(¢) is defined in (2.11). The function ¥ (z, y) can be calculated
from the representation (¢ < hy):

Uy (r.y) = X([TAF @) + U (e,y), YT € Wi B),

because the corresponding problem for function ¥ has a unique solution in the
space WJ1(§2,, B). Further on we define w. = {(z,y) : r < ¢} and write the
Green formulae for the functions as @, = uy, — ufi and ¥ in the domains of
29\ we, 21\ we, -Q;: (j = 2,...,m). The sum of the corresponding relations is in
the form of:

//-;f(‘r.y) [(I/;Aﬁ.h & -ﬁhA*I/‘I] df? = / . [!17; %uh '&hcg‘f} do
n \:d,; Foe1 ‘
- lod1; vy ot LN
+ Z / {p.j [!F; auh Uy — o ] — i1 l!ﬂ;% - uh%‘l—] } do
1= ry(2n\we)

! di I i oy
- / o {!I/; dl:h ip—2 o }da— / w(zx,y) [!p; dl:h {n o ] do.

Fon(2n\we) Buwe

or taking into account the equations and the boundary conditions for functions
i, and ¥, this relation can be rewritten as follows (¢ < hy):

o w('))’(Al,h 4 ()LI/
(4.6) / ple,y) [JIA 5, G F)'n do
- m+1 ¥ s
=y /w fVdo + / w; [Mdo + / v [V do
=2 ] Nn(2p\we) Ion(92p\we)
- /] e, Y)Wy ['R(ll)(h,;zr, y) — 'Rgl)(h, .r,y)J dsl.
Qh\wr
The net result will be obtained by passing to the limit ¢ — 0:
(4.7 D(po, p1, da)ca — éa)
m+1
Z /cp F0+ 79 do = [fuurz R - R$) a2,

‘Qh

Here we use information (2.11) and (4.5) about the asymptotic behaviour of the
functions @, ¥ near point A for calculating the integral on the left-hand side
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of (4.6):

TVx — SINTY,4

4.8 D(pg, 1, 04) =2
@8) DG, oa) = 2 T

4 “0(71' —204)va +sin(m — 20 4)v4 } .

14 cos(m — 2¢4)va

The first and the fourth terms on the right-hand side of (4.7) are estimated as
O(h®(=v4)), but the remaining two terms are Q(hmMa(ra=va).2-a(Z+v)}y Con-
sequently, the third conclusion of Theorem 1 is proved. The remaining estimation
of Theorem 1 is performed in a similar manner. For this purpose, we should take
the “non-energetic” function ¥ (instead of ¥ ), which exhibits the asymptotic
behaviour (2.11) near the point A, but in the neighbourhood of point B in the
form of (4.5) with vg. Then, repeating the same reasoning, we obtain the fourth
conclusion of Theorem 1. Let us note that the constants in the last two estimates
have been obtained effectively.

CoroLLARY 1. The optimal value of the parameter « is a. = 2/(2+ 74), then
the estimates are:

| - ~ A
lun = iyl IC = C| = O(h*3),

6 — (-i = O(hZ—n.(r‘.\+u‘_\))1 g — (—,B = O(hZ—cy.(T_.;—u_.‘))_

Remark 1. As it follows from the proof of Theorem 1, the results would
be improved, if we could more precisely estimate the terms of solution g and
the Green function G, of the asymptotic behaviour: O(r™), » — 0. For this
purpose, note that the corresponding problem for function wug is the perturba-
tion boundary value problem with the regular boundary layer near [, = /..
The main terms of such problems have been constructed in [4]. Basing on the
results from [4], one can show that the term O(r™) in (3.1) can be estimated
as: const(h)F.(¢)r™, where const(h) = O(h”) with some 0 < 3 < 7§ — 7,.
Here, 7 is the corresponding parameter in (3.1) for the solution ug(;r, y) of the
nonperturbed problem (u(x, y) = jip, h = 0). In a similar manner, the estimation
of the corresponding term of the Green function (3.2) can be obtained. Then we
can formulate

THEOREM 2. Let o € (0.1) and h < 1, then for function 71511) e W2, B)
estimates hold true:

O(f? min{n.;'i+a(r_.;—1).2—3o})‘

l|n — EZS.I)HH'Z‘
0 .— (_f. - O(/Imin{a,/ﬁ-&o(r,‘,—l),2~3c\})‘
ca— 64 = O(hmin{i\(z—u,\).ﬁ%‘cv(r,‘—lq),2—0’(2+£/,\)})‘
cg—tg = ()(hmill{(v(2+u.4),,f'3-h'\('r_.‘+11_4).2-ci(2-u‘.\)}).

http://rcin.org.pl
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CoroLLaRY 2. Then the optimal value of the parameter « in Corollary 1 is

a.=max {1/2,2- 58)/(2+ 74)} .

5. Remarks and conclusions

In this section we propose some generalizations under which the mentioned
results of the theorems will hold true.

First of all note that from [18] it follows that f; = (x;_1 — pt;)[y cos(n, ) —
xcos(n, y)], fin+1= pm[y cos(n, x)—z cos(n, y)], fo= poly cos(n, z)—2 cos(n, y)).
Consequently, these functions satisfy the conditions (2.7). Nevertheless, the re-
sults still remain valid, if the functions are “little affected” in the neighbourhood
of point A. For this purpose, it is sufficient to find the solution in the form:
up = @y + (r/h)vi(s.n), where the function is v; = a; + b;s + ¢;n in each
region {2]. The constants «; , b; , ¢; should be calculated so that v; is continuous
along /7, but for function 7, the conditions (2.7) have been satisfied.

Further on, note that the conditions (iii) in (2.1) can be weakened like this:
kr (A), k';?("l)’ A"rﬂi(b’) ~ 1. The angle of corner A can be nonsymmetric with

respect to the normal to the boundary [ at this point, in contrast to (ii). Then
the functions /'(¢) in (2.11) and the transcendental functions A,(s) (necessary
to determine the parameters 7, ) should be corrected; but the corresponding
internal boundary value problems can be calculated by solving of the systems of
singular integral equations [15], instead of the singular integral equations as it is
in the symmetric cases.

The step function u(x, y) allows for the following generalization:

1. The boundaries of discontinuity /; of function u(x, y) can be defined as in
(2.2) with functions /;(s) instead of parameters /;. We should assume only that:
hi(s) > hi_1(5), hm(s) = O(h), h’(0) = 0, A7(0) ~ 1.

J

2. In each domain {2/ the conditions are true: pz € ' 2(Qh) and ——,u(O )=
.jz
- 520(0,9) ~ 1, (0,9) € 2} (G > 0), o ,,(0 0)=0, 5 2,1(0 0)~1, (0,0) € 129
The function y(r,y) depends weakly on the argument 2 in the multilayer near
the angle vertex. Then we shall find solution u;, of equation V(i (x,y)Vuy) =
instead of the Laplace equation Aw;, = 0 used in the paper. Such a pmblem
corresponds to the general case of a nonhomogeneous elastic rod. Note in this
connection that the internal boundary value problems (Sec.(3.2)) can be also
solved in this case by the method [15] (see Appendix in [16]).

The boundary conditions can be also generalized. Namely the first of the con-

ditions (2.5) can be represented in the form: [uy] — a(s ) —~Up = _f_,r, a'(0) =

a”(0) ~ 1, instead of [u;,] = 0. The corresponding mternal houndary value proh-
lems can be solved by the same method [15, 16].
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Let us note in conclusion, that the first two conditions (i) cannot be modified,

of course (these conditions make it possible to use the asymptotic methods).
If the third condition is not true and dist(B, I.) = O(h), then the asymptotic
expansion of the solution can also be constructed. However, the corresponding
external boundary value problems are different from those shown in the paper
(Sec.(3.1)), and the representation of the solution (4.1) should be changed. In
[19], such a problem in a homogeneous domain with the linear crack has been
considered.
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