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Subsonic flutter calculation of an aircraft with nonlinear
control system based on center-manifold reduction

J. GRZEDZINSKI (WARSZAWA)

THE PAPER PRESENTS a method of calculation of limit cycle subsonic flutter oscillations caused by
structural nonlinearities. Numerical examples assume the nonlinearities to be concentrated in the
hinges of the aircraft control surfaces. Since nonlinear flutter is essentially the Hopf bifurcation,
these oscillations tend asymptotically to a certain two-dimensional attracting subspace called the
center manifold. Consequently, an asymptotic motion of the entire aircraft in the neighbourhood of
bifurcation point is fully described by only two equations. The method of center-manifold reduction
consists in a nonlinear change of coordinates, and transforms the initial multi-dimensional nonlinear
integro-differential flutter equation into a system of two nonlinear ordinary differential equations
of the first order, having phase-shift symmetry. Under the assumption that the nonlinear term
has a formal power series expansion with respect to generalized coordinates (multi-variable Taylor
series), the transformation can be also expressed in the form of a power series, and the limit cycle
amplitude and frequency can be easily calculated.

1. Introduction

DEFORMATIONS of an aircraft structure under aerodynamic loads during flight are
responsible for occurrence of self-excited oscillations, called flutter. These often
destructive oscillations are driven by the transfer of energy from the airstream
to the aircraft structure. The most widely used linear flutter analysis is focused
on the particular critical value of flight velocity, above which the steady motion
of an aircraft becomes unstable. All velocities below this point are considered to
be safe in the sense that any imposed disturbances decay asymptotically in time,
regardless of their initial magnitude. This is no more true if either the flow or
the structure characteristics are nonlinear. It is known that in a nonlinear case,
sufficiently high initial disturbance (e.g. a gust) can trigger self-excited oscillations
even below the critical flutter velocity. Since the flutter phenomenon must be
completely prevented from occurring within the flight envelope, nonlinear flutter
analysis is also of great practical importance.

In the unsteady subsonic motion, the aerodynamic forces depend on the history
of motion as a result of shedding of the vortex wake behind an aircraft. Conse-
quently, the aerodynamic operator, relating the unsteady aerodynamic forces to
the deflection of an aircraft structure (generalized coordinates), is always of the
form of the convolution integral. Thus, in a time domain, the flutter equation
is an integro-differential equation (sometimes with infinite delay). This property
is the main source of difficulties in nonlinear approach, contrary to other aero-
elastic systems described by ordinary differential equations (e.g. supersonic or
panel flutter).
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It is well known from the theory of dynamical systems [1] that their quali-
tative behaviour is essentially the same, no matter what physical background they
originate from. Therefore, if the steady solution, such as a horizontal flight of
an aircraft, bifurcates into the finite amplitude oscillations then the limit cycle
attractor appears in the phase space of the system and the Hopf bifurcation
takes place. Since the point of interest is an asymptotic motion of an aircraft, it
is sufficient to determine only the limit cycle amplitude and frequency for a given
velocity in the neighbourhood of the bifurcation point. In the paper, methods of
the local bifurcation theory are applied thus restricting the validity of analysis to
some finite interval of velocity.

Hopf bifurcation is two-dimensional what means that limit cycle oscillations
are described by only two generalized coordinates, no matter how many de-
grees of freedom are used in order to describe the original aeroelastic system. A
two-dimensional subspace containing these asymptotic oscillations is called the
center manifold. Thus, as far as an asymptotic analysis is concerned, it is possible
to obtain the limit cycle for an entire aircraft from only two differential equations.
Calculation procedure for an aeroelastic system of N degrees of freedom goes
through the following steps [2]:

¢ Replacement of the initial N flutter equations of the second order by a
system of 2N nonlinear integro-differential equations of the first order (all the
methods of the bifurcation theory apply to the first order equations).

e Determination of the bifurcation point (critical flutter velocity) by solving
the completely linearized flutter equation.

¢ Unfolding of the aeroelastic system by expanding all functions into power
series with respect to velocity (/, and also considering the velocity being tem-
porarily an additional variable — this increases the total number of equations by
one, and is done in order to work on an interval in velocity space in the vicinity
of a bifurcation point.

¢ Projection of the aeroelastic system onto the appropriate center manifold
by means of nonlinear transformation of variables, which transforms the initial
(2N+1)-dimensional system of integro-differential equations into a two-dimen-
sional system of ordinary differential equations of the first order.

o Normalization of the reduced system by applying the so-called near-identity
change of coordinates, resulting in a much simpler system of equations with
rotational symmetry.

e Calculation of the limit cycle amplitude and frequency for a given flight
velocity — if all nonlinear terms are expanded into multi-variable Taylor series,
then the limit cycle parameters are determined by roots of certain polynomials
with real coefficients.

It is worth noting here that projection onto the center manifold preserves all
information about asymptotic behaviour of the complete initial system and does
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not introduce any simplifying assumptions. Numerical algorithm for the above
scheme worked out for systems with many degrees of freedom is given in Ref. [3],
and Ref. [4] presents the full nonlinear analysis for a single two-dimensional
airfoil.

2. Flutter equation

Displacements of an aircraft during unsteady motion are described by the
M -dimensional vector of physical coordinates u(?) being functions of time ¢. In
the steady motion with undeflected structure all coordinates are equal to zero,
u(t) = 0. Usually, for a conventional aircraft structure, the number M cannot
be less than a few hundreds. This is too many even for the classical (linear)
flutter analysis. The routine procedure saves much of the computing time by using
modal coordinates in order to reduce the total number of equations. Such an
approach assumes the vector of physical coordinates u(t) as a linear combination
of natural vibration modes with coefficients forming new generalized coordinates.
It is sufficient for the flutter analysis to set the number of modal coordinates to
nearly twenty. Modal coordinates can also be used in nonlinear approach without
any changes [5]. [t means that no attempt is made to generalize the natural modes
for nonlinear structures but the same linear modes are applied.

In the absence of external aerodynamic forces and under the assumption that
the problem has been fully linearized, the natural frequencies w; and modes @,
() =1,2.....N; ) < M) can be calculated from the eigenvalue problem:

2.1) WwM®; =K®;,

where M and K are mass and stiffness matrices, respectively. The set of eigen-
functions of Eq. (2.1) is assumed to describe nonlinear limit cycle oscillations with
sufficient accuracy. The vector q(¢) of modal coordinates is defined by the relation

(2.2) u(t) = ® q(t).

and in the absence of the structural damping forces, satisfies the equation of
motion [6]:

(2.3) q (1) + K,q(?) + k(q) = Fa(q),

where F 4(q) is the vector of generalized unsteady aerodynamic forces. The matrix
® is built out of eigenvectors of Eq.(2.1). The diagonal generalized stiffness
matrix K, is composed of squares of the natural frequencies w? (g =1,2,..,N).
Although the source of the nonlinear term k(q) can be either aerodynamics
or the aircraft structure, it is assumed here that only the structure is nonlinear.
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At present, the only general method of describing the center manifold is based
on multi-variable Taylor series [7]. In what follows, it is also assumed that the
nonlinear term k(q) is of the form of a power series of nonlinear coordinates
q. For structural nonlinearities such an expansion can be easily obtained. Let fs
be a m-dimensional vector of nonlinear forces corresponding to the vector of
displacements 6 in a finite number of structure points:

(2.4) fs =Y K;&,

i22

where K; are diagonal matrices of known numbers, and the symbol 6/ means
that each vector component is raised to the power of j separately. In practical
calculations, the number of terms of Eq.(2.4) remains finite. In particular, the
vector fs can include nonlinear springs present in the structure and modeling
an aircraft control system. On the other hand, Eq.(2.4) can also describe the
properly discretized distributed nonlinearities.

For a given structure it is always possible to find a rectangular matrix R of
order m x M relating the m-dimensional displacement vector ¢ to the M physical
coordinates u:

(2.5) §=Ru.

After using Eqgs.(2.4) and (2.5), the vector k(q) of nonlinear generalized forces
can be written as:

(2.6) k(q) = R®)"f; = (R®)" Y K;(R®q).
122
The aim is to find the critical flutter speed for the Eq. (2.3) and also the limit
cycle amplitude and frequency in the neighbourhood of the critical point.
Since the aeroelastic system is nonlinear, it is not possible to assume any given
form of the motion during the limit cycle oscillations. Therefore, unsteady aero-
dynamic forces must be written in a general form valid for an arbitrary motion:

0
ol? b
(2.7) Fi(q) = > / g(—7)q (1‘ + [—/T) dr,

where [/ and p denote the flow velocity and density, respectively, and b stands
for the characteristic length. Elements of the matrix g are response functions
corresponding to the impulsive changes of generalized coordinates q. Finally,
the equation of motion (2.3) takes the form of an integro-differential equation
containing an integral of convolution type.

The classical linearized flutter analysis assumes oscillatory motion of an air-
craft:

(2.8) a() = ae*,
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where the complex coefficient
(2.9) s=9+iw

includes circular frequency w and damping factor +. For such a motion the vector
of unsteady aerodynamic forces is given by the simple linear relation

(2,10) F'q(q) = A(S; U)aest’
where
i Mt )
(2.11) A(s;U) = 9[2' /g(r)e-%fd«r
0

is called the aerodynamic matrix. The only case for which it is possible to calculate
the aerodynamic matrix analytically (in terms of Bessel functions) is a thin airfoil
in an incompressible flow [8]. More complex aerodynamic models rely entirely
on numerical methods. There are many of them in the literature (a list of the
most important ones can be found in [9]), all suited for direct calculation of the
aerodynamic matrix, mostly for pure harmonic motion (y = 0), without evaluating
the response matrix g. Although the present method does not assume a harmonic
motion, it does not require the knowledge of the response matrix either.

Local bifurcation theory of dynamical systems [7] has been developed for the
first-order equations. By introducing a 2/NV-dimensional vector of new coordi-
nates y(t):

_Ja®
(2.12) y(t) {é(f)}’

the first-order flutter equation is obtained:
0
(2.13) y(1) = Dy y(t) + / Gu(—=0; Uyt + O)dO + fu(y),
where square matrices of order 2N, Dy, Gy, and the nonlinear term fi;(y) are

given by:
: Gu(-0;U) " ' fu(y) 0
" v(-C5U) = I3 F 3 vu\y) = )
0 el (—%O) 0 ~k(q)

0
“ 2 °

with k(q) given by Eq.(2.6). For oscillatory motion (2.8), the linearized flutter
equation reduces to the eigenvalue problem

(2.14) (A(s; Uy - KW)F] = $%4.



J. GRZEDZINSKI

(o]

Loss of stability occurs when damping drops to zero (7 = 0 in Eq.(2.9)) and
the flutter boundary is determined by the real negative eigenvalue of Eq.(2.14)

(2.15) s* = —wi,

corresponding to the critical flutter velocity (/' = .

The critical bifurcation point of the first order equation (2.13) is defined by
the eigenvalues of its linear part corresponding to fi;(y) = 0. It can be shown |7,
10] that also in the presence of convolution integral within the linear part, the
eigenfunctions have the form

y(t) = ye*,
where s is given by (2.9). The resulting eigenvalue problem is:
(2.16) ) Ho=s
' Aely-K Bl° 0 &

It follows from comparison with (2.14) that at the flutter boundary, the charac-
teristic matrix of linearized first-order flutter equation has a pair of complex-con-
jugate, pure imaginary eigenvalues s = +iwy.

The eigenvalue problem (2.16) of the linearized flutter analysis can be derived
in a more formal way by applying the Laplace transform, which replaces the
convolution integral in Eq. (2.13) by the product of two functions. In nonlinear
approach there are two possible ways: either the application of Laplace transform
in frequency domain or solution of the problem in time domain. The first method
is suitable for handling convolution integrals but faces more difficulties due to
nonlinear terms. On the other hand, working in time domain shifts the whole
problem to proper treatment of the convolution integral. The present paper uses
the time-domain method.

The qualitative changes in a behaviour of the nonlinear dynamical system are
always indicated by the purely imaginary (or zero) eigenvalues of the linearized
operator of the governing equation. For the nonlinear flutter equation (2.13) this
operator is of the form:

0
Ly(l) = Dy y(1) + / Gu(—6; Uy(t + @)d6.

Since the operator £ maps a space of continuous functions onto the Euclidean
space, then the eigenvalue problem L = Mg cannot be posed directly. Instead,
an extension of £ is made in order to map a space of continuous functions onto
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itself. An extended operator is the following [10, 11]:

de(O)
de °

for —0c0<@ <0,

Di ¢(0) +/GU(—'T;U)LP(T)dT, for © =0,

and the flutter equation takes the form:

0, for —oo< @<,
f(y:(0)), for © =0,

e L - o)+ {

where the following notation has been introduced:
Yt(@) =y( + 9)-

Now, the eigenvalue problem £y/¢p = A can be formulated. First, the form of
the eigenfunction is determined (—occ < @ < 0):

PO 2e®) = 0O) = 00"

and next the eigenproblem for the Euclidean vector ¢(0) is posed

0
(2.]9) Dutp([)) G ( / GLJ(—T;(_[)E'\TCZT) LP(O) = /\(.p(O)

As can be seen, both eigenvalue problems (2.16) and (2.19) are identical. There-
fore, since at criticality there is a pair of pure imaginary eigenvalues, flutter
instability is the Hopf bifurcation [10].

3. Center-manifold reduction

If any bifurcation occurs in a dynamical system, then the phase space splits in
general into three manifolds: stable — generated by eigenvalues with Re (\) < 0,
unstable - generated by eigenvalues with Re (1) > 0, and center manifold, cor-
responding to Re (\) = 0 [12]. Center manifold is invariant, locally attracting
and asymptotically stable. Moreover, it is of finite dimensions — for the Hopf
bifurcation it is two-dimensional. It means that in the space of all solutions’to
Eq.(2.18), bifurcating solution tends asymptotically to a two-dimensional attract-
ing subspace. The asymptotic solution (limit cycle oscillations) satisfies a cer-
tain system of two nonlinear ordinary differential equations of the first order,
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which can be derived from the integro-differential equation (2.18), written for
many degrees of freedom. This procedure of obtaining a low-dimensional system
of equations from the initial multi-dimensional system is called center-manifold
reduction.

There are two problems associated with the center-manifold reduction. Since
the aim is to calculate asymptotic limit cycle oscillations for a general form of
the nonlinear term fy;(y), this term is assumed to have a formal power series
expansion with respect to generalized coordinates y. Consequently, the method
of center-manifold reduction is also based on such expansions. The second prob-
lem concerns the way the velocity / should be treated in. The critical flutter
conditions correspond to a certain critical value of the velocity /' = Uy, which
in turn determines the existence of purely imaginary eigenvalues of Eq.(2.19)
and the center manifold, as well. At this critical branch point the amplitude of
oscillations tends to zero and, in order to obtain the finite amplitude limit cycle
oscillations, the value of velocity must be different from the critical one. Unfor-
tunately, if {7 # [y, the characteristic matrix of Eq.(2.19) no longer possesses
pure imaginary eigenvalues and the center manifold simply does not exist. On
the other hand, the existence of the center manifold has been proven in a cer-
tain neighbourhood of equilibrium solution yg(?), corresponding to [/ = Uy, in
the space of solutions y(¢) [10]. For that reason, the center-manifold reduction
usually applies to the so-called suspended systems. Suspended aeroelastic system
is derived from Eq. (2.13) by introducing the difference

(3.1) u=U-U

as an additional variable satisfying the equation & = 0. The 2N +1-dimensional
vector of new generalized coordinates is the following:

a(?)
(3.2) x() = ¢ §(t)
and satisfies the equation
0
(3.3) (1) = Dx() + / G(-O; wx(t + O)dO + f(x),

where square matrices of order 2N + 1 D, G, and the nonlinear term f(x) are
given by

0 I 0 0 0 0
27\ ”
D=|-K, 0 0|, G(-6O;u)= @(Uozzr tc)g(mlfo;tf(_))
0 00 ’

0
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0

f(x) = ¢ —k(q)
0

Since the matrix G(—©;u) now includes the independent variable u instead
of the bifurcation parameter [/, the integral in Eq.(3.3) is no longer linear with
respect to x. In what follows, the matrix G is replaced by the Taylor series

=1 dG(-0;0) .
(3.4) G(-O;u) = G(-6;0) + z:l i (—%u,f_‘——)u]'
]:

It is also assumed that the multi-variable power series expansion for the non-
linear function f(x) at the right-hand side of Eq. (3.3) is known:

(3.5) f(x) = > ;1-rfux".

v22 "

where
2N +1

B (O T T 1. S| = !
X' = {.11 Xy 'T2N+1}* Z v, = v, 2> 1L
7=1

The number of components of the vector x” and also the number of columns
of each matrix f, changes from one term to another and equals the number
¢,an +1 of compositions of v into 2N + 1 parts

v+ 2N
(3.6) CaNa1 = ( ) .

v—1

The elements of matrices f, can be easily calculated from Eq.(2.6). Substitu-
tion of series (3.4) into Eq. (3.3) yields the integro-differential equation valid in
a certain neighbourhood of the critical bifurcation point:

0
(3.7) (1) = Dx(1) + / G(—O;0)x(t + @) dO + h(x),

where h(x) equals

0

(3.8) h(x) = f(x) + 3 1 / d"-1G(-6;0)

e (=1t . dun-1

x'(t + @) do,

oo
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with x"7 = {.1"1”-;1:;’2---.1‘,37\’,";{ , and always = nyn+1 + 1 (Zan4+1 = u) which
2N
implies that Z 17; = 1. Equation (3.7) will be reduced on the center manifold.
i=1
The linear spectrum of Eq.(3.7) includes one eigenvalue with zero real part
more than the previous spectrum of the non-suspended system (2.13). Hence the
center manifold corresponding to Eq.(3.7) is larger than that of Eq.(2.13) and
has the dimension of three.
Since the center manifold is tangent to the linear subspace spanned by eigen-
vectors ¢, corresponding to the bifurcating eigenvalues of the extended linear
operator Lg derived from Eq.(3.7)

dp(0)

10 for —oe<@ <,

(3.9  Low(©®) = 0
D (0) +/G(—T;O)tp('r)(lr, for @ =0,

then it is convenient to introduce the three-dimensional vector z(t) of center-
manifold coordinates as follows:

3

(3.10) x(@) =) zi()e;(0) + WO, 1),

j=1
with the yet unknown function w(©, ¢) satisfying the conditions:

dw(©,0) _ 0

(3.11) w(@, 1) = w(@, z(t)), w(@,0) =0, =

The above conditions, besides tangency, reflect invariant properties of the center
manifold.

In order to restrict the aeroelastic system to the center manifold, the projection
operator [ must be determined, satisfying relations

Px(©) = z(t),

(3.12) Pw(®, z(1)) = 0.

The projection procedure is based on the so-called outer product [10, 11],
associated with the extended linear operator Lg:

0 1
(3.13) (x",x) = 2T (0)x(0) - / / 2T (€ - n)G(—n:u)x(£) d€ dn,
—oa ()
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with two continuous functions x(£) and x*(n) defined over intervals —oco < £ < 0
and 0 > 7 > oo, respectively. The adjoint operator is defined in a standard way
by the relation:
(x*, Lox) = (Lox",x).

The eigenvalues and eigenvectors of two eigenproblems Ly = Ay and Lj) =
A" satisfy the equalities A* = A, (1, ;) = 6. By using Egs. (3.9) - (3.13), the
simple set of three nonlinear first-order ordinary differential equations describing
asymptotic motion on the center manifold is obtained [10]:

(3.14) i=Az+ ¥ (O)hy,

where A denotes the diagonal matrix of eigenvalues iwg, —twy, 0, and the matrix
W is composed of the corresponding eigenfunctions ¥, (7 = 1,2,3). The 2N +
1)-dimensional vector function w(@, z(t)) defines essentially the center manifold
and the projection operator as well. It satisfies the integro-differential equation:

E (0)hotp;(O), for —o0<©<0,

(3.15)  w-—Lgw=
'tIJ (O)hgcpj(()) +hy, for ©@=0

Ll-i M\».I! M.»

and also the orthogonality condmons, which have not yet been implicitly imposed:

($.wy=0, =123

Both equations (3.14) and (3.15) are coupled by the right-hand side nonlinear
term:

3

hg = h(x,(0)) = h (Z zi(1)e;(0) + w(z, 0)) ;
7=l

Although the assumption (3.5) describing the nonlinear term by multi-variable

power series has not been used so far, it seems to be rather necessary in order

to solve the system of Egs. (3.14) and (3.15). In what follows, also the function w
is expanded into such a series

(3.16) w(z, @) = Z w‘,(O)z”(i)
_u>2 'l
In terms of power series, the Eq. (3.15) takes the form
(3:17) Z F (W (O)A, — Low, (O)) 2"
n>2 '[
0, for —o00 <@ <0,

= Z r,,(())z + 1 s
> zThO” , for © =10,

u>2
v>2
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where i
(A.U)}g].; = Z /\Huj ’ k= 1?2‘.‘ vy CU 2N 415

§=1

and the first right-hand series of (3.17) is given by

3
Z rl,(@)z -3, O)hg()a~ Z/ w,(©)z".

u>2 7=1 w>2

The method of recursive calculations of coefficients of equations (3.14) and (3.17)
is described in details in Ref. [3]. It is worth noting here that calculations can be
carried out up to the desired order of approximation.

From a quite formal point of view, the center-manifold reduction is equivalent
to the appropriate nonlinear change of coordinates given in the form of a series,
linking (3.10) and (3.16):

(3.18) x(t + Q) = Z; w,(@)z"(1),

u>1

where the vector z() of new coordinates has only three components. The matrices
w, (@) of order (2N +1)x ¢, 3, where ¢, 3 denotes the number of compositions of
t into 3 parts (3.6), are composed of continuous functions defined in the interval
@ € (—00,0]. The algorithm of center-manifold reduction provides the way of
calculating these functions and also the method of simultaneous derivation of the
first-order ordinary differential equation describing the limit cycle oscillations in
terms of new variables z:

(3.19) z(t) = Az(t) + Z dﬂ 2,

/L>2

where A denotes, as before, the diagonal matrix of eigenvalues iwy, —iwq, 0,
and d, are rectangular matrices built out of the already known complex num-
bers. The way in which the suspended system has been introduced implies that
z3=u and also Z3(1) = 0, which means that an asymptotic motion is essentially
two-dimensional. The third variable u acts once again as a parameter, while the
suspended system serves as a convenient tool for deriving the series expansion
with respect to it.

The next important conclusion drawn from the algorithm of center-manifold
reduction says that there is no need to know the response functions forming
elements of the matrix G(—@;0). This is because the columns w, (@), &k =
1,2,...,c on+1, f > 1, of each matrix w, (@) of the series (3.16), can be only of
the elementary form [3]: _

W‘,/\-((')) = VAVL“(;(')J7 659,
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with integer 7 > 0, and s being an imaginary number. Consequently, all inte-
grals involving the response functions within the algorithm can be carried out as
follows:
0 4
d'G(-0;0) ;50 4o - A Vo)

—_—00

where » > (), and the only non-zero block of the matrix

0 0 0
A(S; “0) = A(.S; Uo) 0 0
0 0 0

is the aerodynamic matrix A(s; (/) given by Eq.(2.11) and calculated for a pure
harmonic motion and the critical velocity Uj.

Since Eq.(3.19) is an ordinary differential equation, it can be easily trans-
formed to the so-called Poincaré normal form either by the Lie transforms [7] or
by recursive change of coordinates [13]. Both methods introduce new variables
(1) related to z(t) by the near-identity transformation

(3.21) 1) = (1) + 3 b C (D).

w22 7

This transformation retains the form of Eq.(3.19) also with respect to new
coordinates ( (). The calculation of elements of matrices b, requires to make as
many coefficients d,, equal to zero as possible. The simplification achieved lies
in the phase-shift symmetry introduced by the transformation (3.21). The normal
form of Hopf bifurcation in polar coordinates r, ¢:

(3.22) G=re?,  (=(
may be written as [2]:

P (7(“.) + Zu,j(u)rzf) ,

=1

(3.23) N
w(u) + Z b;(u)yr¥,

2=1

f

where ~(u) + iw(u) is the pair of complex-conjugate eigenvalues (y(0) = 0,
w(0) = wy). All functions y(u), w(u), a;(u), b;(u) are real and have the form of
power series expansions with respect to u. In practical calculations, Egs. (3.23)
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are implemented up to some finite order n (j < n). Therefore, the amplitude
ry of the limit cycle oscillations satisfies an algebraic equation obtained from
Eq.(3.23); by setting r = 0:

(3.24) Yw) + > a;(uyy =0.
=1

For any given u, the left-hand side of Eq. (3.24) is of the form of a polynomial
in rz7. Hence all possible limit cycle amplitudes are determined by the real positive
roots of this polynomial. Since limit cycle oscillations (; = (y(t) on the center
manifold are purely harmonic [10]:

(3.25) (y = rge™nt,

then for each amplitude 7y the corresponding frequency wy; is calculated from
(3.26) wy = w(u) + Z ()j('u.)‘ri;i ;
i=1

The sequence of transformations of variables given by Egs.(3.22), (3.21),
(3.18), (3.2), (2.12) and (2.2) yields the final limit cycle oscillations of physi-
cal variables u(f). Since two of these transformations are nonlinear, the physical
variables do not oscillate harmonically in time, contrary to the center-manifold
variables ().

Flutter analysis of an aircraft imposes a number of requirements not satisfied
by solutions of the Hopf bifurcation for functional differential equations, available
in the literature. First of all, it is not sufficient to take into account only the highest
order term of (3.24), which gives the characteristic square-root growth of the limit
cycle amplitude

rg =1/ Pu
where
0 1 dv(0)
(5.27) g ~a1(0) du

because the region of validity of this approximation is too close to the bifurcation
point to be of practical importance. An example of such a limited analysis is
included in [10] and has given a good starting point for the present method.
A two-term approximation, however not using the center-manifold reduction, is
given in [14], but because of the very special method of solution of the problem,
it cannot be directly extended to the arbitrary number of terms and to systems
with many degrees of freedom.
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4. Numerical examples

All numerical examples presented in this section assume that the nonlinearities
are concentrated in the points of connection between the lifting and control
surfaces of an aircraft, producing nonlinear restoring moments when the control
surfaces perform rotation about the hinge lines. It is also assumed that each hinge
moment M; is a cubic function of the local angle of rotation 6

(4.1) M;s = Kg(6 + ¢6%),

where N is a standard linear spring constant, and the coefficient ¢ describes
the strength of nonlinearity. The last assumption means that there is only one
non-zero matrix K, in Eq. (2.4).

Since each nonlinear analysis is essentially an extension of the corresponding
linearized problem, it is impossible to calculate the limit cycle parameters for an
aircraft without having a suitable computer program for the linear flutter analy-
sis. The standard output of such program includes critical flutter velocity (/y, the
corresponding frequency wy and the flutter mode in the form of a right eigenvec-
tor q of Eq.(2.14). For a nonlinear flutter analysis the following additional data
should be supplied:

e elements of the aerodynamic matrix (2.11) corresponding to the flutter point,

e a set of derivatives (3.20) of the aerodynamic matrix corresponding to the
flutter velocity and calculated for s = +iwy, +2iwy, +32wyg ... up to the desired
order of approximation,

e elements of the matrix R (2.5) defining locations of nonlinear springs within
the aircraft structure.

Since the aerodynamic matrix is essentially a function of nondimensional vari-
able p = wb/l/, the derivatives of the aerodynamic matrix with respect to vari-
ables s and (7 can be easily evaluated if the corresponding derivatives with respect
to p are known. For the 72-th order of approximation of the Egs. (3.23), the high-
est derivatives are of order 2n — 1. Although some simpler unsteady aerodynamic
models allow for an analytical calculation of derivatives (e.g. strip theory), it seems
that in general, the only efficient way is numerical differentiation. This is because
in most cases the aerodynamic matrix is known only numerically (i.e. as a set of
numbers). It has been found that satisfactory results, especially for higher-order
derivatives, gives a simple integration scheme based on the Cauchy integral in
the complex p-plane:

(/“(IM(])) axi(2) - o igle,)

v

dp 2~ T T W L -y

where «aj(p) denotes an element of the aerodynamic matrix. Integration nodes
=, are placed on a small circle (" with an origin in the point p. All values of
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argument p of the derivatives appearing in center-manifold reduction are purely
imaginary numbers, hence the standard numerical methods for calculation of the
aerodynamic matrix can be applied.

The number of degrees of freedom of an aircraft may cause some computa-
tional problems since the amount of numerical work required grows very fast. For
an aircraft with only six degrees of freedom (modal coordinates) and four-term
center-manifold approximation (n = 4 in Egs. (3.24) and (3.26)), the number of
components of the last, 9-th vector x7 in Eq.(3.8) equals 293930. Therefore, it
is very important to select only the most significant natural modes out of all the
modes included in the flutter mode, in order to save both the computer time and
memory. Since the center manifold is tangent to the linear subspace spanned by
two complex-conjugate eigenvectors of the linear operator (2.17), such a selection
is done in the same way as in the conventional linear flutter analysis.

Sample calculations of the limit cycle amplitude and frequency were made for
the aileron and flap flutter of two gliders. All hinge springs of the control surfaces
were assumed to produce hardening cubic nonlinearities. The number of physical
degrees of freedom used to calculate the natural modes was equal to nearly
200. Six modal coordinates were taken into account, including two or three rigid
modes. The first glider revealed symmetric and also antisymmetric flap-aileron
flutter at velocities 187 km/h and 178 km/h, respectively. Similar antisymmetric
flutter at 225 km/h occurred for the second glider.

O. 40 ‘n=1
= =2
: -=n=3
—n=4
0. 30 o
- 9 20
0.10——— S
0. 00 ‘

0.92 0.94 0.96 0.98 1.00
U/Uo

Fic. 1. Amplitude of center-manifold Hopf limit cycle (symmetric flutter).

Both gliders had one nonlinear aileron hinge spring with ¢ = 50 (4.1). Results
of calculations for the first glider are presented in Figs. 1-8. Figures 9-12 con-
cern the second glider. Symbol n in all figures denotes the number of terms of the
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Fia. 2. Frequency of center-manifold Hopf limit cycle (symmetric flutter).
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Fra. 3. Flap limit cycle amplitude (symmetric flutter).

series (3.24) and (3.26). As the final results of calculations, the Hopf limit cycle
amplitude 1y (3.24), normalized with respect to /7 (3.27), and frequency wy /wy
(3.26) are plotted against the nondimensional velocity [//U,. There is a sequence
of five approximations in each chart, corresponding to n = 1,2,3,4,5. Note that
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F'iG. 5. Amplitude of center-manifold Hopf limit cycle (antisymmetric flutter).

n-th order approximation of a center-manifold limit cycle requires 2n + 1 terms
in the power series expansion (3.18).

Once the center manifold limit cycle parameters are known, it is possible to
calculate the physical deflections of a glider during oscillations. Only two of them

http://rcin.org.pl



SUBSONIC FLUTTER CALCULATION OF AN AIRCRAFT 21

1.15 ~--n=12
sz =
= p=5| |
— =i}

1.10 - +a;5

2 A ==
\\\ \
R v :
5 et 3 t
e T ? M
1. 00— ' -
0. 95

0. 80 Q. 85 0. 90 0. 85 1.00
U/Ug
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[F1G. 7. Flap limit cycle amplitude (antisymmetric flutter).

are plotted: local hinge-line rotation of flap 6z and aileron ¢ 4. Both correspond
to the location of nonlinear springs and are measured in radians. Because physi-
cal coordinates do not oscillate harmonically in time (though in a very similar
manner), the amplitude of oscillations is not well-defined. Therefore, 67 and ¢4

http://rcin.org.pl



22 J. GRZEDZINSKI

0. 80 0. 85 0.90 0.95 1.00
U/Uo

F1G. 8. Aileron limit cycle amplitude (antisymmetric flutter).

denote maximum values of the rotation angle reached during a single period. In
all figures the unstable limit cycles appear in the vicinity of the corresponding
bifurcation points.

In almost every chart there is an additional line taken from Ref. [17], and
denoted HB, describing the amplitude of limit cycle oscillations calculated by the
harmonic balance method [15], by using the continuation subroutines package
[16]. Harmonic balance method replaces each nonlinear restoring force by the
first term of its Fourier transform. If there is only one nonlinear force present in a
system, then for any given limit cycle amplitude the linearized flutter equation can
be solved for the corresponding flight velocity. Multiple nonlinearities result in
greater complexity of calculations, because the amplitudes of aircraft deflections
at concentration points are not known prior to the calculations, but their ratios
are determined by the resulting flutter mode.

There is a very good agreement between the results of the present method
and the harmonic balance method, in a range of a few percent below the linear
flutter velocity [/y. However, beyond this interval a qualitative discrepancy of the
results of both methods are observed, and also the power series derived by the
present method are not convergent anymore.

It was impossible to establish the real behaviour of limit cycle oscillations of
the gliders because neither the flight tests nor direct numerical integration of
the nonlinear flutter equation were performed. Nevertheless, it is important that
the limit cycle oscillations are detected below the linear flutter velocity despite
the fact that their amplitude is uncertain. These oscillations can be initiated by a
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I16. 9. Amplitude of center-manifold Hopf limit cycle (antisymmetric flutter).
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FiaG. 10. Frequency of center-manifold Hopf limit cycle (antisymmetric flutter).

sufficiently high disturbance, the magnitude of which is known from the presented
results of calculations and which is given by the unstable branch of amplitude
curves (the part of plots between the bifurcation point and the turning point in
Figs. 11 and 12).
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Fra. 12. Aileron limit cycle amplitude (antisymmetric flutter).

5. Concluding remarks

The discrepancy between the present method and the harmonic balance
method in a region located not very close to the bifurcation point is not an
unexpected result. The harmonic balance method assumes pure harmonic oscil-
lations of a structure, that may not be satisfied, and also treats nonlinear springs
in a simplified manner. The method of center-manifold reduction is a method
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of local validity and, afterwards, is based on asymptotic series expansions, the
usefulness of which cannot be expected in a wide range of velocity. Nevertheless,
there is a good agreement between these two methods locally. Hence, the main
advantage of the center-manifold reduction lies in a possibility of extension of this
method to such aeroelastic systems for which harmonic balance method cannot
be handled easily (e.g. multiple concentrated nonlinearities), and to systems for
which the direct numerical integration method cannot be used in a sufficiently
effective way.

The method of center-manifold reduction does not limit the number of de-
grees of freedom. The problem of treatment of higher degree of freedom systems
affects only the efficiency of calculations. The method itself (and the correspond-
ing computer code as well) can be applied to any number of degrees of freedom
“as it is”. However, the hardware used may bound this number significantly if
there is not enough RAM available. It has been found that the computer direct
access memory is the bottle-neck of the calculations. The reason is that the main
series (3.18) is not a series of numbers but rather a series of functions. These
functions are described by a rapidly growing number of parameters, when the
number of terms increases, and moreover, all of them must be stored in memory
during the entire computation process. On the other hand, not very high number
of terms is sufficient to determine the behaviour of the aeroelastic system under
considerations in the neighbourhood of a bifurcation point.

The method of center manifold reduction is an asymptotic and local method
(i.e. looking near a single point) and, therefore, is not suited for treatment of more
complex global bifurcations or transition to chaotic oscillations. Such oscillations
appear also in aeroelastic systems.
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