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Nonlinear transport equation and macroscopic properties 
of microheterogeneous media 

A. GALK.A, J. J. TELEGA and S. TOKARZEWSKI (WARSZAWA) 

THE AIM of this paper is a study of the quasi-linear transport equation, for instance the stationary 
heat equation. For periodically microheterogeneous media, asymptotic homogenization has been 
performed with the local problem formulated as a minimization problem. The Hashin-Shtrikman 
type bounds and Golden-Papanicolaou integral representation theorem have been extended. In the 
case of layered composites, exact analytical formula for the effective coefficients have been derived. 
The possibility of applying Pade approximants and the Ritz method has been shown. Specific cases 
and examples have also been examined. 

1. Introduction 

THE NONLINEAR Eq. (2.1) below is here called a nonlinear transport equation. It 
is obvious that from the physical point of view, the study of such an equation is 
very important. lYPical examples are the stationary heat conduction and a non-
linear dielectric. The small parameter c; > 0 characterizes a microstructure of the 
material. We have thus to deal with composite materials. Performing homogeniza-
tion or passing with c; to zero one obtains the homogenized (effective) coefficients 
afj ( i , j = 1, 2, 3). Of our main interest will be the periodic homogenization, cf. 
[1 , 2). We shall also extend to the nonlinear problem studied, the results due 
to GoLDEN and PAPANICOLAOU [20) on the integral representation of the effec-
tive coefficients in the linear case when aij (y ,w)(y E IR3, w E J?) are stationary 
matrix-valued random fields; here ( n, :F, P) is a probability space. Such an ex-
tension is possible since in the local problem the macroscopic field u<0>, say the 
macroscopic temperature T = u<0> in the case of the heat conduction, plays the 
role of a parameter only. It is thus also possible to exploit the Hash in - Shtrikman 
variational principles and bounds, elaborated for the linear transport equation. 

Extensive literature is concerned with the linear conductivity i.e. when the co-
efficients afj do not depend on the solution ue. The reader may refer to [1-21] 
for more details on the results achieved so far. In contrast to the linear case, 
there seems to exist only a few papers on the homogenization of the quasi-linear 
Eq. (2.1 ), cf. [22- 25). Those papers are purely theoretical and provide no exam-
ples of applications to composite materials. Also, the problem of the estimation 
of the effective coefficients has been left open, though a particular case has been 
studied by MITYUSHEV [26]. However, the definition of the effective conductivity 
used by this author is different from the formula obtained by homogenization. 
We observe that a;j depend on u<0>, where u<0> is a weak limit of ul: when c;--) 0. 
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For instance, in the case of the heat conduction, a;i depend on the macroscopic 
temperature T. Such a dependence is in general a nonlinear one, even then when 
in each of phases constituting the composite afi depend linearly on T; specific 
examples are provided in Secs. 5, 6 and 7 of our paper. A nonlinear dependence 
of the conductivities on the temperature is of vital importance not only in the 
study of engineering materials and structures [27, 28), but also for modelling the 
behaviour of biological tissues [29, 30). 

The determination of the effective coefficients afi is of interest not only for 
undeformable bodies; such a problem arises quite naturally as an independent 
problem in the study of thermo- and piezo-electric composites [31, 32) and in 
thermodiffusion [33]. 

The objective of this paper is to study the quasi-linear heat equation (2.1) and 
provide some applications. Brief description of the contents of the paper reveals 
very well our aim. In Sec. 2 the method of two-scale asymptotic expansions is 
used in order to derive in a rather simple manner the homogenized coefficients 
｡ｾｪ Ｈｵ＼ Ｐ ＾Ｉ［＠ in the case of heat conduction u<0> = T . The formulation of the lo-
cal problem in the form of a minimization problem, in which the macroscopic 
field u<0> (for instance T) plays the role of a parameter is also delivered. In 
Sec. 3 variational principles and bounds of the Hashin-Shtrikman type are given. 
Section 4 deals with a straightforward extension of the GOLDEN- PAPANICOLAOU 
[19) representation theorem to the investigated quasi-linear problem. This the-
orem provides an integral representation of the effective coefficients a{j (u<0>) 
for two-component composites made of isotropic materials. In Sec. 5 analytical 
formulae for the homogenized coefficients of layered composites are derived. 
Section 6 reveals a possibility of an application of the Ritz method to the deter-
mination of local functions. A specific two-dimensional problem is also given. In 
the last section it is shown how to apply the powerful tool of Pade approximants 
to finding bounds on the effective coefficients. 

2. Homogenization of quasi-linear heat equation with periodic coefficients 

Let V c JR1 be a bounded regular domain and r = 8V its boundary. We 
introduce a parameter c = l/ L, where l, L are typical length scales associated 
with microinhomogeneities and the region V, respectively. 

We shall study the quasi-linear transport equation 

(2.1) 

Ｍｾ＠ ( at: ·(x ut:)aut:) = f 
axi ' 3 

' axj 

ueir = 0 

in V, 

on r, 

where afj(x, ut:)= aij ( ;, ue: ). x E V. By Y we denote the so-called basic cell [1 , 

2], for instance Y = (0, Y1) x (0, Y2) x (0, Y3). For the sake of simplicity we assume 



http://rcin.org.pl

N ONLINEAR TRANSP ORT EQUATION 295 

that a;j = aj;, i , j = 1, 2, 3. As usual, we apply the summation convention. The 
material coefficients a;j (y , T) are Y -periodic in the first argument. More precisely, 

a;j : (y , r) -+ a;j(y , r) , 

JR3 
X lR - lR 

are assumed to satisfy the following conditions: 
(i) For each r E IR, y -+ a ; j (y , r ) are mesurable and Y -periodic functions. 
(ii) There exists a constant a > 0 such that for every r E IR, i.e. y E Y and 

for all i,j = 1, 2,3, la;j(y , r) l ｾ｡Ｎ＠
(iii) There exists a constant k > 0 such that 

la;j (y , r1) - a;j (y , r2)l ｾ＠ klr1 - r2l, 

for ally E IR3 and r1 , r2 ER 
(iv) There exists ao > 0 such that 

for all ｾ＠ E !R3 and r E R 

We note that for a fixed c: > 0 the material functions aij ( x, r) = a;j ( ｾＬ＠ r) 

are c: Y -periodic in x E V. Mter passage to the limit as c: -+ 0, the homogenized 
coefficients afj will be obtained. 

2.1. Method of two-scale asymptotic expansions 

According to this method we make the following assumption (ansatz), cf. [1 , 2] 

(2.2) ｵ ｾ Ｈ ｸ Ｉ＠ = u<0>(x , y) + c: u<1>(x, y ) + c:2 u(2)(x, y) + · · · , 

where y = x jc:, and the functions u<0>(x , ·), u(l)(x , · ), u<2>(x , ·), etc. are 
Y -periodic. Then we may write 

It is tacitly assumed that all derivatives appearing in the procedure of asymptotic 
homogenization make sense. We recall that for a function f ( x, y ), where y = x / c:, 

the differentiation operator ajax; should be replaced by ':la + ｾ＠ ':la . According 
vx; c vy; 

to the method of asymptotic expansions we compare the terms associated with 
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the same power of c.. Proceeding similarly as in the linear case we successively 
obtain: 

c.-2 

8 ( . . (O) 8u<0>(x, y)) _ 
8yj a,iy, u (x, y) ) 8yi - 0. 

This equation will be satisfied provided that u<0> does not depend on the local 
variable y, i.e. u<0) = u<0>(x). This statement holds true under the assumption 
that the coefficients aij ( · , u<0>(x, ·))are Y -periodic. 

c.-1 

_i__ ( ··( (O)( )) ( 8u(l>(x,y ) 8u<
0
>(x))) = 0 £l a,1 y,u x £l + 

8 
. 

uyj uyi Xi 

c.0 (after integration over Y ) 

ｾ＠ (-1 j ··(· (O)( )) ( 8u(l>(x,y ) 8u<O>(x)) dY) = - f( ) 
£l I y I a,J y, u x £l + £l x , UXj UYi UXi 

y 

where 
8u<0>(x) U(l)(x , y) = 8 X(k)(y , u(O)). 

Xk 

The local functions x <k>(y , u<0>) are solutions to the local problem 

(2.3) 

Let us introduce the space of Y -periodic functions defined by 

(2.4) Hper(Y) = { </> E H 1(Y)I </> assumes equal values 

at the opposite faces of Y}. 

The weak (variational) formulation ofEq. (2.3) reads: find x<k)( · , u<0>) E Hper(Y) 
such that 

for each v E Hper(Y). Then the homogenized equation has the following form 

(2.6) - - ai-(u< >)-- = j , 8 ( o 8u(O)) 
8xj J 8xi 
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where the homogenized (effective) coefficients are given by 

(2.7) e (0) - 1 J [ . . (0) . (0) 8x(i)l aij(u ) - TY1 y a,J(y , u ) + akJ(y, u ) oyk dy. 

In the case of the heat conduction u<0) = T , where T is the macroscopic tem-
perature. 

Both in (2.5) and (2.6) the transport coefficients satisfy only the earlier spec-
ified conditions (i)- (iv) . We observe that in the local problem (2.5) u<0) plays 
the role of a parameter. This simple, but crucial observation means that (2.5) is 
equivalent to a convex minimization problem: 

Find 

(0) - . { 1 J . . (0) ( ov ·) ( ov ·) W(u , E)- mf 21YI Y a,3(y , u ) oyi + E, oyi + E3 dy 

V E H,.,(Y)} 

provided that aij = aji; here Ei = ou(O) I OXj. A solution V E Hper(Y) exists and 
is unique up to a constant c(u<0)). Due to linearity of v with respect toE= (Ei ) 
we may write 

(2.8) 

In contrast to the local problem (P1oc), problem (2.1) cannot be formulated as a 
minimization problem. Note also that 

lrV(u(O) E) = ｾ｡ ｴＡ Ｎ Ｈｵ＼ Ｐ ＩＩｅｅ＠) 2 •J ' J 

is the macroscopic potential. For instance, for dielectric composites the macro-
scopic displacement vector D = (D;) has the form 

(2.9) . - a w - e (0) . 
D, - oE; - a;i (u )E3 , 

where u (O) is the electric field, say c.p and E; = - oc.p I ox; (the sign of Ei in (P10c) 
is not important in the sense that one may consider either x<k) or (-x(k))). 

Knowing that the local problem can be formulated as the minimization prob-
lem (P10c) we come to a ve1y important conclusion: all the variational bound 
techniques, including Hash in - Shtrikman bounds, developed for the linear trans-
port equation can be applied to the estimation of the effective coefficients (2.7). 
In the next section we shall provide more details. 
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2.2. Justification: G-convergence 

From the mathematical point of view the results presented in the previous sub-
section are formal. Rigorous proof concerning the convergence when in Eq. (2.1) 
c tends to zero have been given by ARroLA, DuvAUT [22] and next extended 
in [23, 25] to the case of not necessarily periodic coefficients. Having in mind 
applications to physical problems we have assumed that a ij = aji· In fact, to 
perform homogenization either by the asymptotic method or by the method of 
H -convergence, such a symmetry is not required, cf. [22, 23]. H -convergence is 
the G-convergence generalized to the case of nonsymrnetric coefficients, cf. [1 , 
23-25] for more details. The main result of ARroLA and DuvAUT [22] is summa-
rized in the form of 

THEOREM 1. Under the assumptions (i)- (iv) and 

(2.10) 

there exists a subsequence ｵ ｾＧ＠ of ｵｾ＠ and p > 2 such that 

(2.11) 

where u<o) E ｔ ﾥ ｾ ﾷｐ Ｈ ｖＩ＠ is a solution of Eq. (2.6). 

REMARK 1. A weak solution of Eq. (2.1) is sought in the space HJ(V ). The 
existence theorem provided by ARroLA and DuvAUT [22] requires that 
f E w-1·P(V); p > 2 depends on V , a, ao and space dimension. We observe 
that in [22] the coefficients afj are not necessarily symmetric. 

3. Hashin-Shtrikman variational principles and bounds 

The local problem (P1oc) can be used for finding variational bounds on the 
effective coefficients afj (u<0)) similarly as in the linear case. Consider the case of 

the heat conduction; then, according to our notations u<0) = T. For the dielectric 
coefficients afj( <p) the considerations which follow are quite similar. 

In this and in the next section we are interested in composite materials made by 
mixing two isotropic materials with conductivities A 1 (T) and A2 (T ), 0 < A 1 (T) < 
A2(T), in specified proportions 01 and 02 = 1 - 01. The conductivity of the 
composite is then given by 

(3.1) 

where 'lj;1 (y) and 'lj;2(y) denote the characteristic functions of the sets where A 
equals A1 and A2, respectively. Then the volume fractions are 

(3.2) ()1 = Ｑｾ Ｑ＠ J 'lj; l(y) dy , 
y 

B2= ｬｾｬ ｪ Ｇｩｦ［ Ｒ Ｈ ｙＩ､ｹＮ＠
y 
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The local problem takes the form 

(3.3) < a' (T)E, E > =in! { ｬｾ ｬｾＮ｜Ｈｹ Ｌ＠ T) (::; + E;) (:: ; + E;) dy I 

v E Hw(Y)} , 

where E E IR3 and < ae(T)E, E > = a'fj(T)EiEj. Hence elementary bounds on 
ae readily follow, cf. (3] 

(3.4) 

where I = ( Oij ) and 

(3.5) At(T) = [ ｾｾｾｾ＠ (.\(y, T))-1 dy l-t = [(.\1(T))- 1 81 + (.\2(T))- 1 e,j-1
, 

(3.6) 1h(T) = ｬｾｬ＠ j >.(y, T) dy = >..1 (T)()I + >..2(T)()2. 
y 

Recall that if A and B are matrices, then A ｾ＠ B means that < AE, E > ｾ＠
< BE, E > for each E E !R?. 

We pass now to a brief discussion of Hash in- Shtrik:man variational principles. 
We follow the paper by KmiN and MILTON [3] , which is restricted to the linear 
case. 

3.1. Variational principle for bounding a•(T) from below and lower bound 

Suppose that a "comparison medium" is characterized by a conductivity >.c(T), 
independent of y E Y. If >..c(T ) is restricted to the range 0 < >.c(T) < >..1(T), 
then >.(y , T) - >.. c(T) > 0 and proceeding similarly to KOI-IN and MILTON (3], we 
arrive at the variational principle of Hashin-Shtrikman type for bounding ae (T) 
from below 

(3.7) ｾ＠ < (ae(T)- >..c(T)I)E, E > 

= s':f ｾｾｾｾ＠ [<a, E > Ｍ ｾ＠ (>.(y , T) - >..c(T))-l ial2 

- 2>.}(T) < cr, \7yL1;
1
divycr > ] dy. 

Here c:J =(a;) is aY-periodic vector field and JaJ2 = aw;; moreover (\lyv); = 
ov I oy; and L1y denotes the Laplacian with respect to y' while L1; I is its inverse. 
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1b derive from (3.7) the Hashin- Shtrikman type lower bound, the test field 
a is chosen in the form 

(3.8) a(y) = 'l/Jz(y)T) , 

where T) is a constant vector. 
Following KoHN and MILTON [3) we finally obtain 

where trA = Ai and n denotes the space dimension ( n = 3 in the three-dimen-
sional case). 

3.2. Variational principle for bounding a•(T) from above and upper bound 

If >.c(T) is restricted to the range >.2(T) < )..c(T) < oo, then >.(y , T)- )..c(T) 
is negative and the Hash in-Shtrikman type variational principle for bounding 
ae (T) from above has the following form 

(3.10) ｾ＠ < (ae(T)E, E > = ig_f ｬｾｬ＠ j [< a , E > Ｍｾ＠ (>.(y , T) - )..c(T))-
1 1crl2 

y 

Substituting 

(3.11) 

into (3.10) and proceeding similarly as in [3) we obtain that 

[ 
e -1] n 1 - ()l 

(3.12) tr (>.z(T)I - a (T)) ｾ＠ (>.z(T) _ )..
1
(T))()

1 
- >.z(T){)z 

n -1 1 
= >.z(T) - Az(T) + >.z(T)- A1(T). 

4. 1\vo-phase isotropic composites and integral representation 
of the homogenized coefficients 

BoccARDO and MURAT [23) have studied the convergence of solutions of 
Eq. (2.1) without the assumption of periodicity of the coefficients afj ( · ,ut:); the 
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symmetry of those coefficients has also not been required. Under some conditions, 
it has been shown that 

(4.1) (r - fixed, c; --+ 0). 

Here H denotes "H -convergence". In the case of periodic coefficients, we obvi-
ously have a(x, r) = ae(r), where ae(r) is given by (2.7); T E JR. To find a(x, r ) 
one needs additional information on the microstructure (we observe, that in the 
general case the effective coefficients may still depend on the macroscopic variable 
x E v} For instance, such an information is available for statistically homogene-
ous ergodic (S.H.E) media [34]. Stochastically periodic media are a specific case 
of S.H.E. media. For more information on stochastic homogenization the reader 
should refer to (19] and to the references cited therein. Our aim in this section is 
not to discuss the stochastic homogenization of Eq. (2.1), which can be done by a 
straightforward extension of the results due to PAPANICOLAOU and VARADHAN (18] 
as well as to GOLDEN and PAPANICOLAOU (19]. Instead, we are going to continue 
the study of periodic homogenization of two-phase isotropic composites. As it has 
been observed by SAB [34], periodic media are a special case of S.H.E. media. 
Indeed, for periodic media the probability space ( D, F, P) is defined by the basic 
cell: r2 = [0, Yi) x [0, Y2) x (0, Y3) if Y = (0, Y1) x (0, Y2) x (0, Y3); F is the 

Lebesgue a-algebra and P = ｬｾｬ＠ dy. It means that the results obtained in [18, 

19] are also valid for the case of periodic homogenization. Particularly, recalling 
that in Eq. (2.7) the macroscopic field u<0> plays the role of a parameter, we can 
extend the integral representation formula due to GOLDEN and PAPANICOLAOU 
(19], cf. also (20, 21]. For a two-phase composite made of isotropic materials we 
write 

(4.2) a· ·(y u<0>) = a(y u<0>)o · lJ ) ) IJ ) 

where, for a fixed u<0>, a(y, u<0>) assumes only two values a1(u<0>) and a2(u<0>) 
with 0 < a1(u<0>) < a2(u<0>). Thus we have, cf. (3.1) 

(4.3) 

Hence we conclude that important is only the ratio 

(4.4) 

In view of Eq. (2.7) we write 

(4.5) afj (u(O)) = a1(u(O)) j ｛ｾ ＱＨｹＩ＠ + ｨＨｵ＼ Ｐ ＾Ｉ ｾ ＲＨｙＩ｝＠ E]i) dy, 
}"' 
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-o OX(i)(y u(O)) 
where E/ = oy: + 8ii provided that Y = (0, 1)3 (for the sake of sim-

plicity) . Thus the effective transport coefficients are functions of h(u<0>); we write 
afj(u<6>) = aij(h(u<0>)). 

Suppose now that h(u<0>) is a complex variable, cf. (19]. It means that the coef-
ficients a1(u<0>) and a2(u<0>) are treated as complex-valued coefficients. Physically, 
imaginary parts characterize dissipative properties of the composite. 

From the mathematical point of view, it is then possible to apply the theorem 
on the resolvent representation [19-21]. 

PROPOSITION 1. The function aii is an analytic function of the complex variable 
h(u<0>) everywhere except on the negative real axis. 

P r o o f. For u<0> fixed, it is similar to the one given in [19], provided that 
in the formula (4.7) of the last paper one takes P(dw) = dy, n = Y (more 
precisely n = [0, 1)3). 0 

Equation ( 4.5) may be written as follows 

｡ ｾ ﾷ Ｈｵ＼ｏ＾Ｉ＠ j [ ] -o 
(4.6) mij (h(u<0>)) = a•:(u(O)) = 1/J1(y) + h(u<0>)1(;2(Y) E/ dy . 

y 

Now we are in a position to state the main result of this section 

lHEOREM 2 (REPRESENTATION FORMUlA). Let 

(4.7) (0) - 1 
s(u ) - 1 - h(u(O)) , 

There exist finite Bore/ measures J.lii ( dz ) defined for 0 :::; z :::; 1 such that the 
diagonals J.l ii(dz ) (no summation over i ) are positive measures satisfying 

1 

F: ·(s(u(O))) = j J.li j (dz ) 
•J s(u<O)) - z ' 

0 

(4.8) i, j = 1, 2, 3 

for all complex s ( u<0>) outside 0 :::; Res( u<0>) :::; 1, Im s ( u<0>) = 0. 

P r o o f. For a fixed u<0> it is quite similar to the proof of the representation 
formula given by GOlDEN and PAPANlCOLAOU [19], where h, P(dw), s and Li 
should by replaced by h(u<0>), dy, s(u<0>) and oj oyi , respectively. 

CoROLLARY 1. Suppose that the medium is macroscopically isotropic. Then 

mii (h(u<0>)) = m(h(u<0>))8ii and 

1 d 
(4.9) 1- m(h(u<0>)) = F(s(u<0>)) = j J.L( z) , s(u<0>) outside [0, 1]. 

s(u<O>) - z 
0 
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In the literature, one can find alternative forms of the integral in the r.h.s. of the 
last relation like the one we shall use in the next section, cf. also [35] 

( 4.10) 

where 

(4.11) 

1 
(O) _ j Jt(dz) 

fl("l( u )) - 1 + ry(u(O))z , 
0 

is a Stieltjes function defined in the cut (-oo :::; ry(u<0>) :::; - 1) complex plane; 
here s(u<0>) = - (1/"1(u<O))). 

Just this representation formula will be used in Sec. 7 for the determination 
of universal curves allowing for finding lower and upper bounds on the effective 
conductivity Ae(T) for an isotropic, heat conducting medium by applying Pade 
approximants. 

REMARK 2. Th the best of our knowledge, in the available literature a gen-
eralization of the very nice representation formula ( 4.8) to composites made of 
more than two isotropic components or of anisotropic materials is still lacking. 
Partial results have been presented in [20, 21) by using several complex variables. 

5. Microperiodic layered composite 

Layered composites are often used in engineering practice. In this section we 
shall derive the explicit form of the homogenized coefficients for the lamination 
in the direction Y1> provided that the composite is made of two materials. More 
general cases of layering can be treated similarly. 

F IG. 1. Basic cell for two-phase layered composites. 

Now the basic cell reduces to an interval, say (0,1 ). Thus the material coeffi-
cients of such a composite are specified by 

(5.1) if Y1 E (0, 0, 
if Y1 E ce, 1). 
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After lengthy, though simple calculations the local functions can be found in 
a closed form; they are piecewise linear, cf. [32, 33] 

(5.2) 
ox <k>(yl , T) = { - (1 - (( Ad,r)[a1k(T)] 

oy1 ( A((,T)[alk(T)] 

if Y1 E (0, 0 , 
if Y1 E (( , 1). 

From Eq. (2.7) we obtain the homogenized coefficients 

where 

< ak1(y1 , T) > = ( aW(T ) + (1 - ｏ ｡ｾｾ＾ Ｈ ｔ Ｉ Ｌ＠

A T t (2) T (1) ((, ) = .,a11 ( ) + (1- Oa11 (T ), 

[ .. T ] _ (2) (1) a,3( ) - aij (T ) - aij (T ). 

If ｡ｾ ｊ ＾＠ = 0 for i :j= j and aU) = 0 for i :j= j then the coefficients at1 (T ), ｡ ｾ Ｒ ＨｔＩ Ｌ＠
｡ｾ Ｓ ＨｔＩ＠ are given by 

(5.4) 
｡ｾｪ Ｈ ｔ Ｉ＠ = < a33(T , y) > . 

If we set 

then Eq. (5.4)1 takes the form 

｡ ｾ Ｑ＠ (T ) _ h(T ) 
｡ ｾ［ＩＨ ｔ Ｉ＠ - ｾ＠ + (1 - Oh(T ) · 

(5.5) 

Consider now a particular case by assuming that layers are made of isotropic 
materials while the dependence on the temperature is linear: 

(5.6) 

Then we have 

(5.7) 

if Y1 E (0, (), 
if Y1 E Ｈ ｾ Ｌ＠ 1). 
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and 

(5.8) afj(T ) = 8ij ｻ｛ ｾ｡ Ｑ＠ + (1 - Oa2)] + T [Oh + (1 - 0 ,82]} 

_ 8. 8 .t(1 t) [a 2 - a 1 + T(,82- .81)]2 

tl 
13

" -" ｾ ｡ Ｒ＠ + (1 - Oa1 + ｔ｛ｾ ＬＸ Ｒ＠ + (1 - 0 ,81] . 

From the last relation we conclude that the only nontrivial homogenized coeffi-
cient is given by (the remaining effective coefficients are merely averages): 

(5.9) 

where 

ah(T) = a(O + b(OT + T ｾＨｾｃｏ Ｌ＠

a(O = a(O - ｾ ＨＱＭ 0 ｛Ｒ｛ｾ｝｛ ＬＸ ｝ Ｍ a(O ( ｾＬＸ ｝＠ )
2
] 

,8(0 ,8(0 ' 

bCO = 7ico - ｾ｣Ｑ＠ - o ｃ ｾ ｝Ｉ
Ｒ＠

,8(0 ' 

c(O = - ｾＨＱＮ］Ｍ 0 ([a]- [ ,8] _a )2 
,8 ＬＸ ＨｾＩ＠ ' 

d(O = ｾ ｃｏ＠
,8(0 ' 

a = ｾ ｡ Ｑ＠ + (1 - Oa 2 , 

a= ｾ ｡ Ｒ＠ + (1 - Oa 1, 

7i = ｾ＠ ,81 + (1 - 0 ,82 ' 

ｾ＠ = ｾＬＸＲ＠ + (1 - 0 ,81. 

We note that though in both layers the conductivity coefficients depend linearly 
on the temperature, yet the dependence of ah on T is nonlinear. 

5.1. Temperature distribution in layered and homogenized composites 

Let us investigate a two-phase isotropic composite consisting of n layers made 
of a material with the conductivity coefficient )q (T ) = a 1 + ,81T and n layers 
with the conductivity coefficient .A2(T) = a2 + ,82T, cf. Fig. 2. 

The layers with odd and even numbers have the thickness 11/ n and 12/ n, 
respectively. Obviously, l = 11 + h denotes the thickness of the composite. The 
conductivity coefficient in the composite is thus given by 

{ 
.A 1(T) 

.A(x , T) = .A2(T) 
if x E L1i and i is odd, 

if x E L1i and i is even, 
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(0) {1) 

T T 
(i-1) 
T . 

(i} {i+1) 

T T 

FIG. 2. Layered composite. 

(l -1) 
T 

where Ll; = (x;_1, x;); moreover 

{ 

-
1 

i if z is even, 
X
._ 2n 
' - 1 1 

-(i - 1) + _!. if z is odd. 
2n n 

{{) 
T 

X 

ｾＩ＠ (i -1) ｾＩ＠

Denote by T (x) the temperature distribution in the interval Ll;; T and Tare 
temperatures at the end point of Ll;. The axis Ox is perpendicular to the layers. 

The heat equation in the layers with odd numbers is given by 

(5.10) d [ ( (i) ) d (i) l dx Ut + f3t T (x) dx T (x) = 0. 

Similarly, in the layers with even numbers we have 

(5.11) 

Solving Eq. (5.10) we obtain 

(5.12) T (x) = - 1 - 1 + 2k1(At x + Bt) , x ELl; (i - odd), 
(i) 1 [ (i) (i) 

kt 

where kt = f3t / Ut and 

(i) n [( i) (i- 1) kt (i) 2 (i -1)2 ] 
At = 1; T - T + z-C.f - T ) , 

(i) n [ (i ) (i -t) kt (i) 2 (i -1)2 ] 
Bt = 1; x; T - x;-1 T +T(x;T - X;- t T ) · 
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Similarly Eq. (5.11) yields 

(5.13) 
(i) 1 [ (i) (i) 
T (x) = k

2 
1 - 1 + Zk2(A2 x + B2) , x ELl; z- even, 

where k2 = (32/ a2 and 

(i) n [(i) (i-1) k2 (i) 2 (i-1) 2 ] 
A2 = 

12 
T - T + -z(T - T ) , 

(i) _ n [ . (i) (i-1) k2 (i) 2 (i-1)2 ] 
B2- 12 x , T -Xi-1 T +-z(xiT - xi-1 T ) . 

Assuming continuity of the heat flux at the points Xi (i = 1, ... , 2n-1) 

( 

(i) ) d (i) ( (i +1) ) d (i+l) 
a1 + f31 T (xi) dx T (xi) = a2 + f32 T (xi) dx T (xi), i- odd, 

( 

(i) ) d (i) ( (i+l) ) d (i +1) 
a2 + f32 T (xi) dx T (xi) = a1 + (31 T (xi) dx T (xi ), z- even, 

we obtain 
(i) (i+ 1) 

A1 = A2 if i is odd, 
(i ) (i+ 1) 
A2 = A1 if i is even. 

Hence we derive the recurrence formula for the determination of ｾ＠ ( i = 1, ... , 
(0) (I) 

2n - 1) provided that T and T are prescribed: 

(5.14) 

where 

(i) 
T= 

2C = I . 
Ztk2 + 12k1 

In the interior of the intervals Lli the temperature is given by (5.12) and (5.13). 
Now we shall compare the temperature at the interfaces with the (one-dimen-

sional) homogenized solution. The homogenized equation has the form 
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We recall that a}1(T) is now specified by (5.9). Then the solution of the last 
(homogenized) equation is given by 

(5.15) 
b 

aT + 2_T2 + c ln iT + dl = Ax + B , 

where 

A = 1 ( (<1
) (O)) b (<1

) 2 (0)2) !f +d ) a T - T + -2 T - T + cln -(o) , 
Xt- XO d 

T+ 

1 [ ( (0) (/)) b ( (0)2 (l'b) (P +d) xo l 
B= x, - xo a x,T-xoT +2 x1T - xoT Ｋ｣ｬｾ＠ ＨｾＫ､Ｉ ＢＧ＠

provided that the boundary conditions are: 

5.2. Example 

Let us assume that 

(0) 
T (xo) =T , 

(I) 
T (xt) =T. 

..\1 (T) = 0.5 + 2T, ..\2(T) = 0.8 + 1.5T, 

I= 10, n = 5, 
/1 T = o.4, 

(0) 
T = 0, 

(I) 
T = 15. 

In Fig. 3 the dots denote the interface temperatures calculated according to (5.14). 
The continuous curve represents the temperature distribution obtained from the 
solution of the homogenized problem, cf. (5.15). 

T 
14 

12 

10 

8 

6 

4 

2 
X 

2 4 6 8 10 

FIG. 3. 
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6. Ritz method 

The Ritz method offers a possibility of determination of local functions in an 
approximate manner. 

6.1. General case 

We shall be looking for an approximate solution of the local problem by the 
Ritz method. Accordingly, we take, cf. [32, 33) 

a 

Here q;a (y ), a = 1, 2, ... , a are prescribed Y -periodic functions and x-: (T) are 
unknown constants. 

The local problem (2.5) should now be satisfied for test functions of the form 

(6.2) 

To determine the unknown constants one has to solve the following algebraic 
equations: 

(6.3) X(m) A ab = Bmb 
a ' 

where 

Aab(T ) = j a;j (y , ｔ Ｉ Ｔ＾ｾＴ＾ｾｩ＠ dy, 
y 

Bia(T) = - j ai; (y , ｔＩ Ｔ＾ｾ＠ dy, 
y 

· h A,_a aq;a 1':' • • T h I . . Wit 'f' ; = ｾＮ＠ ror a giVen macroscopic temperature t e so ution IS 
' uy; 

Here A - I is the inverse matrix of A. 
We finally obtain 
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6.2. Specific two-dimensional problem: two-phase composite 

1b illustrate the outlined general procedure we consider a two-phase compos-
ite material with the conductivity coefficients given by 

(6.5) 

o<Pa 
Now y = (Yt, Y2), cPa3 = -

0 
= 0 and Aa,b(T) takes the form 

' Y3 

(6.6) Aa,b(T) = A2(T)F[a, b, i, i]- [A(T)]J[a, b, i, i ], 

(6.7) Bia(T) = [ A(T)]J[a, j) . 

Here 

J o<Pa 
J[a , i] = oy; dyt dy2, 

yl 

Consider now a particular case of a square inclusion as presented in Fig. 4. 

FIG. 4. 

The base functions are assumed in the following form 

ｾ＠
ｾｙｴ＠ + 2 if Yt E ( Ｍ ｾ ＬＭｾ Ｉ Ｌ＠

(6.9) </J
1(Yt, Y2) = - (1 - 0Yt if YtE Ｈ Ｍ ｾＬｾＩＬ＠

ｾ＠ if Yt E Ｈｾ Ｌ＠ ｾＩ［＠ｾｙｴ ＭＭ
2 
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(6.10) 

( 
(Y2 + 2 

- (1- OY2 

(Y2 - { 
2 

if Y2 E ( - ｾ Ｌ＠ - ｾＩ＠ , 

if Y2 E (- ｾＬ＠ ｾＩ＠ , 

if Y2 E ( ｾＬ＠ ｾＩ＠ ; 

(6.11) <P(Y1, Y2) = cos(1ry1) sin(21ry2), 

(6.12) </>
4 (Yb Y2) = cos(1ry2) sin(21ry1). 

Next, we calculate 

(6.13) 
if Y1 E Ｈ Ｍ ｾ Ｌ ｾＩ Ｌ＠

if Y1 E ( ｾ
Ｑ

Ｌ＠ ＭｾＩ＠ U ＨｾＬ＠ ｾＩ［＠

(6.14) ＼Ｏ＾ｾ Ｒ ＨｙＱ ＬｙＲ Ｉ＠ = 0, ＼Ｏ＾ｾ Ｑ ＨｙＱＬｙＲＩ＠ = 0; 

{ 

-(1- 0 if Y2 E ( ＭｾＬ＠ ｾＩ＠ , 

＼Ｏ＾ｾ Ｒ ＨｙＱ Ｌ＠ Y2) = if ( 1 () (( 1). 
( Y2 E - 2, - 2 U 2, 2 • 

(6.15) 

＼Ｏ＾ｾ Ｑ＠ (yl , Y2) = -?r sin(1ry1) sin(21ry2), 

＼Ｏ＾ｾ Ｒ＠ (y1, Y2) = 21r cos( 1ry1) cos(21ry2); 
(6.16) 

＼Ｏ＾ ｾ Ｑ＠ (y 1, Y2) = 27r cos(21ry1) cos( 1ry2), 

＼Ｏ＾ｾ ＨｙＱ ＬｙＲ Ｉ＠ = - 7rsin(27rY1)sin(7rY2)· 
(6.17) 

311 

Substituting (6.13)-(6.17) into (6.8), from (6.4) we can determine the depend-
ence of the approximate value of the effective conductivity coefficient .Ae on the 
macroscopic temperature T. Th find such a dependence it has been assumed that 

0 = IY1I = ,2 = 0 75 IYI "' . ' 

while the conductivity coefficients of the phases are given by: 

a) (see Fig. 5) ..\1 = 0.21 + 0.005T, ..\2 = 37.25 + 0.048T, 

b) (see Fig. 6) ..\1 = 37.25 + 0.048T, ..\2 = 0.21 + 0.005T. 
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A.. [W/(m°K)] 

7 

6.8 

6.6 

6.4 

6.2 

6 

5.8 
20 30 40 50 60 70 80 90 100 

FIG. 5. The effective conductivity versus temperature; in the inclusion: At = 0.21 + 0.005T , 
in the matrix: A2 = 37.25 + 0.048T, volume ratio: () = 0.75. 

A.. [W/(m °K)] 

5.0 

4.0 

3.0 

2.0 

1.0 

0 20 40 60 80 100 
FIG. 6. The effective conductivity versus temperature; in the inclusion: At = 37.25 + 0.048T, 

in the matrix: A2 = 0.21 + 0.005T , volume ratio: () = 0.75. 

7. Bounds on the effective conductivity of two-phase composites. 
Pade approximants method 

In this section we shall use the formulae for finding bounds on the effective 
heat conductivity >..e(7J(T)) by assuming that at the macroscopic scale the com-
posite is isotropic. Towards this end the method of Pade approximants is applied. 
The same procedure can also be used for the determination of bounds on the 
diagonal elements of the effective conductivity matrix, what follows from Theo-
rem 2. For macroscopically isotropic materials the Stieltjes integral representation 



http://rcin.org.pl

NONLINEAR TRANSPORT EQUATION 

of the effective conductivity Ae(ry(T))/ >..2(T) is given by, cf. (4.11), 

1 

>-e(ry(T)) - 1 = ry(T)f (ry(T)) = ry(T) J d!t (z ) 0 ::::; z ::::; 1. 
>..2(T) 1 1 + ry(T)z ' 

0 

(7.1) 

Moreover the following inequality is satisfied, cf. [19) 

(7.2) lim ry(T)f1(1J(T)) ｾ＠ -1. 
ry(T)--1+ 

Consider the power expansion of ry(T)ft(ry(T)) at ry(T) = 0: 

(7.3) 

where 

(7.4) 

00 

ry(T)ft(ry(T)) = L Cn1Jn(T), 
n=1 

1 

Cn = (- 1f+1 j zn-1d-·n(z). 

0 

313 

The one-point Pade approximants [pj M'] and [pj M"] to the effective conduc-
tivity >-e(1J(T))j A2(T) represented by ry(T)ft(ry(T)) are given by: 

, _ a'1ry(T) + a'2ry2(T) + · · · + a'M,1Jp-M' (T) 
[p/M ] M' = E(p/2), 

- 1 + ｢ｾ＠ ry(T) + b2ry2(T) + · ·. + bM,fJM' (T) ' 
(7.5) 

(7.6) 11 _ ｡ｾｲｹＨｔＩ＠ + a1_ry2(T) + · · · + aM"7JP+1-M" (T) 
[pj M ] - 1 + ｢ｾｲｹＨｔＩ＠ + b].TJ2(T) + ... + b'MIITJM"(T) ' 

M" = E((p + 1)/2). 

Here E(w) is the entier function, i.e. the greatest natural number not exceeding 
w. Observe that now [pj M'] and [p/ M"] depend on the macroscopic tempera-
ture T. 

Consider the power expansions of [pj M'] and [pj M"] at TJ(T) = 0: 

00 00 

(7.7) [pj M'] = L ｃｾｔｊｮＨｔＩＬ＠ [pj M"] = L ｃｾｔｽｮＨｔＩＮ＠
n=1 n=l 

DEFINITION 1. The rational functions (7.5), (7.6) are the one-point Pade approx-
imants to the Stieltjes function (7.1): 

(i) of the type [pj M'1 M' = ｅＨｰＯＲｾ＠ if 

(7.8) c' = c<1> n n for n = 1, 2, ... , p; 
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(ii) of the type [pi M"L M" = E ((y + 1)12), if 

(7.9) /1 - ( 1) f - 1 2 en - en or n - ) ) . .. ) p [pi M"] = - 1 for 7J (T) = - 1. o 

The parameter p appearing in this definition denotes a number of available coeffi -
cients of the power series (7 .3) matched by Pade approximants [pI M '] and [pI M "]. 

Let us recall the basic results of the paper [38]. 

THEOREM 3. The one-point Pade approximants [pI M' ] and [pI M"] satisfy the 
following inequalities: 

(i) If -1 < 7J(T ) < 0 then 

(7.10) 

(7.11) 

(7.12) 

[p i M '] > [p + 1IM'], 
[pi M "] < [p + 11 M "] , 

[piM'] ｾ＠ 1J(T )JI (7J (T )) ｾ＠ [piA1"] . 

(ii) If 0 < 7J(T ) < oo then 

(7.13) (-1)P[p1Nf'] < (- 1)P[p + 2IM'], 
(7.14) (- 1)P[piM" ] > (- 1)P[p+2IM"] , 

(7.15) (- 1)P[piM' ] :::; (- 1)P7J(T )fi (7J(T )) :::; (- 1)P[piM"]. 

Moreover 

7J(T )JI (1J(T)) = lim [piM'] = lim [piM"]. 
p-+oo p-+oo 

The inequaliti es (7.10) - (7.12) and (7.13) - (7.15) have the consequence that 
Pade approximants [pi M' ] and [pi M " ] form the best upper and lower bounds on 
TJ(T )ft (1J(T )) obtainable using only p coefficients of a series (7.3), and that the use 
of additional coeffi cients (higher p) improves the bounds. o 

It is convenient to represent the Pade approximants [pi M '] and [pi M "] by 
S -continued fractions, cf. [36], 

(7.16) 

(7.17) 

where 

[pi M '] = 9I7J(T ) 927J(T ) . . . 9p-21J(T ) 9v-1 1J(T ) 9p1J(T ) , 
1 + 1 + + 1 + 1 + 1 

[pi M "] = 911J(T ) 921J(T ) . . . 9v- 11J(T ) 9p1J(T ) Vp+ 11J(T ) ' 
1 + 1 + + 1 + 1 + 1 

917J (T ) 921J (T ) 
1 + 1 + + 

= 9I7J(T ) 

1 
+ 921J(T) . 

1 + .. . 
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The coefficients 9m (m = 1, 2, ... , p) are determined by the following recurrence 
relations 

(7.18) l 
1n = 1, 2, ... 1 p, 9m = cim), 

{ n(l:::: 1 
Ｌ ｰｾＫＺ［＠ = __ 1_ ｻ ｾ＠ . (m) } 

eo ) en (m) L...- clcn+l-j ) 
c l j =O 

with input data Cm (m = 1, 2, . . . , p) given by (7.3), cf. [41] . Also a simple recur-
rence formulae determine the coefficients Vp+ 1 

T / _ Vj- 9) · 1 2 
V] +j - V) J = ,, ... , p 

J 

(7.19) 

and the Pade approximants [p j M'] ([p j M "]) 

Q(O) = Vp+l = 0 for [p jM'], ( Q(O) = ry(T)Vp+ l for [p jM"]) , 

(7.20) Q(j +l) = ｩＨｾＩｺＨ Ｍ［ｻ＠ , j = o, 1, . .. , p _ 1, 

[p jM'] = Q (P), ([p jM'] = Q (P)) . 

Relations (7.18) - (7.20) allow us to compute Pade approximants bounds on 
Ae(1J(T ))/ A2(T) in terms of [pjM'] and [p jM"], from power expansion given 
by (7.3). 

Let us pass now to an application of the Pade approximants method for 
the determination of the nonlinear effective conductivity Ae(T) of a composite, 
which consists of the regularly spaced and equally-sized cylinders of the con-
ductivity >.2(T) embedded in a matrix material of the conductivity ).. 1 (T). We 
set: e = 1r p2-volume fraction, p-radius of cylinders, ry(T) = (>.1 (T) / >.2(T)) -
1-nondimensional conductivity. The input data for determining the Pade bounds 
given by power series, cf. (7.3), 

00 

(7.21) ry(T)JI(ry(T)) = L(7rdin)p2)7Jn(T ), 
n=l 

have been computed by means of the recurrence formulae derived in [39]: 

00 (1 mpk+m) 
c1.22) ､ ｾＫ ｬ＠ = - I: d'k 2smk +a km 

2
k, , ､ｾＩ＠ = sml, 

k=l . 

k (m + k)! ( 1 ) { 1, if m = k, 
(7.23) akm = (- 1) m ! Akm + 2 1r8(m+k)2 , 8mk = o, if m f. k. 

Here Akm are the coefficients of the Wigner potential evaluated in [42, 43]. The 
low order Pade bounds [p j M'] and [p/ M"] on Ae(7J(T ))/ A2 (T ) of a square array 
of cylinders are depicted in Fig. 7. According to (4.11) the obtained bounds are 
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universal, i.e., they are valid for arbitrary, continuous functions .>.2(T) and .>. 1 (T). 
From those universal bounds one can pass to bounds on .>.e as a function ofT, 
cf. Figs. 8, 9. 

0.4 

0.3 

0.2 

0.1 

[ p/M" ] , p=1 ;2., ... 
[ piU' ) , p=1 ,2,... .. 

9= 0.75 

h(T)=).1 (T] I ｾＲＨｔｊ＠

11 5 
"' 

ｾ ＼ﾷＧ ﾷＧ ＭＭ Ｍ ﾷ Ｑ＠
•''' •. :t'/i- ---· 2 
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;.y Ｎｾ Ｎ ﾷＬｊＮｦＬＧＭＭ Ｍ ＭＭ ＭＮ＠ 3 
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[ p/U"] , p=1 ;2., ... 

[ piU' ] , p=1 ,2,. .. 

3 

11 

,' 

----------
2 

Ｔ ＭＭＭＭＭＭ Ｍ ＭｾＭＭＭＭＭ Ｍ ＭＭ

ｾ Ｍ ［］ｾ ｾｾＺ Ｚ］ＭＺ ﾱ［［ｾ ］ ＺＬ ］ｾ ｾ］ Ｍ ＮＧｾｾＺ［ｾｴｬｾｾＨＩｩｩＧＧＺＺＺＺＺＺ Ｚ ＺＺ＠
ｾ＠ 0.0 • h(T) 
Ｍ ｾ＠

2 

c: 
::J 

1 o-a 1 o-2 1 o-1 
FIG. 7. Sequences of Pade approximants forming upper and lower bounds on the effective 

conductivity of a square array of cylinders. 

4.5 -
ｾ＠

--
[ 11 15'1-lower bound 

4.3 [ 8/3 ｾＭ upper bound -'-m 
E 4.1 ----ｾ＠g- 8= 0.75 
'-' 3.9 -
ｾ＠
0 -E -
'3" 3.7 --

.;; 
« 3 .5 -
c 
0 
Ul 3.3 'U 
c: 
::J T,DC 0 3 .1 Ill 

0 20 40 60 80 1 DO 120 
FIG. 8. Upper and lower bounds on the effective conductivity for square array of cylinders 

(epidian 53, .X1 = 0.21 + 0.005T), embedded in a matrix (steel 15NiCuMoNb5, 
.X2 = 37.25 + 0.048T), cf. [44]. 
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8= 0.75 
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2 
[ 1 ＲＯＶＧｾＭ upper bound 
[ B/3']- lower bound 
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o r,oc 
ＲｾＰ ｾ ＳｾＰｾＭＴｾＰｾＵｾＰｾｾＶｾＰｾｾＷＰｾＭＸｾＰｾｾＹｾＰ ｾ ＱｾＰ Ｍ ＰｾＱ ｾ ＱｾＰｾＱＲＮＰ＠

FIG. 9. Upper and lower bounds on the effective conductivity of human tissues: bones with 
>'l = 0.349 and muscles with .>.2 = 0.29 + 0.29exp((O.l5(T-36.7)), cf. (29]. 

Th illustrate the above procedure we have evaluated the effective conductivity 
Ae versus temperature T for the composite consisting of the steel 15NiCuMoNb5 
with A 1 = 37.25 + 0.048T and epidian 53 with A2 = 0.21 + 0.005T, cf. Fig. 8. 
The next example deals with live tissues: bone with A2 = 0.436 and muscles with 
A 1 = 0.29 + 0.29 exp 0.15(T - 36. 7), cf. Fig. 9. All conductivities are given in 
[W/m°K]. 

Acknowledgment 

This work was supported by the State Committee for Scientific Research 
(Poland) through the grant No. 3 P404 013 06. 

References 

1. A. BENSOUSSAN, J.-L. LiONS and G. PAPANICOlAOU, Asymptotic analysis for periodic structures, North-
Holland, Amsterdam 1978. 

2. E. SANOIEZ- PALENCIA, Non-homogenemLI· media and vibration theory, Springer-Verlag, Berlin 1980. 

3. R.V. KOHN and G.W. MILTON, On bounding the effective conductivity of ｡ｮｾｷｴｲｯｰｩ ｣＠ composites, [in:] Ho-
mogenization and Effective Moduli of Materials and Media, pp. 97- 125, J.L ERJCKSEN, D. K.iNDERLEHRER, 

R.V. KOHN, J.-L LIONS (Eds.J, Springer-Verlag, New York 1986. 

4. S. MAY, S. TOKARZ.EWSKJ, A. ZACHARA and B. CtCHOCKl, 111e effective conductivity of two-component 
composite with two-dimem iona/ structure [in Polish], IITR Reports, 24/1992. 



http://rcin.org.pl

318 A. GALI<A, J. J. TELEGA AND S. TOI<ARZEWSI<l 

5. W. MITYUSHEV, Application of functional equations to the detennination of the effective themwl conductivity 
of composite materials [in Polish], Srupsk Pedagogical University, 1996. 

6. 0 . BRUNO, Effective moduli of strongly heterogeneous composites, (in:] Calculus of Variations, Homoge-
nization and Continuum Mechanics, pp. 99-115, G. BouCHrrrE, G. Bl.rrTAZZO, P. SuouET [Eds.], World 
Scientific, Singapore 1994. 

7. D. BERGMAN , J.-L. LI ONS, G. PAPANICOlAOU, F. MURAT, L. TARTAR and E. SANCH.EZ-PALENCIA, Les 
methodes de l'homogeneisation: Theorie et applications en physique, Eyrolles, Paris 1985. 

8. G. DAL MASo and G.F. DELL'ANroNIO [Eds.], Composite media and homogenization theory, World Scien-
tific , Singapore 1995. 

9. K..A. LURIE and A. V. CHERKAEV, Exact estimates of conductivity of mixtures composed of two isotropic media 
taken in presetibed propo11ion, Proc. R. Soc. Edinburgh, A 99, 71-87, 1984. 

10. A. V. CHERKAEV and L. V. GtniANSJo..'Y, Variational principles for complex conductivity, viscoelasticity, attd 
similar problems in media with complex moduli, J. Math. Phys., 35, 1-22, 1994. 

11. G .W. MILTON and R.V. KOiiN , Variational bounds on the effective moduli of anisotropic composites, J . Mech. 
Phys. Solids, 36, 597-629, 1988. 

12. D. CAILLERIE, Homogeneisation des equations de la diffusion stationaire da/IS les domaines cylindriques 
aplatis, RAIRO, Num. Anal., 15, 295- 319, 1981. 

13. H. ArrouCH and G . Bl!ITAZZO , Homogenization of reinforced periodic one-codimensional structures, Pub-
lications AVA.MAC , Universite de Perpignan, No 86-06, 1986. 

14. M. HNID, Etude de transmission a traver.; des inclusions minces faiblement conductrices de "codimension un": 
homogeneisation et optimisation des structures, Math. Modelling and Numer. Anal., 24, 627-650, 1990. 

15. A .V. CHERKAEV and R.V. KOHN (Eds.], Topics 011 mathematical modelli11g of composite materials, Birk-
hiiuser, 1997 [in press]. 

16. G .F. DELL'ANTONIO and V. NESI, A scalar inequality which bounds the effective conductivity of composites, 
Proc. R.Soc. London, A431, 519-530, 1990. 

17. R.T. BoNNECAZ.E and J.F. BRADY, The effective conductivity of random swpensions of !>pherical paTticles, 
Proc. R. Soc. London, A 432, 445-465, 1991. 

18. G. PAPANICOLAOU and S. V ARADHAN, Boundary value probletns with rapidly oscillating random coejficie11L1·, 
pp. 835-873, [in:] Colloquia Mathematica Societatis Janos Bolyai 27, Random Fields, Esztergom (Hungary) 
1979, Nord-Holland, Amsterdam 1982. 

19. K.. GOlDEN and G . PAPANICOlAOU, Bounds for effective parameters of heterogeneow· media by a11alytic 
conti11uation, Commun. Math. Phys., 90, 473-491, 1983. 

20. K. GOLDEN and G. PAPANICOLAOU, Bounds for effective parameters of multicomponent media by analytic 
continuation, J. Statist. Physics., 40, 655-667. 

21. K.. GOlDEN, Bounds on the complex permittivity of a multicompone/11 material, J. Mech. Phys. Solids, 34, 
333-358, 1986. 

22. M. AluoLA and G . DuVAI.Jf, Un rtsultat d'homogbui.sation pour une classe de problemes de diffusion 
nonlineaires stationnaires, Ann. Fac. Se. Thulouse, 4, 1- 27, 1982. 

23. L. BocCARDO and F. MuRAT, Homogeneisation de problemes qunsi-lineaires, [in:] Atti del Convegno "Studio 
di Problemi-limite della Analisi Funzionale», pp. 13-51, Bressanone, 7-9 Settembre 1981, Pitagora Editrice 
Bologna 1982. 

24. N. Fusco and G. MOSCAR!ELLO, On the homogenization of quasilinear divergence structure operator.;, Ann. 
Math. Pura Appl., 146, 1- 13, 1987. 

25. T . DEL VECCHIO, On the homogenization of a ｣Ｏ｡ＮｾＱﾷ＠ of pseudomonotone operators in divergence fonn, Bolt. 
U.M.l., 5-B, 369-388, 1991. 

26. W. MrrYuSHEV, First order approximation of the effective thennal conductivity for a family of non-linear 
composites, J. Thch. Phys., 36, 429-432, 1995. 

27. N. NODA, Thennal stresses in materials with temperature-dependent propeTties, Appl. Mech. Reviews, 44, 
383-397, 1991. 

28. A.K. NOOR and W.S. BuRTON, Computational models for high-temperature multilayered composite plates and 
shells, Appl. Mech. Reviews, 45, 419-445, 1992. 

29. F. BARDATI and G. GEROSA, On the solution of Lhe non-linear bio-heat equation, J. Biomechanics, 23, 
791- 798, 1990. 



http://rcin.org.pl

NONLlNEAR TRANSPORT EQUATION 319 

30. S. WEINDAUM and L.M. JUl, A new simplified bioheat equation for the effect of blood flow on local average 
tissue temperature, J. Biomech. Engng., 107, 131-139, 1985. 

31. S. BRAHIM-0TsMANE, G.A. FRANCFORT and F. MuRAT, Homogenization in tlwmoe/asticity, [in:] Random 
Media and Composites, pp.l3-45, R.V. KOHN and G.W. MLLTON, SIAM, Philadelphia 1989. 

32. A. GALKA, J.J. TELEGA and R. WOJNAR, Some computational aJpeCL5 of homogenization of thennopiezoelec-
tric composites, Comp. Assisted Mech. and Engng. Sci., 3, 133-154, 1996. 

33. A. GALKA, J.J. TELEGA and R. WOJNAR, ｔｨ･ｭｲｯ､ｩｦｦｬｌｾｩｯｮ＠ in heterogeneous elastic solids and homogenization, 
Arch. Mech., 46, 267-314, 1994. 

34. K. SAD, Homogenization of non-linear random media by a duality method. Application to plasticity, Asymptotic 
Anal., 9, 311-336. 

35. A. BULTH.EEL., P. GONz.Al..Ez- VERA and R. 0RJVE, Quadrature on the half-line and two-point Pade appraxi-
ｭ｡ｮｌｾ＠ to Stieltjesfimction. Part I. Algebraic aspecLI', J.Comp. Appl. Math., 65,57-72,1995. 

36. G.A. BAKER, E<;Sentia/s of Pade ｡ｰｰｲｯｸｩｭ｡ｮｾＬ＠ Academic Press, London 1975. 
37. S. MAY, S. TOKARZEWSKI, A. ZACHARA and B. CICHOCKI, Continued fraction representation for the effective 

thenna/ conductivity coefficiem of a periodic two-component composite, Int. J. Heat and Mass Transf., 37, 
pp.2165-2173, 1994. 

38. S. TOKARZEWSKI, Inequaliti es for the effective tramport ｣ｯ･ｦｦｩ｣ｩ･ｮｴｾ＠ of two-component composite maten·als, 
Arch. Meeh., 46, 611-{)23, 1994. 

39. S. TOKARZEWSKI, J. BI:AWZDZIEWICZ, I. V. ANDRJANOV, Effective conductivity of densely packed highly con-
ducting cylinders, Appl. Phys., A 59, 601-{)04, 1994. 

40. S. TOKARZEWSKJ, J.J. TELEGA, S-continued fractions to complex transport coefficient of two-phase composite, 
Comp. Assis. Meeh. and Engng. Se., 3, 109- 119, 1996. 

41. S. TOKARZEWSKI and J.J. TELEGA, 1Wo-point Pade approximant1· to Stieltjes series representation of bulk 
moduli of regular composites, Comp. Assis. Meeh. and Engng. Se., 3, 121-132, 1996. 

42. W.T. PERRINS, D.R. MCKENZIE and R.C. MCPHEDRAN, ])·ampon propelties of regular aiTay of cylinders, 
Proc. Roy. Soc. Lond., A369, 207-225, 1979. 

43. B. CrCHOCKJ and B. FELDERHOF, Electrostatic interaction in two-dimensional Coulomb .1ystems with periodic 
boundary conditions, Physica, A 158, 706-722, 1989. 

44. A.M. 0SMAN and J.V. BECK, Investigation of transient heat tramfer ｣ ｯ･ｦｦｩ｣ｩ･ｮｾ＠ in quenching experiments, 
Transactions of the ASME, J.Heat Transfer, 112, 843-848, 1990. 

POLISH ACADEMY OF SCIENCES 

l NSTITUfE OF f1JNDAMENTAL TECBNOU>GICAL RESEARCH 

e-mail: agalka@ippt.gov.pl 
e-mail: jtelega@ippt.gov.pl 
e-mail: stokarz@ippt.gov.pl 

Received November 7, 1996. 


