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Nonlinear transport equation and macroscopic properties
of microheterogeneous media

A. GAXKA, J.J.TELEGA and S.TOKARZEWSKI (WARSZAWA)

THE AM of this paper is a study of the quasi-linear transport equation, for instance the stationary
heat equation. For periodically microheterogeneous media, asymptotic homogenization has been
performed with the local problem formulated as a minimization problem. The Hashin-Shtrikman
type bounds and Golden-Papanicolaou integral representation theorem have been extended. In the
case of layered composites, exact analytical formula for the effective coefficients have been derived.
The possibility of applying Padé approximants and the Ritz method has been shown. Specific cases
and examples have also been examined.

1. Introduction

THE NONLINEAR Eq. (2.1) below is here called a nonlinear transport equation. It
is obvious that from the physical point of view, the study of such an equation is
very important. Typical examples are the stationary heat conduction and a non-
linear dielectric. The small parameter ¢ > 0 characterizes a microstructure of the
material. We have thus to deal with composite materials. Performing homogeniza-
tion or passing with ¢ to zero one obtains the homogenized (effective) coefficients
af; (1,7 = 1,2,3). Of our main interest will be the periodic homogenization, cf.
[1, 2]. We shall also extend to the nonlinear problem studied, the results due
to GoLDEN and PapanicoLaou [20] on the integral representation of the effec-
tive coefficients in the linear case when a;;(y,w)(y € R} we {2) are stationary
matrix-valued random fields; here (§2, 7, P) is a probability space. Such an ex-
tension is possible since in the local problem the macroscopic field u(?), say the
macroscopic temperature 7' = u(9) in the case of the heat conduction, plays the
role of a parameter only. It is thus also possible to exploit the Hashin - Shtrikman
variational principles and bounds, elaborated for the linear transport equation.
Extensive literature is concerned with the linear conductivity i.e. when the co-
efficients af; do not depend on the solution u*. The reader may refer to [1-21]
for more details on the results achieved so far. In contrast to the linear case,
there seems to exist only a few papers on the homogenization of the quasi-linear
Eq.(2.1), cf. [22-25]. Those papers are purely theoretical and provide no exam-
ples of applications to composite materials. Also, the problem of the estimation
of the effective coefficients has been left open, though a particular case has been
studied by MiTyusHev [26]. However, the definition of the effective conductivity
used by this author is different from the formula obtained by homogenization.
We observe that af; depend on u(®), where u(9) is a weak limit of u® when ¢ — 0.
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For instance, in the case of the heat conduction, «;; depend on the macroscopic
temperature 7'. Such a dependence is in general a nonlinear one, even then when
in each of phases constituting the composite a; depend linearly on T'; specific
examples are provided in Secs. 5, 6 and 7 of our paper. A nonlinear dependence
of the conductivities on the temperature is of vital importance not only in the
study of engineering materials and structures [27, 28], but also for modelling the
behaviour of biological tissues [29, 30].

The determination of the effective coefficients «f; is of interest not only for
undeformable bodies; such a problem arises quite naturally as an independent
problem in the study of thermo- and piezo-electric composites [31, 32] and in
thermodiffusion [33].

The objective of this paper is to study the quasi-linear heat equation (2.1) and
provide some applications. Brief description of the contents of the paper reveals
very well our aim. In Sec.2 the method of two-scale asymptotic expansions is
used in order to derive in a rather simple manner the homogenized coefficients
af;(u); in the case of heat conduction u(®) = T'. The formulation of the lo-
cal problem in the form of a minimization problem, in which the macroscopic
field u® (for instance T') plays the role of a parameter is also delivered. In
Sec. 3 variational principles and bounds of the Hashin - Shtrikman type are given.
Section 4 deals with a straightforward extension of the GOLDEN - PAPANICOLAOU
[19] representation theorem to the investigated quasi-linear problem. This the-
orem provides an integral representation of the effective coefficients af;(u(")
for two-component composites made of isotropic materials. In Sec.5 analytical
formulae for the homogenized coefficients of layered composites are derived.
Section 6 reveals a possibility of an application of the Ritz method to the deter-
mination of local functions. A specific two-dimensional problem is also given. In
the last section it is shown how to apply the powerful tool of Padé approximants
to finding bounds on the effective coefficients.

2. Homogenization of quasi-linear heat equation with periodic coefficients

Let V c R? be a bounded regular domain and I" = 9V its boundary. We
introduce a parameter ¢ = [/L, where [, L are typical length scales associated
with microinhomogeneities and the region V, respectively.

We shall study the quasi-linear transport equation

- (afj(x,u‘)%) =f iV
2.1) ' !
ul[r=0 on [

where a;;(z, u) = a;; E, u® |, z € V. By Y we denote the so-called basic cell [1,
€
2], for instance Y = (0, Y7)x (0, Y2)x (0, Y3). For the sake of simplicity we assume
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that a;; = aj;, ¢,7 = 1,2,3. As usual, we apply the summation convention. The
material coefficients a;;(y, r) are Y -periodic in the first argument. More precisely,

aij : (Y, ) = aij(y,r),
R*xR — R
are assumed to satisfy the following conditions:
(i) For each r € R, y — a;;(y, r) are mesurable and Y -periodic functions.
(if) There exists a constant o > 0 such that for every r € R, i.e. y € ¥ and

forall s,7 = 1,2,3, |a;;(y,r)| < a.
(iii) There exists a constant k& > 0 such that

lai;(y, 1) — aij(y,r2)| < klry —

forall y € R® and r, 7, € R.
(iv) There exists ap > O such that

ai;(y, 7)&E; > aolél?,

forall £ € R® and r € R.
We note that for a fixed ¢ > 0 the material functions af;(z,7) = a;; (g, r)

are ¢ Y -periodic in x € V. After passage to the limit as ¢ — 0, the homogenized
coefficients «f; will be obtained.

2.1. Method of two-scale asymptotic expansions

According to this method we make the following assumption (ansatz), cf. [1, 2]
(2.2) ut(z) = vz, y) + euM(z, ) + 2 uP(z,y) + - -,

where ¥y = z/¢, and the functions u@(z, +), uW(z,+), u®(z,+), etc. are
Y -periodic. Then we may write

y; 0
ai;j (Y, u'® + eu® + 2@ + .. ) = a4;;(y, v V) + su(”%a(y(’%—)
u

da;i(y,u®) 1 ?a;;(y, u®
+&? (u(z)(a:,y)———————%(z(o) ) 4 E(u(l)(ﬂr,y))z—%)—)) e

It is tacitly assumed that all derivatives appearing in the procedure of asymptotic

homogenization make sense. We recall that for a function f(z,y), where y = z /¢,
s - ; 1 :

the differentiation operator d/dz; should be replaced by E T oy According

to the method of asymptotic expansions we compare the terms associated with
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the same power of ¢. Proceeding similarly as in the linear case we successively
obtain:
-2

i (au(y, e, ) 2 y))

This equation will be satisfied provided that u(O) does not depend on the local
variable y, ie. ul® = u®(z). This statement holds true under the assumption
that the coefficients a;;(-,u®(z, +)) are Y -periodic.

g
a ( . o ouN(z,y) | ouO)\\ _
(w0 (250 22 )

1

&0 (after integration over Y)

(1) 0)
. (m [ 4ty u® ))(a“ et ‘9“a$f”’)) dy) - -f(2),

where Iy
Wz vy = 2L k) O
W)= g X W
The local functions y*)(y, u(®) are solutions to the local problem
d ax®(y, u®)
5 O |y a®) (X201 L)) =0,
( 3) ay]_ (a.v(yau ) ( ayi 61: 0

Let us introduce the space of Y -periodic functions defined by

(24) Hp(Y)= {qﬁ € H'(Y)|¢ assumes equal values

at the opposite faces of Y}.

The weak (variational) formulation of Eq. (2.3) reads: find y()(+, u(®) € Hper(Y)
such that

a/\.(k)(y’ “(0)) ; dv(y)
o 0 v A ; ol dy =
(2.5) / [au(y,u )( m + bik By dy =0,

i
Y

for each v € Hper(Y'). Then the homogenized equation has the following form

ou®
(26) Mdi‘r]( U( (0)) o ) = fe

oz;
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where the homogenized (effective) coefficients are given by

SN0
(2.7) ag;(u®) = 1» / “ij(yaum))+akj(yau(0))gl— dy.
g Y1) Yk

In the case of the heat conduction u(®) = T, where T is the macroscopic tem-
perature.

Both in (2.5) and (2.6) the transport coefficients satisfy only the earlier spec-
ified conditions (i) - (iv). We observe that in the local problem (2.5) u(® plays
the role of a parameter. This simple, but crucial observation means that (2.5) is
equivalent to a convex minimization problem:

Find
1 ov ov
(0) =1 e ;e (0) . —— 2
W '™ E) mf{2|YlyfaU(y,u )<3y’{ + E,) (ayj + EJ) dy |

ve Hpe,(Y)}

(Ploc)

provided that a,; = a;;; here E; = du®/dz;. A solution T € Hpe(Y) exists and
is unique up to a constant c(u(?). Due to linearity of ¥ with respect to E = (E)
we may write

(28) F(ya u(O)) — X(k)(ya u(O))Ek ¥

In contrast to the local problem (Pj.c), problem (2.1) cannot be formulated as a
minimization problem. Note also that

WO, B) = a5, () EE,

is the macroscopic potential. For instance, for dielectric composites the macro-
scopic displacement vector D = ([);) has the form
ow

(2.9) D; = 3L - a;(uME;
where u(®) is the electric field, say ¢ and E; = —dp/dz; (the sign of E; in (Pjo.)
is not important in the sense that one may consider either x*) or (- y(*))).

Knowing that the local problem can be formulated as the minimization prob-
lem (P,c) we come to a very important conclusion: all the variational bound
techniques, including Hashin - Shtrikman bounds, developed for the linear trans-
port equation can be applied to the estimation of the effective coefficients (2.7).
In the next section we shall provide more details.
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2.2, Justification: G-convergence

From the mathematical point of view the results presented in the previous sub-
section are formal. Rigorous proof concerning the convergence when in Eq. (2.1)
¢ tends to zero have been given by ARToLA, DUVAUT [22] and next extended
in [23, 25] to the case of not necessarily periodic coefficients. Having in mind
applications to physical problems we have assumed that a;; = aj;. In fact, to
perform homogenization either by the asymptotic method or by the method of
H-convergence, such a symmetry is not required, cf. [22, 23]. H-convergence is
the G-convergence generalized to the case of nonsymmetric coefficients, cf. [1,
23-25] for more details. The main result of ArRToLA and DuvAUT [22] is summa-
rized in the form of

THEOREM 1. Under the assumptions (i)— (iv) and
(2.10) f eI}V,
there exists a subsequence u® of u® and p > 2 such that
(2.11) u —u in WyP(V) weakly,

where u(®) € VV&‘”(V) is a solution of Eq.(2.6).

REMARK 1. A weak solution of Eq.(2.1) is sought in the space H}(V). The
existence theorem provided by ArroLa and Duvaur [22] requires that
f e W=P(V); p > 2 depends on V, «, g and space dimension. We observe
that in [22] the coefficients a; are not necessarily symmetric.

3. Hashin—-Shtrikman variational principles and bounds

The local problem (Py) can be used for finding variational bounds on the
effective coefficients af;(u(?) similarly as in the linear case. Consider the case of
the heat conduction; then, according to our notations u® = T. For the dielectric
coefficients af;(¢) the considerations which follow are quite similar.

In this and in the next section we are interested in composite materials made by
mixing two isotropic materials with conductivities A;(7") and Ay(7"), 0 < \(T) <
A2(T), in specified proportions 6 and 6, = 1 — 6,. The conductivity of the
composite is then given by

(3.1) Ay, T) = M(T)1(y) + Ao(T)ba(y),

where 1(y) and 1»(y) denote the characteristic functions of the sets where A
equals A\; and A,, respectively. Then the volume fractions are

1 0
(3.2) m=mlwwm &=Wd%mw
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The local problem takes the form

(3.3) <ae(yw)E,E>=mf{%JA(y,T)(3_;’i+E,) (g; +E)dy|

v E Hpcr(Y)} \

where E € R? and < a*(T)E,E >= af;(T)E;E;. Hence elementary bounds on
a® readily follow, cf. [3]

(3.4) AT < a(T) < AT,
where I = (¢;;) and

-1
G5 M) = | [O@ DY dy| = [a@) 0+ )0
v

66 M) = /»\(y,T)dy— (T) + (T,

Recall that if A and B are matrices, then A > B means that < AE,E >>
< BE,E > for each E € R>.

We pass now to a brief discussion of Hashin - Shtrikman variational principles.
We follow the paper by Koun and Micron [3], which is restricted to the linear
case.

3.1. Variational principle for bounding a°(7") from below and lower bound

Suppose that a “comparison medium” is characterized by a conductivity A\°(7'),
independent of y € Y. If A°(T') is restricted to the range 0 < A°(T") < A\(T),
then A(y,T") — A°(T) > 0 and proceeding similarly to Koun and MiLTON [3], we
arrive at the variational principle of Hashin - Shtrikman type for bounding a®(7")
from below

(3.7) % < @(T) — A*(I)DE,E >

1 I
c};7”< 0,E> 5 Ay, T) - X)) o

1 e
- T <0,V,4, div,o >|dy.

Here 0 = (0;) is a Y -periodic vector field and |o|?> = o;0;; moreover (V,v), =
dv[dy; and A, denotes the Laplacian with respect to y, while A;! is its inverse.
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To derive from (3.7) the Hashin - Shtrikman type lower bound, the test field
o is chosen in the form

(3.8) o(y) = Y2(y)m,

where 7) is a constant vector.
Following KoHN and MiLtoN [3] we finally obtain
o n n 1-6,
T (1) = M(T)02  M(T)6,
_ n-—1 0 1
LH(T) - M(T)  M(T)-M(T)’

39)  tr]@(@) - MDY

where trA = A;; and n denotes the space dimension (n = 3 in the three-dimen-
sional case).

3.2. Variational principle for bounding a*(7T") from above and upper bound

If A°(T') is restricted to the range Ay(T") < A(T") < oo, then A(y, T) — A°(T")
is negative and the Hashin -Shtrikman type variational principle for bounding
a®(T") from above has the following form

(3.10) % < (@ (T)E,E>= igfl—}};—’y/ [< o,E> —% A, T) - A (D) |of?

1

- WZT) < U,Vy_d;ldivya S dy

Substituting

(3.11) a(y) = P1y)n

into (3.10) and proceeding similarly as in [3] we obtain that

ey~ s =
612) O =N < o ~ T

_ n-—1 + 1
() = L(T)  A(T) - A(T)

4. Two-phase isotropic composites and integral representation
of the homogenized coefficients

Boccarpo and MuRAT [23] have studied the convergence of solutions of
Eq.(2.1) without the assumption of periodicity of the coefficients af;(+,u®); the
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symmetry of those coefficients has also not been required. Under some conditions,
it has been shown that

(4.1) a*(-,r) 2L a(-,r)  (r—fixed, ¢— 0).

Here H denotes “H -convergence”. In the case of periodic coefficients, we obvi-
ously have a(z,r) = a°(r), where a°(r) is given by (2.7); » € R. To find a(z,r)
one needs additional information on the microstructure (we observe, that in the
general case the effective coefficients may still depend on the macroscopic variable
x € V). For instance, such an information is available for statistically homogene-
ous ergodic (S.H.E) media [34]. Stochastically periodic media are a specific case
of S.H.E. media. For more information on stochastic homogenization the reader
should refer to [19] and to the references cited therein. Our aim in this section is
not to discuss the stochastic homogenization of Eq. (2.1), which can be done by a
straightforward extension of the results due to PApANICOLAOU and VARADHAN [18]
as well as to GOLDEN and ParanicoLAou [19]. Instead, we are going to continue
the study of periodic homogenization of two-phase isotropic composites. As it has
been observed by SaB [34], periodic media are a special case of S.H.E. media.
Indeed, for periodic media the probability space ({2, F, P) is defined by the basic
cel: 2 =[0,Y7) x[0,Y2) x [0,Y3) if ¥ = (0,Y7) x (0,Y3) x (0,Y3); F is the
Lebesgue o-algebra and P = |Tl/—|dy. It means that the results obtained in [18,
19] are also valid for the case of periodic homogenization. Particularly, recalling
that in Eq.(2.7) the macroscopic field u(?) plays the role of a parameter, we can
extend the integral representation formula due to GOLDEN and PAPANICOLAOU
[19], cf. also [20, 21]. For a two-phase composite made of isotropic materials we
write

(4.2) a:ii(y, u®) = ay, u@)é;;

where, for a fixed u(®, a(y, u®) assumes only two values a;(u?) and ay(u(®)
with 0 < a1(u®) < ay(u®). Thus we have, cf. (3.1)

(4.3) a(y, u®) = aiOWn () + aa@®)a(y).
Hence we conclude that important is only the ratio
0 (0)
o) - 2@™) oy = 1@™)
(4.4) h(u'™) 01 (a) (or h(u™) 2@ )

In view of Eq. (2.7) we write

(4.5) ag;(u®) = a1(u(0))f (1) + hu@)pa(y)] Y dy,
i
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(¥) (0)

%w + §;; provided that Y = (0,1)? (for the sake of sim-

J
plicityg. Thus the effective transport coefficients are functions of A(u(®); we write
a5;(u®) = @i (h(u®).

Suppose now that A(u®) is a complex variable, cf. [19]. It means that the coef-
ficients a; (u(?) and a,(u(®) are treated as complex-valued coefficients. Physically,
imaginary parts characterize dissipative properties of the composite.

From the mathematical point of view, it is then possible to apply the theorem
on the resolvent representation [19-21].

where E'](-") =

ProposiTiON 1. The function a;; is an analytic function of the complex variable
h(u®) everywhere except on the negative real axis.

Proof For u® fixed, it is similar to the one given in [19], provided that
in the formula (4.7) of the last paper one takes P(dw) = dy, {2 = Y (more
precisely 2 = [0,1)%). O

Equation (4.5) may be written as follows
ag;(u®)
ay(u(®)

@6)  my(h®)) = = [ [ + h@Oyatw)] £ dy.
Y

Now we are in a position to state the main result of this section
THEOREM 2 (REPRESENTATION FORMULA). Let

ey Y

1 - h(u®)’

There exist finite Borel measures y;;(dz) defined for 0 < z < 1 such that the
diagonals 11;,(dz) (no summation over 1) are positive measures satisfying

@7  s@®) = Fiy(s®)) = &; — mi; (h(u®)).

1
“8) Py = [ B i =123
0

for all complex s(u) outside 0 < Re s(u®) < 1, Im s(u®) = 0.

Proof. Fora fixed u? it is quite similar to the proof of the representation
formula given by GoLDEN and PApanicoLaou [19], where h, P(dw), s and L;
should by replaced by h(u®), dy, s(u®) and 3/8y., respectively.

CoroOLLARY 1. Suppose that the medium is macroscopically isotropic. Then
mij (h(u®)) = m(h(u®))s;; and

1
4.9)  1-mh@®) = Fs@®) = / S—é‘(—f)-‘)%’z)_—z s(u®) outside [0,1].
0
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In the literature, one can find alternative forms of the integral in the r.h.s. of the
last relation like the one we shall use in the next section, cf. also [35]

(4.10) m(h@®) -1 = n@) /i ®)),
where
[ _u(d2)
(4.11) fl(n(u<°>))=0 Troaoy 10 =) -1,

is a Stieltjes function defined in the cut (—oo < 7(u(®) < —1) complex plane;
here s(u(®) = —(1/p(u®)).

Just this representation formula will be used in Sec.7 for the determination
of universal curves allowing for finding lower and upper bounds on the effective
conductivity A.(7) for an isotropic, heat conducting medium by applying Padé
approximants.

Remark 2. To the best of our knowledge, in the available literature a gen-
eralization of the very nice representation formula (4.8) to composites made of
more than two isotropic components or of anisotropic materials is still lacking.
Partial results have been presented in [20, 21] by using several complex variables.

5. Microperiodic layered composite

Layered composites are often used in engineering practice. In this section we
shall derive the explicit form of the homogenized coefficients for the lamination
in the direction y,, provided that the composite is made of two materials. More
general cases of layering can be treated similarly.

77
o

I

F1G. 1. Basic cell for two-phase layered composites.

Now the basic cell reduces to an interval, say (0,1). Thus the material coeffi-
cients of such a composite are specified by

) :
5. y _Ja; (M) i yi1e(0,9),
5.1 a;;(y, 1) {asz)(T) if y € (&)
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After lengthy, though simple calculations the local functions can be found in
a closed form; they are piecewise linear, cf. [32, 33]

P, T) _ { (1= Oaerlan@] i y1€(0,8),
I Eaemlanw(D)] if y1€ (1)

From Eq.(2.7) we obtain the homogenized coefficients

(5.2)

(5.3)  ay(M) =<an(@,T)> -£01 - E)M—;T‘)‘ﬂ:alk(T)Mau(T)Ila
where

< au(y, T) > = Ea(T) + (1 - (D),
AE,T) = (@) + 1 - O,
[ai;(T)] = a$(T) - «P(D).

If a{)) = 0 for i # j and a{ = 0 for i # j then the coefficients al,(T), aly(T),
a§3(T) are given by

a'lll(T) = 1 ’
Do VB ‘”(T)

i ap(T) = <an(T,y) >,  ay(T) =< an(T,y)>.
If we set 5
D) = “;;)g;
then Eq.(5.4), takes the form
ap (1) _ h(T’)

s O~ E+ - M)

Consider now a particular case by assuming that layers are made of isotropic
materials while the dependence on the temperature is linear:

[+ BT) i i€ (©,8),
5:6) win ) = { e v o) & e

Then we have

(5.7) [ai;] = ([«] +[A]1T)6:;,
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and

(58)  al(T) = &; {[€ar + (1 - Eaz)] + TR + (1 - OB}
[sz ar + T8y - B
— 61615 .
01 = ) e ¥ (T = D + TR + (1 — D))

From the last relation we conclude that the only nontrivial homogenized coeffi-
cient is given by (the remaining effective coefficients are merely averages):

(5.9) (T) = a@) + HOT + 7.

where

a(€) = a(e) - £(1 - e)[[“][[ﬁ]] (é)(m)]

36 e
bE) = B(e) - €(1 - )(“ﬁﬁ(g

¢ = -4 ﬁf) (H [[ﬂ]l%)z

d(e) = ;—%

a=fa;+(1-8ay, B=EB1+ (-8B,
d=far+(1-8, P=EB+(1-6b.

We note that though in both layers the conductivity coefficients depend linearly
on the temperature, yet the dependence of af, on 7' is nonlinear.

5.1. Temperature distribution in layered and homogenized composites

Let us investigate a two-phase isotropic composite consisting of n layers made
of a material with the conductivity coefficient A\;(7") = oy + 41" and n layers
with the conductivity coefficient (1) = ay + 3,7, cf. Fig.2.

The layers with odd and even numbers have the thickness [;/n and ly/n,
respectively. Obviously, [ = [; + [; denotes the thickness of the composite. The
conductivity coefficient in the composite is thus given by

_ _ [ M(T) if xe€A; and:is odd,
el { M(T) if x€A; and: is even,
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© ) (i-1) (i) (i+1) (1) i,
r T F . T T T T

F1aG. 2. Layered composite.

where A; = (z;_1, z;); moreover

i )

2n l

—(2-1)+—l if i is odd.

if 7 is even,

i

T

(i-1) ()
Denote by T (z) the temperature distribution in the interval A;; 7' and T are

temperatures at the end point of A;. The axis Oz is perpendicular to the layers.
The heat equation in the layers with odd numbers is given by

(5.10) . [( o+ T (ac)) t (r)] =0.

Similarly, in the layers with even numbers we have
d d )
o (e nfe) £20)] o

Solving Eq. (5.10) we obtain

(5.12) T (z) = m { \/1 + Zkl(Al z+ Bl)J zed; (- odd),

where k; = 1/a; and

(¥)
Al =

N E

() (=1) k () (* D,
[T - T 5 (I~ )]
() n (2) (=10 k (@) (-1)

BI—E[ 1 T +5@T?— 2 ]
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Similarly Eq. (5.11) yields

(i) TGN
{3.13) T (z) = kl [1 —\/1 + 2ky(Az 2+ Bz)‘ , T€A; 1—even,
2

where ktz = ﬁz/ (a%] and

() ) (=1 k, () (i-1)
Az %[T— T +2(T*-'T 2)],

(1) (1) (i-1) Lk (z) (1=1)
By = %[m T-zic1 T +—23($;T2—x¢*1 T 2)] :
Assuming continuity of the heat flux at the points z; z = 1,...,2n - 1)
6} d (i+1) d (i+1) )
(01 +H T (x;)) et (z:) = (02 +6 T (-'Ei)) — T (=), i-—odd,
T dz
) d (i+1) d @G+1) _
(az +5 T (33:')) =7 (z:) = (Ot1 +6 T (335)) — T (z:), - even,
T dz
we obtain
() (i+1) () @G+

A1= Ay if 2 is odd, Ax= A; if ¢ is even.

() .
Hence we derive the recurrence formula for the determination of 7 (z = 1, ...

b

(0) ()
2n — 1) provided that 7' and 7' are prescribed:

’ [ G+1) (-1 (+1) (-]
-C+ |C?+ £ 12 T +l]_ T +k1!2T2 +k211T2 , for: even,

: {
(¥
(5.14) T={ ’ = = l):
(i-1)  (i+1) Y= A

I ¥ Cz+§ LT+ T +kl,T? +k1y T? |, for ¢ odd,

\ b .
where ;

Gl e

In the interior of the intervals A; the temperature is given by (5.12) and (5.13).
Now we shall compare the temperature at the interfaces with the (one-dimen-
sional) homogenized solution. The homogenized equation has the form

7 [T @] =0
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We recall that af,(7") is now specified by (5.9). Then the solution of the last

(homogenized) equation is given by

(5.15) aT + gT2+cln|T+d| = Az + B,
where
0}
(O O) o,
A= 1 a(T—T)+é(T2—T2)+ClnT+d :
T — T 2 @
T +d
O} -
T +d
1 ( (0) (z)) b ( ©), u)z)
B= alx; T —2oT )+ =|xiT*=297°| +cln
Z] — T 2 :

provided that the boundary conditions are:

(0) ")
T(-T()) =T7 T(l‘[) =T.

5.2. Example
Let us assume that

MT)=05+2T,  M\(T)=0.8+1.5T,

© 0)
=10, =n=S5, %=u« T=0 T=15.

In Fig. 3 the dots denote the interface temperatures calculated according to (5.14).
The continuous curve represents the temperature distribution obtained from the

solution of the homogenized problem, cf. (5.15).

T
14

12
10r
8}
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6. Ritz method

The Ritz method offers a possibility of determination of local functions in an
approximate manner.

6.1. General case

‘We shall be looking for an approximate solution of the local problem by the
Ritz method. Accordingly, we take, cf. [32, 33]

(6.1) X"y, T) = XD (y) = 3 XD (v).

Here ¢%(y), a = 1,2, ..., a are prescribed Y -periodic functions and x7*(7") are
unknown constants.
The local problem (2.5) should now be satisfied for test functions of the form

(6.2) v = v0%(y).

To determine the unknown constants one has to solve the following algebraic
equations:

(6.3) x{MA® = B™,

where
ANT) = [ aiy, T)o%" dy,
Y

Bja(T) = _/aji(y’T)qS?idy:

Y

a

: d . . -y
with ¢% = ¢ For a given macroscopic temperature 7' the solution is

i’

X(T) = (A~H(T))ws B*(T).

Here A~! is the inverse matrix of A.
We finally obtain

(6.4) agi (1) =< (aij(y, T) > +(A (TN B*(T)B**(T).
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6.2. Specific two-dimensional problem: two-phase composite

To illustrate the outlined general procedure we consider a two-phase compos-
ite material with the conductivity coefficients given by

_ /\I(T)(S,'j if yeYy,
(63) @i, 1) = {/\Z(T)é.-j if yel;.
Now y = (y1,%2), 85 = gﬁ: -
(6.6) A T) = M\(T)F[a,b,i,i] - [MT)]f[a, b, 1,1],
(6.7) B*(T) = [MT)1fla, j]-

Here

(960 3¢ 1= (208
(6.8) f[a,b,z,g]— 3 6 ——dy; dya, F[a,b,laJ]-}[ dy; Oy;

fla,il = j dyidys, DD = (D) - M(D).

Consider now a pamcular case of a square inclusion as presented in Fig. 4.

NN
N

Pa

Fi1G. 4.

The base functions are assumed in the following form

’ ﬁyl"'% if y;E(—'lz',—%),
(69) S = -0-0u it ne(-55),
\ ém—% if yle(g,%);
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;

]

)

3

fn+y it me(-

[ S 10 S SN

\_/ 1l

k)

S— N

(6.10) FPyny) = 4 ~(1- &y i yze(—

\ fyz—g if 3/26(%,%
(6'11) ¢3(yl)y2) = oos(wyl)sin(27ry2),
(6.12) ¢*(y1,¥2) = cos(ryz) sin(2ry,).

Next, we calculate

6 sggge] 07O F U (-5%),
1 Y, Y%2) =
- ; -1 ¢ £ 1
¢ it we(3-3)v(5a);
(6.14)  ¢.,(y1,2) = 0, ¢ (y1,v2) = 0;
-8 i ne(-53),
(615)  A(y1,y) = j T €1
€ if y€ (—53—§)U (§,§)§
(6.16) ¢zl(y1,y2) = —msin(ry;) sin(27y,),
¢, (y1,y2) = 2w cos(my;) cos(27ry,);
6.17) ¢* (y1,y2) = 27 cos(2ry;) cos(Ty2),

¢% (W1, y2) = —7 sin(27y;) sin(ryz).

Substituting (6.13)-(6.17) into (6.8), from (6.4) we can determine the depend-
ence of the approximate value of the effective conductivity coefficient A, on the
macroscopic temperature 7. To find such a dependence it has been assumed that

i

6=
Y1

= £2 = 0.75,

while the conductivity coefficients of the phases are given by:
a) (see Fig.5) Ay = 0.21 + 0.0057, A, = 37.25 + 0.0487T,
b) (see Fig.6) Ay = 37.25 + 0.0481", A, = 0.21 + 0.0057".



312 A. Garka, J.J. TELEGA AND S. TOKARZEWSKI

ke WI(M°K)]

T[°C]

5.8 i } 1 } % t t 1
20 30 40 50 60 70 80 90 100

F1G. 5. The effective conductivity versus temperature; in the inclusion: A; = 0.21 + 0.0057T',
in the matrix: A\, = 37.25 + 0.0487, volume ratio: 8 = 0.75.

e [W/(m °K)]

50

40 +

30

20 +

1.0 +
EEVTE SN TR PR USSR S
0 20 40 60 80 100

F1G. 6. The effective conductivity versus temperature; in the inclusion: Ay = 37.25 + 0.048T,
in the matrix: A = 0.21 + 0.0057, volume ratio: # = 0.75.

7. Bounds on the effective conductivity of two-phase composites.
Padé approximants method

In this section we shall use the formulae for finding bounds on the effective
heat conductivity A.(n(7")) by assuming that at the macroscopic scale the com-
posite is isotropic. Towards this end the method of Padé approximants is applied.
The same procedure can also be used for the determination of bounds on the
diagonal elements of the effective conductivity matrix, what follows from Theo-
rem 2. For macroscopically isotropic materials the Stieltjes integral representation
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of the effective conductivity A.(n(1"))/A2(T") is given by, cf. (4.11),

. I - 1= DAGETY = 7D j I osst

Moreover the following inequality is satisfied, cf. [19]

(7.2) (T) L OAMT)) 2 -1
Consider the power expansion of n(T)fi(n(T)) at n(T) = 0:
(1.3) AT = f;l e (D),
where
(7.4) G, 1Y jl 2"y (2).

s

The one-point Padé approximants [p/M’] and [p/M"] to the effective conduc-
tivity A (n(T'))/ A2(T") represented by n(T") fi(n(T")) are given by:

= aq(T) + agn*(T) + -+ afy M (T) -
75 WIM= T or s hpdy T+ Gy M T EeD,

" = aln(T) + az 2(T) + 2ot alf(/[ftnp+l_M,'(T)
M" = E((p + 1)/2).

Here E(w) is the entier function, i.e. the greatest natural number not exceeding
w. Observe that now [p/M’] and [p/M"] depend on the macroscopic tempera-
ture 7.

Consider the power expansions of [p/M'] and [p/M"] at n(T') = 0:

@.7) /M) =S can(@), (/M =Y (D).
n=1 n=1

DEeFINITION 1. The rational functions (7.5), (7.6) are the one-point Padé approx-
imants to the Stieltjes function (7.1):

(i) of the type [p/M'}, M' = E(p/2), if
(7.8) d=c)  for n=1,2,...,p;
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(ii) of the type [p/M"], M" = E((p + 1)/2), if
(79) =D forn=12,...,p, [p/M"]=-1 for p(T)=-1.0

The parameter p appearing in this definition denotes a number of available coeffi-
cients of the power series (7.3) matched by Padé approximants [p/M’] and [p/M"].

Let us recall the basic results of the paper [38].

THEOREM 3. The one-point Padé approximants [p/M'] and [p/M"] satisfy the
following inequalities:

() If -1<n(T)<O0 then

(7.10) [p/M] > [p+ 1/M"],

(1.11) [p/M"] < [p + 1/M"],

(7.12) [p/M'] > n(T) fr(n(T")) > [p/M"].
(i) If 0 < n(T) < oo then

(7.13) (=1y[p/M'] < (=1)°[p + 2/M],

(7.14) (=1)[p/M"] > (-1)[p + 2/M"],

(7.15) (=17[p/M') < (=1 n(T) H((T)) < (-1)°[p/M"].

Moreover

(M) f((T)) = lim [p/M'] = lim [p/M"].

The inequalities (7.10) — (7.12) and (7.13) — (7.15) have the consequence that
Padé approximants [p/M'] and [p/M"] form the best upper and lower bounds on
n(T) f1(n(T)) obtainable using only p coefficients of a series (7.3), and that the use
of additional coefficienis (higher p) improves the bounds. a

It is convenient to represent the Padé approximants [p/M’] and [p/M"] by
S-continued fractions, cf. [36],

i _ g(T) gan(T) Gp—2(T) gp1(T) g,n(T')
(7.16)  [p/M']= =& ) _ 2 )

# 1 % & 1 + 1 + 1
m _ g(T)  gan(T) Gp-1(T) gn(T) Vor1n(T)
(17)  [p/M"] = 1 + 1 +7°+ 1 + 1 + 1 °
where
gin(T) gan(T) _ _gu(T)
T = 1 % 1+£/277(T) .

1+.--
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The coefficients ¢, (m = 1,2, ..., p) are determined by the following recurrence
relations

m=12,....p, gm ——c(lm),
n=12,...,p—m,

(1+m) _ (1+m) (m)
CO = 17 Cn, (m') {Z C] i L ]}

with input data ¢, (m = 1,2,..., p) given by (7.3), cf. [41]. Also a simple recur-
rence formulae determine the coefficients V44

Vi— 4
‘,/J_ Y

and the Padé approximants [p/M’] ([p/M"])
QO =V, =0 for [p/M], QO =y for [p/M")

(G+1) — n(1)gp—j B o

[p/M']=QW,  ([p/M'] = Q")

Relations (7.18) — (7.20) allow us to compute Padé approximants bounds on
Ae((T))/A2(T') in terms of [p/M’'] and [p/M"], from power expansion given
by (7.3).

Let us pass now to an application of the Padé approximants method for
the determination of the nonlinear effective conductivity A.(7") of a composite,
which consists of the regularly spaced and equally-sized cylinders of the con-
ductivity Ap(7") embedded in a matrix material of the conductivity A, (7). We
set: # = 7p?-volume fraction, p-radius of cylinders, n(T) = (A (T)/22(T)) —
1-nondimensional conductivity. The input data for determining the Padé bounds
given by power series, cf. (7.3),

(7.18)

(719) Vl = l, V1+J' =

1=12,...,p

@2 aDAGD) = SEd @), o= w2,

n=1

have been computed by means of the recurrence formulae derived in [39]:

(7.22) i = Zd“ g AW =5
. m mk km 2% ) m ml

(m + k 1 1, if m=k,
0.2 an = DD (At Srbuinn) Gk ={ g i ez
Here Ay, are the coefficients of the Wigner potential evaluated in [42, 43]. The

low order Padé bounds [p/M’] and [p/M"] on A.(n(T))/ X2(T") of a square array
of cylinders are depicted in Fig. 7. According to (4.11) the obtained bounds are
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universal, i.e., they are valid for arbitrary, continuous functions A,(7") and A(7').
From those universal bounds one can pass to bounds on A, as a function of 7',

cf. Figs. 8, 9.
> : 8=075 [i[i[i7]; 8]
£ - [p/M],p=1 2,.. 181 s
" — [p/M'],p= 2.
P 04L /s
g 8=075 :
= MMM /Atm /[ s
& 03 4
5 __________
S .
x- 1/ 72
g 02 . .
& 778
C
(=]
@ 04
g o
: = -
g
? # 7~ h(T)=M(T)/A(T)
= h(T)
g WU S W T T S W W T S W' U A werd & 5y piasali g pwiak o i Vi
5 108 102 107 100 100 102 10

F1G. 7. Sequences of Padé approximants forming upper and lower bounds on the effective
conductivity of a square array of cylinders.

45|
--=- [11/5"]- lower bound
43 | | — [8/3%- upperbound

a1l
39 "
3.7 »
35

3.

Bounds on Ae, W/mPK (square array)

i T,0C
3 -1 1 1 1 1

0 20 40 80 80 100 120

FiG. 8. Upper and lower bounds on the effective conductivity for square array of cylinders
(epidian 53, A; = 0.21 + 0.0057"), embedded in a matrix (steel 15SNiCuMoNbS5,
Az = 37.25 + 0.0487), cf. [44].
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8

=075

[12/6"]- upper bound
— [6/3']- lowsr bound

1 1 T’ UC]

20 30 40 50 60 70 80 90 100 110 120

F1G. 9. Upper and lower bounds on the effective conductivity of human tissues: bones with
A1 = 0.349 and muscles with A; = 0.29 + 0.29exp((0.15(T — 36.7)), cf. [29].

To illustrate the above procedure we have evaluated the effective conductivity
A. versus temperature 7' for the composite consisting of the steel 1SNiCuMoNb5
with A; = 37.25 + 0.0487 and epidian 53 with A; = 0.21 + 0.0057', cf. Fig. 8.
The next example deals with live tissues: bone with A, = 0.436 and muscles with
A1 = 0.29 + 0.29exp0.15(T — 36.7), cf. Fig.9. All conductivities are given in
[W/m°K].
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