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Lagrange’s equations for holonomic systems with rigid bodies

A. MORRO (GENOVA)

A HOLONOMIC SYSTEM is considered which consists of rigid bodies and material points. Any rigid
body is regarded as a continuous system and its position is described by the so-called angular vectors.
Starting from the characterization of the constraints and using some identities for the angular
vectors, the motion of the holonomic system is shown to be governed by the usual Lagrange’s
cquations. The essential role of the angular vectors is emphasized through comparison with a
previous approach.

1. Introduction

A RIGID BODY is a system with a number of degrees of freedom not greater than 6.
Nevertheless, treatments of analytical mechanics deal only with material points
and hence rigid bodies are modelled as a set of material points though such
points are not characterized operatively. The results are then deemed to apply
for continuous bodies by merely replacing the summation over the particles by a
volume integration, with the point mass becoming a mass density (cf. [1-5]).

Quite naturally, instead, a rigid body might be viewed as a continuous body
whose mechanical state in space is characterized by the position of a point and
the orientation of a rigidly attached triple of non-coplanar axes. This view is
customary in connection with the kinematics of rigid body motion and Euler’s
equations of motion where angular vectors are used to describe the position of
the body (cf. [6-8]).

The standard approach of analytical mechanics can be modified so that both
the material points and the rigid bodies are incorporated and, moreover, rigid
bodies are considered systematically as continuous bodies with the correspond-
ing number of degrees of freedom. It is the purpose of this note to derive the
equations of motion from the characterization of the constraints. The system .S
under consideration is holonomic and consists of N material points and 5 rigid
bodies. The approach is based on the use of angular vectors [9]. As a result, the
motion of the system is shown to be governed by the usual form of Lagrange’s
equations.

To the author’s knowledge, the literature shows one previous approach to
Lagrange’s equations, where the rigid body was viewed as a continuum [10].
An immediate comparison emphasizes the conceptual difficulty that arises if the
angular vectors are not involved.
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2. Angular vectors and characterization of the constraints

Let P be any point of a rigid body, (i the center of gravity, and w the angular
velocity. The velocities v, and v, of P and (7 are related by

Ve =V + wx (P - G).

The tirne -dependent velocity field v.(t) = v(F, 1) is then characterized by the

two time-dependent vectors vo(1) and w(t). Two pairs v\, w® and v, w®
determine the corresponding fields

v = v 4 WM (P - (@), v = v 4 WO (P - G).

A field of virtual velocity v is defined to be the difference of any pair of velocity
fields. Analogously, a virtual angular velocity w is defined to be the difference
of any pair of angular velocities. Hence, letting v = v(!) — v, g = () — (@
we have

(2.1) Ve =V, + WX(P - G).

The vectors w and w are now related to the generalized coordinates.
Let {e,} be the unit vectors of a Cartesian set of axes fixed in the rigid body,
h = 1,2, 3. For greater generality we let

e, = ex(q,1),

where ¢ = ¢(t) is a set of generalized (or Lagrangian) coordinates for the body.
By definition, the angular velocity is given by

1 " ()eh . deh
=5 enXé, = Zen 5 zzeh T
h ¢

where a superposed dot denotes the (total) time derivative d/dt; the sum over
repeated indices is understood. Define the angular vectors €2, £2; as

de;, 1 ()eh
= 5 Q = = h —
Z ) g, 1 zzh:e;,x ot

We have
whence
2.2) =,
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Let {('/gl) 1A } be the sets of generalized velocities associated with v, vg) ‘
Letting 1, = /(]- ) _ ’/5-2) we have
JP,
23 Wy =5 et o = fin:.
( ) dq_] ’f] J 77]

For later use we need the expression of the time derivative €2;. Letting

25p = Qjeey

and
eh,j = aeh/a([j y e;u = aeh/at,
we obtain
1 1 1
% P= 5 Z(eh Xehi)r€p = 5 Z(ep Xep)oen; = = Zipmeh,j ce)
2 h 2 h Z2 Bl
and

en kG +ent = Qrxenq, + 2 xe, = wxey,.

Substitution and some rearrangement yield

1 i 1
2, = 5Ephi(€n,jk Qi + €njt)r €+ SEphien, WX e
a 1
— ()([ \'])/L[ wXep-€ — 25']);1[ wxep e ;+ igphleh‘_j rWwXe
o
(,)wvlrJ 1 1
o S(epxen)-e(wxen): () xe) + 5(e, xen)- €2 xen)- (Wxer)
J
Ow, 1 1
" dg Z(wxen) [§2;x(epxen)] + 5 (82 xen)- [wx(ep X en)]
J
— (}(/: = i(wxeh)' \(.)J/yep + i(Q‘, Xeft,).wh,ep.
Accordingly we have
> Ow
Qjp ==+ QD xw-e
5 d(h b

Hence the time differentiation of 2, = (2;,e, yields

L] ()c’(‘"
(2'4) Qj ()(j]

Let &, be the force of constraint at any point ¢ of S, namely, at any material
point or at any point of the rigid bodies. Denote by v; the virtual velocity of
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the point ¢ and let A be the set of labels for the constrained points. Hence we
characterize the constraints by assuming that

2.5) S v =0
€A

for every set of virtual velocities {v,;} compatible with the constraints.

For formal convenience we separate the values of : pertaining to the material
points from those pertdining to rigid bodies; we label by a = 1, .., N the material
points, and by the pair b 3, b = 1, ..., B, 3, = 1,..., N}, we denote the constrained
points of the B rigid bodies. Denote by R; and M, the total constraint force

(Jb
and the total constraint torque acting on the body b, i.e.

R}) = Z ¢()[3Q, ’ MTGQ, = Z(Pbﬁb . Gb) X ¢l)/')’g,'
5,3

b./?h

The total applied force R} and the total applied torque M¢, are defined anal-
ogously by replacing the constramt forces with the applied forces. By means of
(2.1) we have

Z ¢b;j,, *Vbs, = Z ¢b/3b Vg, + Z ¢bﬁ¢, * Wy X (Phﬂb = Gb) = er) Wy + MTG;, * Wy -

b,3 b3y b,3y

For any body b, the balance of linear momentum, P;, and of angular momen-
tum, L,, is written as

P, =R} + R}, L, =M, + M.
The equation of motion for any material point « is given in the form
,”‘(naa = Fc: + d)n ]

where 4., is the mass, a,, — the acceleration, F, — the applied force. Substitution
enables us to write the condition (2.5) in the form

2.6) S (ftads —F.)vy + S (B —RY)vg, + > (Ly — ME ), = 0.
o b b

3. Lagrange’s equations

Let now ¢ = (¢1,....¢,) be the set of generalized coordinates for the whole
holonomic system. Substitution of (2.3) into (2.6) yields

P )(
Y (paa, — F,)e ) “n + Z(Pﬂ, R})- e + Z(L,, ~MZ,)-Qin; = 0.




LAGRANGE’S EQUATIONS FOR HOLONOMIC SYSTEMS WITH RIGID BODIES 31

The arbitrariness of the n-tuple 7, ..., 7, implies that

(31) T_]'--Q_,' =0, j= 1....,7?.,
where
(3.2) T, = Z;t(.a,-, ()P" ZP;,- dGb + ZLb-Qb

()f‘,

(3.3) EF“ T +3 RS ZMb'
J b

It is natural to view 7; (();) as the j-th component of the generalized inertia
force (generalized force).

To find a convenient form of 7; we observe that, for any material point P of
mass /¢, by means of the known ldentmes we have

ar dv 9P (I( ()v) dv _d 91 , 91 ,

d(,b

la'aTmz,Ud—/'-E)'q—h=m lV'Ta—q: = LV'E’E=E8—(}’1§HV —%iﬂ.v
In the same manner, since P = myv., we have
e oG _d 91 , 91,
P-- =MmMag 53— = 57 ——~MVe — STV,
Aqy, dgn  dt 9g,2 ° dq), 2

Let I be the inertia tensor of a body, relative to the corresponding center of
gravity. Hence L = I w. We now use (2.2) and (2.4) to obtain

4 d dw
L-Q=—"—=—|(w b)Y =
S dq,  di [( “) 5 ,h] w) 7 e

_ 1 (lQh — 1
T dl [iw.lw] ~ [T dt ([f [2 ] ()qh [ @ Iw]

The expression of the kinetic energy of the system, viz.

. 1 d
T o Z EH‘I'V‘% + Eb: 5mbvfw + ; iwb'lb wy,

allows 7; to be written as

(3.4) o BN R

(3.5) ".”*—‘—‘.——_'=QJ, 1 = Lyaus By

namely Lagrange’s equations of the second kind.
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4. Comparison with a previous approach

The view that the rigid body is a continuum rather than a set of material points,
is expressed in [10]. A comparison is then necessary to assess the conceptual
improvement in the present approach.

The approach in [10] starts from the D’Alembert principle for a single body
which, in the notation of this note, may be written in the form

(4.1) R“-UC;—FM’(_f‘;-‘w—/QU-a(]v =,
R

where o is the mass density; the integral over the region R, occupied by the body,
is regarded as the power of inertia forces. The assumption (2.5) seems to be more
convincing. Yet it follows easily that Egs. (2.6) and (4.1) are equivalent when a
single body is involved, since the observation that

oP _d 91, 91,
ag; " T W ag, 2 T Bg 2

and substitution of v = (JF/dq;)n; yields

/gv-a dv = 1;1;,
R

where 7; has the form (3.4) in terms of the kinetic energy. Here, the expression
(3.2) also leads to (3.4).

The crucial point consists in expressing the power R* «v. + M.+ @ in terms of
the generalized coordinates. First, the “primitive” coordinates A, are considered
and the power R“+v. + M’ .w is written as a linear form in the virtual time
derivatives of \,; the corresponding coeflicients are denoted by .1,. Hence, for
holonomic systems A; = A,(¢,?) and it follows that

R*vs + Miowm = > Q;n;,
7

where I
-~ ( 4 S

Accordingly, the arbitrariness of the set {1, } implies that Lagrange’s equations
(3.5) hold. Unfortunately, without the angular vectors, the quantities (}; are not
defined per se. Indeed, (); can be viewed as the coefficient of 7, in the expression
of the virtual power. The use of the angular vectors, instead, allows us to write
(), in the form (3.3). The occurrence of the angular vectors £2; makes it apparent
why we are unable to write the expression for (); if the angular vectors are not
considered.
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