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Lagrange's equations for holonomic systems with rigid bodies 

A. MORRO (GENOYA) 

A II OLONOMIC SYSTEM is considered which consists of rigid bodies and material points. Any rigid 
body is regarded as a continuous system and its position is described by the so-called angular vectors. 
Starting from the characterization of the constraints and using some identities for the angular 
vectors, the motion of the holonomic system is shown to be governed by the usual Lagrange's 
equations. The essential role of the angular vectors is emphasized through comparison with a 
previous approach. 

1. Introduction 

A RIGLD BODY is a system with a number of degrees of freedom not greater than 6. 
Nevertheless, treatments of analytical mechanics deal only with material points 
and hence rigid bodies are modelled as a set of material points though such 
points are not characterized operatively. The results are then deemed to apply 
fo r continuous bodies by merely replacing the summation over the particles by a 
volume in tegratio n, with the point mass becoming a mass density (cf. [1-5]). 

Quite naturall y, instead, a rigid body might be viewed as a continuous body 
whose mechanical state in space is characterized by the position of a point and 
the ori entation of a ri gidl y attached triple of non-coplanar axes. This view is 
customary in connection with the kinematics of ri gid body motion and Euler's 
equations of motion where angular vectors are used to describe the position of 
the body (cf. [6- 8]). 

The standard approach of analytical mechanics can be modified so that both 
the materi al points and the ri gid bodies are incorporated and, moreover, rigid 
bodies are considered systematically as continuo us bodies with the correspond-
ing number of degrees of freedom. It is the purpose of this note to derive the 
equations of motion from the characterization of the constraints. The system S' 
under consideration is holonomic and consists of N material points and B ri gid 
bodies. The approach is based on the use of angular vectors [9] . As a result, the 
motion of the system is shown to be governed by the usual form of Lagrange's 
equations. 

To the author's knowledge, the literature shows o ne previous approach to 
Lagrange's equatio ns, where the rigid body was viewed as a continuum [J 0]. 
An immediate comparison emphasizes the conceptua l d ifficulty that arises if the 
angular vectors are not involved. 



http://rcin.org.pl

28 A. MORRO 

2. Angular vectors and characterization of the constraints 

Let P be any point of a rigid body, G the center of gravity, and w the angular 
velocity. The velocities vp and Vc of P and G are related by 

Vp = Vc + W X (P- G). 

The time-dependent velocity field vp(t) = v(P, t) is then characterized by the 

two time-dependent vectors vc (t) and w(t) . 1Wo pairs ｶ ｾＩ Ｇ＠ wC1) and ｶ ｾＩ Ｌ＠ wC2l 
determine .the corresponding fields 

ｶ ｾＩ＠ = ｶ ｾ Ｉ＠ + W(l ) X (P - G'), ｶ ｾＩ＠ = ｶ ｾＩ＠ + wC2) x (P -G). 

A field of virtual velocity v is defined to be the difference of any pair of velocity 
fields. Analogously, a virtual angular velocity w is defined to be the difference 
of any pair of angular velocities. Hence, letting v = vC1) - v(2), w = wC1) - wC2) 

we have 

(2.1) V p = V G + 'tV X ( p - G). 

The vectors w and w are now related to the generalized coordinates. 
Let {eh} be the unit vectors of a Cartesian set of axes fixed in the rigid body, 

h = 1, 2, 3. For greater generality we Jet 

where q = q(t) is a set of generalized (or Lagrangian) coordinates for the body. 
By definition, the angular velocity is given by 

where a superposed dot denotes the (total) time derivative dj dt; the sum over 
repeated indices is understood. Define the angular vectors 0 1, O t as 

We have 

whence 

(2.2) 
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Let Ut;1>}, ｕｴＮ ｾ
Ｒ
Ｉ ｽ＠ be the sets of generalized velociti es associated with ｶ ｾ ＩＬ＠ ｶｾ Ｉ Ｎ＠

. • (1) • (2) 
Lettrng '7.i = q.i - q1 we have 

(2.3) w = n i'TJ.i . 

. 
For later use we need the expression of the time derivative n j . Letting 

n = n •e JP J p 

and 

we obtain 

and 
eh,k q k + eh,t = fl kX e hqk + fl tX eh = WXeJt . 

Substitution and some rearrangement yield 

1 . ) 1 
2 Epht (e h,jk qk + e h,.it • e, + 

2
cphte h,j • w x e1 

0 1 1 1 
Dq.i 2 Epht w x eh · et - 2.Ephl w x eh · et,j + 2.Ephl eh,j • w x et 

ＨＩｾ＠ 1 1 = aqj - 2_(epX eit ) ·e,(w x eh)·(0jX et) + 2_(epXeh)•et(0jX eh)·(WXet) 

OWp J 1 = f.Jqj-
2

(w x eh)· [Oj x (epx eh)] + 
2

cn jx eh) · [w x(epx eh)] 

Dwp 1 1 
Oqj - 2 (w x eh) ·r2Jhep + Ｒ ｣ｮ Ｎｩ ｸ ･ ｾｴ Ｉ ﾷ ｷｨ ･ ｰ Ｎ＠

Accordingly we have 
• f.Jw 

[2 jp = ＺＺＺｾ＠ P + 0 j X W • ep . 
u qj 

Hence the time differentiation of 0 j = n .iPeP yields 

• f.Jw 
n i = f) pep . 

. qj 
{2.4) 

Let <P; be the force of constraint at any point i of S, namely, at any material 
point or at any point of the rigid bodies. Denote by V; the virtual velocity of 
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the point i and let A be the set of labels for the constrained points. Hence we 
characterize the constraints by assuming that 

(2.5) 

for every set of virtual velocities {v i} compatible with the constraints. 
For formal convenience we separate the values of i pertaining to the material 

points from those pertaining to rigid bodies; we label by a = 1, .. , N the material 
points, and by the pair b f3b, b = 1, ... , B, f3b = 1, ... , 6, we denote the constrained 
points of the 8 rigid bodies. Denote by R;; and ｍ ｾ｢＠ the total constraint force 
and the total constraint torque acting on the body b, i.e. 

R[; = L <l> bth ) 
b,{h 

ｍ ｾ｢＠ = L:CPb/3b - Gb) X <l> &/3b . 
b,/3b 

The total applied force ｒ ｾ＠ and the total applied torque ｍ ｾ｢＠ are defined anal-
ogously by replacing the constraint forces with the applied forces. By means of 
(2.1) we have 

L <l> b/3b •Vbf3b = L <l> b!3b •Vcb + L <l> b!3b • W b X (Pb/3b-Gb) = Ri; •Vcb + ｍ ｾ｢＠ • W b · 
b,/3b b,(3b b./3b 

For any body b, the balance of linear mo mentum, Pb, and of angular momen-
tum, L &, is written as 

The equation o f motion for any material point a is given in the fo rm 

where f.la is the mass, a0 - the acceleration, Fa- - the appli ed fo rce. Substitution 
enables us to write the conditio n (2.5) in the form 

(2.6) L(fto ao - Fo) ·V a + L(Pb - Rb) ·V eo + L(Lb- ｍ ｾ｢ Ｉ＠ · w b = 0. 
u b b 

3. Lagrange's equations 

Let now q = ( q1, ... , qn) be the set of generalized coordinates for the whole 
holonomic system. Substitution of (2.3) into (2.6) yields 
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The arbitrariness of the n-tuple ry1, ... , 'r/n implies that 

(3.1) j = 1, ... , n , 

where 

"' aPe. "' · 8Gb · b 
Tj = L f.l oaa ·-.- + LPb·-- + LLb'Oj, 

0 a qj b o q.i b 
(3.2) 

"' a Pa "' 8Gb "' b Qj = LFa ·-- + LRb· -.- + LMb· 0 1 . 
a· o q.i b oq1 b 

(3.3) 

It is natural to view Tj (Qj) as the j -th component of the generalized inertia 
force (generalized fo rce). 

To find a convenient form of T j we observe that, for any material point P of 
mass f.l, by means of the known identities, we have 

In the same manner, since P = m vc , we have 

. ao ao d a 1 2 a 1 2 
p. -.- - = rn.a G • -. - = - -,--7HVG - -. --·m vG. 

aqh oqh dt oqh 2 o qh 2 

Let I be the inertia tensor of a body, relative to the corresponding center of 
gravity. Hence L = I w. We now use (2.2) and (2.4) to obtain 

• d(I w) () w d [ awl d a w 
L · 0 1t = --· - .- = - (I w) · - .- - (I w) · - - .-

dl oqh dt aqh cLt oqh 

= :!_ ｛ｾ ｷﾷｉｷ｝ Ｍ (Iw)· dOh =:!_ ｛ｾｷＭｉｷ｝ Ｍ _§__ ｛ｾ ｷＭｉｷ ｝ Ｎ＠
eLL 2 cLt dt 2 oqh 2 

The expression of the kinetic energy of the system, viz. 

allows Tj to be written as 

d ar ar 
T.i = --.--- . 

cLt o q1 o qj 
(3.4) 

Accordingly, the conditions (3.1) become 

(3.5) 
c1 o'l' ar - -. -. - -. - = Q.i ' 
dt oq . o qj 

.1 

j = 1, ... , n , 

namely Lagrange's equations of the second kind. 
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4. Comparison with a previous approach 

The view that the rigid body is a continuum rather than a set of material points, 
is expressed in [10] . A comparison is then necessary to assess the conceptual 
improvement in the present approach. 

The approach in [10] starts from the D ' AJembert principle for a single body 
which, in the no tation of this note, may be written in the form 

(4.1) Ra •Vc Ｋｍ ｾ＠ •'W - j {? V·a clv = 0, 
R 

where Ｆｾ＠ is the mass density; the integral over the region R, occupied by the body, 
is regarded as the power of inertia forces. The assumption (2.5) seems to be more 
convincing. Yet it follows easily that Eqs. (2.6) and (4.1) are equivalent when a 
single body is involved, since the observatio n that 

f)P cl 8 1 2 8 1 2 - ·a=---v ---v 
8q.i dt 8qj 2 oq.i 2 

and substitutio n of v = (fJP / O(jj )fJj yields 

ｊ Ｆｾ ｖﾷ｡ ､ ｶ＠ = T ·17 · , .7 .1 

'R. 

where Tj has the form (3.4) in terms of the kinetic energy. H ere, the expression 
(3.2) also leads to (3.4). 

The crucial point consists in expressing the power Ra ·Vc Ｋｍ ｾ ﾷ＠ w in terms of 
the generalized coordinates. First, the "primitive" coordinates As are considered 
and the power Ra ·Vc + ｍ ｾ ﾷ＠ w is written as a lin ear form in the virtual time 
derivatives of As; the corresponding coefficients are denoted by ll s. Hence, for 
holonomic systems As = As ( q, t ) and it follows that 

where 

R(L ·Vc Ｋｍ ｾ＠ • 'W = L Q.i fl .i, 
j 

Q.i = L 11s ｾａｳ Ｎ＠
s qJ 

Accordingly, the arbitrariness of the set { fJJ} implies that Lagrange's equations 
(3.5) hold. Unfortunately, without the angular vectors, the quantities Q.i are not 
defined per se. Indeed, Q.i can be viewed as the coefficient of fJ j in the expression 
of the virtual power. The use of the angular vectors, instead, allows us to write 
Qj in the form (3.3). The occurrence of the angular vectors Q J makes it apparent 
why we are unable to write the expression fo r QJ if the angular vectors are not 
considered. 



http://rcin.org.pl

LAGRA NGL::'S 8QUATIONS FOR 1-IOLONOMIC SYSTEMS WITI-1 RI GID BODIES 33 

References 

l. H. GOLDSTELN, Classical mechanics, Addison Wesley, Reading, Mass. 1964. 

2. L. LANDAU and E. LLFCHIT7., Meranique, Mi r, Moscow 1966. 

3. C.W. KlL MISTER and J.E. REEVE, Rational mechanics, Longmans, London 1966. 

4. A. l. LUR'E, Mecanique analytique, Librairie Universitaire, Louvain 1968. 

5. L. MEIROVITCH, Methods of analytical mechanics, McGraw-Hill , New York 1970. 

6. M. CAZLN, Cow s de mt!canique ge111!ra/e et industrielle, Gauthier-Yill ars, Paris 1972. 

7. P. MAISSER, A nalytische dynamik 1'011 Mehrkiilper.,ysteme, ZAMM , 68, 463-481, 1988. 

8. J.G. PAJ'ASTAVIUDLS, On the trwrsiti l' iry equations of rigid-body dynamics, ASME J. Appl. Mech., 59,955- 962, 
1992. 

9. M. BENATI and A. MORRO, Angular vecton· and kinetic energy of rigid bodies, European J . Mech. N Solids, 
13,819-832, 1994. 

10. A. SIGNORINL, Meccanica razionale con elementi di statica grafica, Ch. 16, Perrell a, Roma 1954. 

LJNIVERSITA. l) ll lE, CENOVA. ITALY 

e-mail: morro@dibe.unige.it 

Received May 20, 1996. 


