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THE LINEAR PRODLEM of transient heat conduction over a bounded time interval in a homogeneous 
domain with boundary conditions for temperature and flux is formulated in terms of boundary 
integral equations with an integral operator which is shown to be symmetric with respect to a bilin-
ear form (convolutive in time). This form generates a functional characterizing the solution by its 
stationarity. Making recourse to a suitable integral transform and to another special bilinear form, 
it is shown that the boundary solution over the unbounded time interval 0 ｾ＠ t < oo, is character-
ized by a saddle-point property with separation of variables. Separation means that the solution 
corresponds to a maximum with respect to the time history of temperatures on the Neumann 
boundary, and by a minimum with respect to the time history of fluxes on the Dirichlet boundary. 
Subsequently a domain decomposition is assumed in view of coupled BE-FE discretization and a 
variational basis to such heterogeneous multifield modelling is provided. 

l. Introduction 

IN 11-IE LAST FEW YEARS a growing portion of the literature concerning boundary 
integral equation (BIE) apprpaches and boundary element methods (BEMs) is 
devoted to symmetric formulations and relevant solution procedures. 

The traditional formulation rests on Sornigliana's identity (generated by "static" 
sources) and on its space-discrete version achieved by field modelling and node-
wise collocation. As for diffusion problems, representative contributions are those 
due to Rrzzo and SmPPY [1] , SHAw [2] , TANAKA and TANAKA [3] , ROURES and 
AlARCON [4] , PINA and FERNANDEZ [5] , while a comprehensive survey can be 
found in SHARP and CRoucH [6] . In this now populru:: context, key operators turn 
out to be nonsymmetric (or non-selfadjoint). Symmetry can be conferred to these 
operators by suitably adopting as boundary sources both static (or intensive or 
single layer) and kinematic (or extensive or double layer) discontinuities and, after 
modelling, by enforcing two suitably chosen BIEs in a Galerkin weighted-residual 
sense, which implies double integrations. Thus, among various consequences, vari-
ational characterizations can be given to the solution of boundary-value problems 
and of their BE-discretized versions in elasticity and in potential problems such 
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as steady-state heat conduction, Darcy filtration, Saint-Venant torsion analyses 
and their analogues (see e.g.: [7, 8, 9]). 

Parall el results have been established in incremental plasticity for both the 
rate problem and the finite-step problem, by recourse to domain distributions of 
concentrated strain sources (and relevant additional terms in the two BIEs) and 
to a third integral equation for stresses over potentially yielding portions of the 
domain (see e.g. [10, 11, 12, 13, 14]). 

No attempt is made here to survey the numerous contributions to the the-
oretical foundations and to related computational aspect (in primis double in-
tegrations of hypersingular integrands and computer implementations) of the 
Galerkin-symmetric BEM in linear and nonlinear boundary-value problems. Two 
recent books [15] and [16] provide fairly abundant information and references 
(updated to 1991 and 1995, respectively). 

As for initial-value bounch:lry-value problems, much less attention has been at-
tracted so far by their symmetric Galerkin BIE formulations and consequent solu-
tion properties and BE techniques. These formulations and properties have been 
establi shed making use of time-dependent discontinuity sources of two kinds, in a 
way basicall y similar to the one adopted for boundary-value problems. Thus the 
BIE analysis of transient heat conduction (diffusion) [17], elastodynamics [18], 
viscoelastici ty [19] and elastic-plastic dynamics [20] have been conferred symme-
try in space and time (with respect to a time-convolutive bilinear form) over the 
finite time-interval of interest. As a consequence, variational saddle-point char-
acterizations of the time response of the system to a given history of external 
actions, have been establi shed in all the mechanical contexts listed above. 

The present paper is intended to provide a further contribution to the the-
oretical foundations of the symmetri c, vari ational BIE-BE methods for time-
dependent problems with reference to linear transient heat conduction. 

First the diffusion problem with mixed boundary conditions is formulated in 
the context of the "direct" approaches by means of BIEs using boundary sources 
of two kinds, like in an earli er paper by the authors in the context of " indirect" 
approaches [17]. The integral operator arising from the set of the above BIEs is 
shown to be symmetric (self-adjoint) with respect to a suitably devised bilinear 
fo rm. This is defined as usual in the space variables; as for the time variable, 
the bilinear form is generated by means of the Laplace transforms of the two 
functions involved and by integrating, with respect to the transform parameter s 
over the unbounded interval 0 ｾ＠ s ｾ＠ oo, the product of the two functions and a 
suitable weight function. 

As a consequence of the symmetry achieved in the above sense, the time his-
tory of the unknown boundary temperatures and ftuxes over the unbounded time 
interval turns out to be characterized by a saddle-point property with separation 
of the two kinds of variables; namely, by a minimum with respect to the tempera-
ture field (extensive, kinematic variables) and by a maximum with respect to the 
heat flux field (intensive, static variables). 
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In contrast to the present saddle-point theorem, the min-max property pre-
sented earlier by the authors did not exhibit the above separation of variables. 
However, it had been proved over any bounded time interval, instead of over 
0 ｾ＠ t ｾ＠ oo only. The path of reasoning leading to the present min-max the-
orem is inspired by the ones followed by GuRTIN [21] , TONTI [22], RAFAI..SKI [23, 
24] and RElSS and HAuG [25], in order to arrive at variational principles for 
initial/boundary value problems formulated by partial differential equations. 

Domain decompositi on for coupling of BEM and FEM (Finite Element 
Method) has been a topic of active research since years (see e.g. [26]). The pur-
pose is to employ each method in the subdomain where its peculiarities can be 
exploited at best for the numerical solution of the problem. Galerkin symmetric 
BEM turns out to be especially suitable to BE-FE coupled solutions, as shown by 
HoLZER [27], PouzzOTTO and ZITO [28]. For the present time-dependent (tran-
sient) heat transfer problem, a contribution to heterogeneous modelling in the 
above sense is provided by the variational approach developed herein in Sec. 5. 

2. Governing equation, Green functions and their properties 

2.1. The linear diffusion problem 

The thermally isotropic material considered herein is characterized by the fo l-
lowing constant parameters: thermal conductivity k (measured e.g. in the units: 
Jsec- 1m-1K- 1) ; specific heat 1 (JK- 1kg- 1); density (2 (kg m-3). The heat con-
duction in a homogeneous body obtained by fillin g with the above material the 
open bounded domain [2 of a space with d dimensions (R d, with d = 1, 2 or 3) is 
governed by Fourier's and energy conservation laws. These laws combined lead 
to the classical equation (see e.g. [29]): 

(2.1) aec;, t ) - o:\12B(x, t) = _!__Q(x, t) 
t 'Y (2 

m D x T. 

Here o: = k,-l g-1 is the diffusivity coefficient of the material (in m2 sec1 ); 

\12 means Laplace operator; e denotes temperature (in Kelvin degrees K); X is 
the d-vector of space coordinates Xi in a Cartesian reference system; t denotes 
time and T = [0, ｾ＠ the time interval over which the phenomenon is to be studied; 
Q represents the (given) density of heat supply rate [i .e. the production of heat 
per unit volume and time (J m-3 sec-1 )]. 

The initial and boundary conditions are: 

(2.2) B(x, 0) = Bo(x) m n, 
(2.3) B(x, t) = B(x, t) on ro X T, 

(2.4) 
ae _ rq x r, q(x, t ) = -k on (x , t) = q(x, t ) on 

(2.5) q(x, t ) = [B(x , t) - Boo] c on re X T. 
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Equation (2.4)1 defines the heat flux q (J m- 2sec- 1) in direction n; n is the 
outward unit normal to the boundary r = Fo u Fq u Fe (Fo, Fq and Fe being 
disjoint parts of F) and is supposed to be uniquely defined everywhere; B0, . fJ 
and q are given functions; the convection coefficient c (Jsec- 1 m-2 K- 1) and the 
far-field temperature Boo (in K) are known parameters. 

For the sake of formal simplicity, the present study will assume Fe = 0, but 
its results can easily be extended to Cauchy (convective) condition (2.5). The less 
easy extension to non-homogeneous, multidomain problems can be carried out 
according to the line of thought pointed out in [18]. Thermally anisotropic media 
are implicitly covered with recourse to the relevant fundamental solutions. 

2.2. Green functions 

Consider (and denote by Doo) the space R d embedding D and filled with the 
same material as [2. The response of D00 to a source represented by a (pulse) 
unit heat supply, concentrated in f.. (load or source point) at the instant T, is 
described by the classical formula (see e.g. [29]): 

(2.6) for t 2:: T , 

where r = llx - f.. ll = [( x;- ｾ ［ ＩＨ ｸ［Ｍ ｾ ［ Ｉ｝ Ｑ Ｑ Ｒ＠ with i = 1, ... , d, denoting by 11 · 11 the 
Euclidean norm. The Green function or kernel (2.6) is the fundamental solution 
to Eq. (2.1), in the sense that it solves Eq. (2.1), when one sets in it Q(x, t ) = 
Q o(x - f..) o(t - r ) (o being Dirac distribution and Q = 1) and assumes B ｾ＠ 0 
for Jlxll -+ 00 as boundary condition (i.e. e = 0 on r oo) in three-dimensional 
situations. . 

It is worth noting that the heat-impulse source which gives rise to the tem-
perature field (2.6), can be interpreted as a unit flux discontinuity across r, 
concentrated in f.. and T . In order to make this circumstance explicit, denote by 
f.. + a point not belonging to D u r (i.e. internal to Doo - D u F) and infinitely 
close to f.. E r and by r+ the set of all f..+ . Similarly, denote by f.. - and r -
the obvious counterparts defined for points belonging to [2. The unit normal, 
indicated by v in f.. and n in x, is assumed as outward with respect to D and 
common tor and r-, but in f.. + the normal is v + = - v (outward with respect 
to Doo-D). By means of this notation, the above source can be described in the 
alternate form: 

(2.7) _6.q O(z - f..) O(t - T ) , 

where 

(2.7') z,f.. E F, t , T ET. 

Here .6.q denotes the jump of the heat flux across r in f.. and o(z - f..) is the 
Dirac distribution defined over r (no longer over D). 
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Other kernels, ail defined for t 2: T, are derived below for later use by taking 
derivatives of the two-point function G88, Eq. (2.6), in the direction n of the 
outward normal to r defineo in the field or receiver point x or/and in the direction 
v of the outward normal in the load point t. Whenever useful to remind of 
these normals in the expression of a kernel G, their symbols will show up in the 
argument or will be replaced by I to mark their absence. 

(2.8) 

(2.9) 

(2.10) 

Physically interpreted, Eq. (2.8) represents the flux response in the field point 
x and direction n at instant t to the heat impulse acting on Dco in load point 
t at instant T. Kernels (2.9) and (2.10) represent the temperature at x and t 
and, respectively, the flux at x in direction n at time t, which are generated in 
Dco by a "double layer" source consisting of a unit discontinuity of temperature 
across a surface through t of normal v, concentrated in space and time. This 
(concentrated) temperature discontinuity source can be formally described by a 
counterpart to Eq. (2.7), making recourse to the same Dirac distributions 8, Ll() 
denoting a jump of temperature across F: 

(2.11) Ll() 8(z- t) 8(t - T ) , 

where 

(2.11') z,t E F, t,T ET. 

2.3. Properties of kernels 

The Green functions (2.6), (2.8), (2.9) and (2.10), all defined over fl co a d for 
t 2: T (causality condition), for x -+ t and t -+ T exhibit singularities which de-
pend on the ratio r j (t - T) when both r and (t- T) tend to zero. However, it can 
be shown (see Appendix A) that the usual singularities of the (time-independent) 
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Green functions for the stationary conduction are exhibited by the Laplace trans-
forms of these functions; namely, in three-dimensional situations (d = 3): 

(2.12) 
£ (Goo) = O(r- 1

) , 

£ (G9o) = O(r - 2
) , 

£ (Go9 ) = O(r- 2) , 

£ (G99) = O(r - 3). 

In Eq. (2.12) £ means Laplace transform 

(2.13) 

00 

£(4>(t) ,s) = J e-st4>(t)dt, 
0 

s being the transformation parameter and 4> any £-transformable function. 
The following reciprocity relationships among the above kernels hold at any 

time in space for x =I f. and can be readily justified by inspection of the relevant 
formulae, Eqs. (2.6), (2.8), (2.9) and (2.10): 

(2.14) 

(2.15) 

(2.16) 

Goo (x, f.;t - T) = Coo (f. , x; t - T) , 

G9o (x, f.;n, j;t - T) = Coq (f. ,x; / n;t- T), 
G99 (x, f.;n,v;t - T) = G99 (f. ,x;v,n;t- T). 

The positive definiteness of £(G00) and the negative (semi)definiteness of £(G9q) 
formally mean that: 

(2.17) j j £(L1q(x;t),s)£(G00(x, f.;t) ,s)£(L1q(f.;t ), s)dFdF > 0 

rr 
VL1q :f 0, 

(2.18) j j £(L18(x;t), s ) £(C99(x, f.;n ,v;t) ,s)£(L18(f.;t),s)dFdr ｾ＠ 0 

rr 
VL18 . 

These properties are proved in Appendix B. 
In view of the O(r- 3) singularity ("hypersingularity") of the Laplace trans-

form of kernel Gqq, Eq. (2.10), the double integral (2.18) acquires a meaning 
only if special interpretations and computational provisions are adopted. These 
are extensively dealt with in the recent literature see e.g. [30, 31, 32 and 33]; 
therefore they will not be discussed here. An investigation and implementation 
of hypersingular integrals occurring in elastostatics are presented in [8] . 

It seems appropriate to mention here also the following features of the basic 
Green's function, Eq. (2.6), in three-dimensional situations, see e.g. [29]: 

(2.19) lim Goo = 0, 
ｴｾ ｯｯ＠

lim Coo = 0, 
,.__,.00 

lim Goo = 8(x - f.). 
t-+'T 
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3. Symmetric boundary integral equations and first variational formulation 

In order to simplify notation and formal developments, the following pro-
visions will be adopted henceforth. (i) Only Dirichlet Eq. (2.3) and Neumann 
Eq. (2.4) boundary conditions will be considered (i.e. Fe = 0). (ii) The differen-
tials d( (and dx) henceforth will mean dF or d[2 when the integration variables 
are the coordinates of the source point ( (and of the receiver point x, respect-
ively), as the integration domain indicated near the integral symbol will remove 
any ambiguity. (iii) The convolutive integration with respect to time T will be 
denoted by an asterisk, namely ｦｾ＠ 'lj; (t - T)'lj; '(T) dT = 'lj; (t ) * '1/J'(t ), where '1/J and 
'1/J' are any time functions. 

3.1. Two governing boundary integral equations 

Consider the time history of the temperature field (J(x, t) in [2 (as a part of 
Doo) due to the following causes acting on r200: discontinuities of flux dq((, T) 
and Of temperature d(}((, T), distributed along the boundary F; heat supply 
Q(t, t ) in the domain n; temperature initial condition 80(( , O) in the domain n 
and 00(( , 0) = o outside n, i.e. in Doo - (Du F). Obviously, the last two data 
define the initial temperature discontinuity dB(() across r at T = 0. 

Using the kernels Coo and Go9 as influence functions of r200 and superposing 
effects, we can give {}(x , t) the following representation: 

(3.1) {}(x; t) = j Goo(x, ( ; t ) * dq((; t) d( + j Go9(x, (; /, v; t) *dO((; t) d( 
r r 

+ j Goo(x, ( ; t) * Q(t, t) d( + ｾｴ･＠ j Goo(x, ( ; t )Bo(( ) d(. 
n n 

The last integral containing the initial temperature 00 can be justified by the path 
of reasoning expounded in [6). 

A similar integral representation is given below to the flux q(x; t) in [2 (as a 
part of r200), taking the derivatives of Eq. (3.1) with respect to x in direction n 
and multiplying this derivative by - k: 

(3.2) q(x;t) = j G90 (x, (;n,j; t) * dq(( ;t) d( 
r 

+ j G99 (x, ( ; n , v; t) * d() ((; t) d( + j G9o(x, ( ; n, j ; t) * Q ((, t) d( 
r n 

+ I f> j G9o (x, ( ;n,/; t)Bo(() d( . 
n 

Choosing a "direct" rather than an " indirect" approach, we identify now the 
discontinuity sources as jumps across r between actual quantities in the domain 
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[2 and their counterparts in an unheated constant-temperature exterior Doo -
([2 U F). Namely, we set for any t ET: 

(3.3) 

q(E, +' t) = 0 

q(E,-,t) = q(E,,t) 

O(E,-, t) = B(E,,t) 

on r, 
on ro ' 

on r o' 

q(E,-,t) = q(E,,t) 
O(E, +, t) = 0 

O(E,- , t) = O(E,, t) 

on rq ' 
on r, 
on rq . 

Now, keeping in mind Eqs. (2.7)2, (2.11)2 and (3.3), let us enforce Eq. (3.1) in 
points x- E [2 infinitely close to the Dirichlet boundary Fo, and identify the tem-
perature in these points with the boundary data O(x; t) assigned there. Similarly, 
we write Eq. (3.2) in points x- E [2 close to Neumann boundary F9, identify the 
heat flux in these points with the assigned boundary data q(x; t ). Thus Eqs. (3.1) 
and (3.2) yield: 

for X E F0-

(3.4) j Goo(x,E.;t)*q(E,; t )dE, - j Go9(x,E,;v ;t)*O( E,; t )dE, = i o(x;t), 
re rq 

(3.5) j G90 (x,E,;n; t )*q (E,; t )dE,- j G9q(x,E,;n,v;t)*O( E,;t)dE, = -j9(x; t), 
re rq 

having set: 

(3.6) io(x; t) = -O(x; t ) + j Goo (x, E,; t ) * Q (E, , t ) dE, 
[} 

+ If! j Goo (x, E,; t )Bo(E.) dE,- j Goo(x, E,; t) * q (E,, t ) dE, 
n rq 

+ j Go9(x,E,;v;t)B(E,; t )dE, 
re 

(3.7) j 9 (x; t ) = q (x; t ) - j G9o (x, E,; n; t ) * Q (E, , t) dE, 
n 

-!(! j Gqo (x, E,; n; t) Bo (E,) dE, + j Gqo (x, E,; n; t ) * q (E, , t ) dE, 
n rq 

- j Gqq (x, E,; n , v; t ) 0 (E,; t ) dE,. 
re 
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It is worth stressing that the singular integrals which intervene in Eqs. (3.4) and 
(3.5) must be interpreted in a suitable sense (in Cauchy and Hadamard sense for 
kernels Goq and Gqo and for the "hypersingular" one Gqq, respectively). Also the 
existence and computability of integrals involving Gqq set special continuity re-
quirements on functions () and on interpolations to employ in its modelling. The 
analytical and numerical integrations in the presence of singularity and hypersin-
gularity will not be discussed here. They are the object of the recent literature 
cited in Sec. 2 (and mostly concerning basically similar elastostatic and elastody-
namic problems). 

The boundary integral equations (3.4) and (3.5) govern the time histories, 
over the time interval T , of the unknown boundary fields ｱＨｾ ［＠ T) on r o, ＨＩＨｾ Ｌ＠ T) 
on r q. Thermal quantities which will actually occur elsewhere in the body con-
sidered will be recovered by quadratures from the boundary solution through the 
representation formulae (3.1) and (3.2) collocated at any point x and instant t of 
interest, account being taken of Eqs. (2.7)2, (2.11)2 and (3.3). 

Therefore, the integral boundary equations (3.4) and (3.5) can be regarded 
as an alternative formulation of the original initial/boundary value problem, Eqs. 
(2.1)- (2.4). What follows is intended to point out some peculiar and hopefully 
computationally useful consequences of the above nonconventional " direct" BIE 
formulation (3.4)- (3.7) of linear transient heat conduction. 

3.2. Symmetry and boundary variational theorem 

It is convenient for subsequent developments to re-write the boundary integral 
equations (3.4) and (3'.5) using a compact ( operatorial) notation: 

(3.8) Ly =f. 

In Eq. (3.8) y and f are vectors which gather boundary unknown functions and 
data, respectively: 

(3.9) = { ｱＨｾ ［ｴ Ｉｽ＠
y ＨＩＨｾ［ｴＩ＠

on r o- X T , 

on r q- X T, 
f = { ｾ ｂ＠ (x; t ) } 

Jq (x; t ) 

and L represents the linear integral operator: 

j Goo * [ ·] ､ｾ＠ - j Goq * [ ·] ､ ｾ＠ on 

(3.10) L=: 
re rq 

-J G qB * [ . ] ､ ｾ＠ j Gqq * [ ·] ､ ｾ＠ on 

re rq 

on r B- X T, 

on r q- X T, 

r o- X T , 

r q- x T . 
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A bilinear form over r x T, convolutive in time, is defined as follows, y and y* 
being two functions over r X T (superscript T denoting transpose): 

(3.11) 

i 

< y, y* > = j j yT (x; i - t) y* ( x; t) dx dt. 
r o 

With reference to this notion, the two theorems stated below have been estab-
lished in [16] . 

PROPOSITION 1. The integral operator L, Eq. (3.10), of the governing boundary 
equations (3.8) is symmetric with respect to the bilinear form (3.11) convolutive 
in time; namely, the following equality holds for any vector of functions defined 
on r X T according to Eq. (3.9)1: 

(3.12) < Ly, y* > = < Ly* , y > V y,y* . 

PROPOSITION 2. The time histories of boundary fields (flux q(x; t) on Fo X T 
and temperature B(x; t) on rq X T] which solve the diffusion problem in the direct 
boundary formulation (3.4)-(3.5), are characterized (as a sufficient and necessary 
condition) by the stationarity of the quadratic functional: 

(3.13) 
1 

F(q(x;t), B(x;t) )= 2 < Ly , y > - < f, y > 

i t 

= ｾｪ＠ j q(x;i - t) j j Goo(x, f,;t-T)q(f,;r) df,drdxdt 
0 re 0 re 
i t 

- ｾｪ＠ j q(x;i-t) j j Go9 (x, f,;t- r )B(f,; r ) df,drdxdt 
0 re 0 rq 
i t 

Ｍｾ＠ j j B(x;l- t ) j j G9o (x, f,; t- r)q (f..; r) df, dr dxdt 
o rq o re 
i t 

+ ｾ＠ j j B(x;i - t) j j Gqq (x, f,;t - T)B(f,;r) df,drdxdt 
o rq o rq 

i i 

- j j q(x; i- t)jo(x; t ) dx dt - j j () (x; i-t) jq(x; t ) dx dt. 
o re o rq 

REMARKS 

A. The above boundary statements have been established in [17], starting from 
earlier work by GURTIN [21] and TONTI [22] on variational principles for linear 
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non-self-adjoint operators. The proof of Proposition 1 is based on the reciprocity 
properties (2.14)-(2.16) and the time-convolutive nature of the bilinear form 
(3.11). This proof is relegated to Appendix C. Proposition 2 follows from Propo-
sition 1 through a customery path of reasoning which is outlined below. Through 
differentiation, and using the above symmetry (3.12), we may write: 

1 
(3.14) oF= < Ly , 8y > - < r, 8y > + 2 < L8y, 8y > . 

The first variation in (3.14) can be rewritten as 8 (1) F = < Ly - f, oy > and this 
shows that indeed, the circumstance 8<1> F = 0 for any oy is a sufficient and 
necessary condition for Ly = f, i.e. for solving problem (3.4) and (3.5) in the 
boundary unknowns (), q over the time T. 

B. The second variation in Eq. (3.14), i.e. 8(2) F = ｾ＠ < LOy, 8y >, is not in 

general a sign-definite quadratic form. Therefore, the variational property stated 
by Proposition 2 corresponds to a saddle-point, not to an extremum of functional 
F . However, the saddle-point for F cannot be proved to represent an extremum 
point of F with respect to q and (), separately. This remark motivates our search 
for stronger statements which led to the results expounded in the next Section. 

C. The discretization in space and time, resting on the variational basis pro-
vided in what precedes, has been preliminarily discussed in [17] and implemented 
in [34] (with numerical integrations in space and analytical in time). Possible cor-
relation between time interval and typical element length might be required in 
order to ensure the desired computational futures (primarily algorithmic stabil-
ity) . Issues of this kind, however, are beyond our present purposes. 

4. Symmetry with respect to a bilinear form and a saddle-point theorem with 
variable separation 

4.1. A further bilinear form and relevant variational theorem 

Let W ( s ) indicate an assigned function of the La place transform parameter s 
(interpreted as time). This "weight function" will be suitably chosen later within 
a broad class of alternatives, under the condition expressed below in (4.4), that 
it should be nonnegative everywhere, and not identically zero. 

Thking over a concept put forward and used by RAFALSKl [23, 24] and R EISS 

and HAuG [25] in linear initial-value problems, we introduce the following new 
bilinear form, denoted by the symbol ｾ＠ · , · ｾ＠ involving the Laplace transforms 
of boundary field histories (y and y*) and defined over r X T 0:)) denoting by T 00 

an unbounded from above time interval, namely 0 ::; t < oo: 
00 

(4.1) ｾ＠ y, y* ｾ＠ = j j W(s) [.C(y(x; t ), s).C(y*(x; T), s)] ds dx 
r o 
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or, more concisely: 

00 00 

(4.2) ｾ＠ y, y* ｾ＠ = j j j g(t + r )y(x; t )y*(x; r) dt dr dx 
r o o 

having set: 

00 

(4.3) g(t + r) = J W(s)e-(t+r)s ds 

0 

under the conditions: 

(4.4) W(s) ｾ＠ 0, W(s) "t 0. 

On the basis of the new bilinear form ( 4.1) or ( 4.2), two further properties are 
stated below, as Propositions 3 and 4, which parallel Propositions 1 and 2, re-
spectively. 

PROPOSITION 3. The linear boundary operator L, Eq. (3.10), is symmetric with 
respect to the bilinear form ( 4.2); namely, the following equality holds for any pair 
of functions y and y• defined by Eq. (3.9)1 over the time-unbounded set r x T 00: 

(4.5) ｾ＠ Ly, y* ｾ＠ = ｾ＠ Ly*, y ｾＧ＠ V y, y*. 

PROPOSITION 4. A time-history of flux q(x; t) on Fe and temperature O(x; t) 
on Fq, both defined over the unbounded time interval T 00, represent the actual 
boundary response of the body to the external input, if and only if they make the 
following quadratic functional stationary: 

(4.6) 
1 

F*(q(x; t ), O(x; t)) = 2: ｾ＠ Ly , y ｾ＠ - ｾ＠ f , y ｾ＠

00 00 

= ｾ＠ j j j g(t + ry)q(x; ry ) j Gee (x, f..; t ) * q (f..; t) dt dry df.. dx 
ro o o ro 

00 00 

- ｾ＠ j j j g(t + ry)q(x; ry) j Geq (x, f.. ; t ) * 0 (f..; t ) dt dry df.. dx 
ro o o rq 

00 00 

- ｾ＠ j j j g(t + ry)O(x; ry) j Gqe (x, f..; t ) * q (f..; t) dt dry df.. dx 
rq 0 0 ro 

00 00 

+ ｾ＠ j j j g(t + ry)O(x; ry) j Gqq (x, f.. ; t) * 0 (f.. ; t ) dt dry df.. dx 
rq o o rq 
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(4.6) 
[cont.] 

00 00 

- j j j g(t + ry ).fo(x; t )q(x; ry ) dtdrydx 
re o o 

00 00 

- j j j g(t + ry)./q(x; t )O(x; ry ) dt drydx. 
rq o o 

Our formal proof of Proposition 3, still resting on the reciprocity relationships 
(2.14)-(2.16), implies rather lengthy manipulations and, hence, is confined to 
Appendix D. Proposition 4 is a straightfmward consequence of Proposition 3, 
through the same familiar argument which led from Propositions 1 to 2 and, 
hence, its proof will not be duplicated here. The present task, pursued below, is 
to strengthen Proposition 4 into a stronger statement, a purpose which was not 
possible to achieve for Proposition 2. 

4.2. A saddle-point theorem, extremum for flux and temperature, separately 

The two quadratic forms, one in flux q and the other in temperature 0, con-
tained in functional F, Eq. (3.13), turn out to be not defined in sign in general. 
On the contrary, the two quadratic forms in functional F*, Eq. ( 4.6), which repre-
sent the counterparts to those in Eq. (3.13), do exhibit sign-definiteness as shown 
below. 

PROPOSITION 5. The following sign-definiteness properties hold for the quadra-
tic forms associated with Green functions Goo and Gqq, respectively, in func-
tional F*: 

0000 t 

(4.7) j j jg(t +ry)q(x;ry )j j Goo(x,f..; t-r ) q(f..; r ) drdf.. drydtdx > O, 
re 0 0 re 0 

Vq "t 0, 
00 00 t 

(4.8) j j j g(t +ry)O(x;ry )j ｪ ｣ｱｱ Ｈｸ Ｌ ｦＮＮ［ ｴ Ｍ ｲ ＩｏＨｦＮＮ［ ｲ Ｉ､ ｲ ､ｦＮＮ ､ｲｹ､ｴ ､ｸ ｾ ｏ Ｌ＠
rq o o rq o 

ve. 
The latter inequality can be strengthened into a strict inequality ( < 0, V() "t 0, i.e. 
negative definiteness instead of semi-definiteness), if rq splits noo into disjoint 
parts. 

Proof. Using Eq. (4.3) and the Laplace transform 

(4.9) 

00 

.C(y(t ), s) = j e- sty(t) dt , 
0 
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the quadratic form ( 4.7) can be given the following alternative expression: 

00 

( 4.10) j j j W(s).C(q(x; t) , s).C(Goo (x, ｾ ［＠ t), ｳ ＩＮｃＨｱＨｾ［＠ t), s) ds dx ､ ｾ Ｎ＠
re re o 

Let us combine the expression in ( 4.10), with the positive definiteness prop-
erty (2.17) of kernel G00, and with the assumed nonnegativeness of W(s). This 
straightforwardly leads to the desired conclusion ( 4.7). 

A proof of property ( 4.8) follows the same path of reasoning starting from 
kernel property (2.18) and, hence, is omitted here for brevity. 

PROPOSITION 6. (Saddle-point theorem) Let q(x; t) over ro X T 00 and O(x; t) 
over F9 x T 00 represent the boundary solution of the diffusion problem in its 
integral formulation (3.4)-(3.5), and let the uncapped symbols denote any pair 
of fields (flux q and temperature 0) defined there. Then the following inequalities 
hold: 

(4.11) F*((j,O) ｾ＠ F* (g,O) ｾ＠ F* (q,O) , 

where the equality signs hold if and only if q = (j and () = e. 
Pro of. Compute the varied functional F*, Eq. (4.6), after a perturbation 

80, oq around the solution and gather the first-order and second-order terms in 
[y(l) F* and 8(2) F*, respectively. The addend [y(l) F* which contains the first-order 
terms vanishes because of the variational property Proposition 4. As for 5(2) F• 
which collects the second-order terms we notice that setting o(j = 0, this addend 
is negative for any 8 0 "f 0 by virtue of Eq. ( 4.8). This justifies the former of 
inequalities ( 4.11) for infinitesimal perturbations around the solution (i.e. in the 
small). However, in view of the quadratic nature of the functional, the inequality 
must be fulfilled also in the large. The latter inequality (4.11) is achieved by similar 
argumentation setting oB = 0 and making use of Eq. (4.7). 

5. Coupling 

Let the domain [2 be subdivided into two disjoint complementary open subdo-
mains [2F and [2B , separated by interface re (so that re = {JF n {JB, denoting 
by bars that boundaries are included). The present purpose is to establish a unified 
variational basis for approximate solutions of the initial-boundary-value problem 
in point by means of two discretization procedures simultaneously, namely by a fi-
nite element method in [2F and a symmetric Galerkin boundary element method 
in [28 . To this coupling (or " multifield modelling") purpose, we rewrite below, 
suitably adjusted, two "strong" formulations of the transient heat conduction 
problem over [2F and [2B. 
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For the former subdomain [2F let the problem be formulated in terms of 
partial derivative equations and boundary conditions. Denoting by F{ and F{ 
the Neumann and Dirichlet boundary, respectively, and being understood that all 
equations hold over the unbounded time interval T 00, the initial-boundary value 
problem, after the domain decomposition in point, can be formulated as follows. 

(5.1) 
f)qF F f)(}F 

in [2F --' + Q = ! (!-
axi at ' 

(5.2) q[ = kpf in [2 F 
' 

f)(}F 
. [2F (5.3) zf = --- m ' 

t OXi 
(5.4) niqr = q_F on r {, 
(5.5) eF = i'JF on r [ , 
(5.6) (}F (x, 0) = 0[ in !JF. 

For the latter subdomain [28 let the same problem be governed by the boundary 
integral equations of the symmetric kind developed in Secs. 2 and 3. These are 
rewritten below by referring to points X E F (no longer r - ) and, therefore, by 
making explicit certain consequences of the singularities in the integrands. In 
fact, integrals concerning the strongly singular kernels G99 and G99, give rise to 
Cauchy principal parts (marked by fin what follows) and " free terms". Similarly, 
integrals involving the hypersingular kernel G 99 lead to Hadamard finite parts 
(marked by f) and "free terms". In the above free terms the coefficient, say {3 , 
depends on the geometry of surface r in a neighbourhood of field point x with 
/3 = 1/ 2 in smooth points as assumed herein. 

For X E rl 

(5.7) j G99 (x, f..; t) * q8 (f..; t) df.. + j Goo (x, f..; t) * q0 (f..; t) df.. 
rf r e 

- f Go9 (x, f,;v;t) * (}8 (f, ; t) df.. - j G99 (x, f,;v;t) * (}0 (f..;t) df.. = jf , 
rqa r e 

for X E F 8 
q 

(5.8) - j Gqo (x, f..; n; t) * q8 (f..; t) df.. - j Gqo (x, f..; n; t) * q0 (f..; t) df.. 
rf re 

+ f Gqq (x, f..; n, v; t) * (}8 (f..; t) df.. + l Gqq (x, f..; o, v; t) * (}0 (f..; t) df.. = jqB ' 
rl re 



http://rcin.org.pl

268 A. CAll. IN l , M. DIL IGENT! A:'-JD G .. lAI Ell. 

for X E r e 

(5.9) j Goo (x, €,; t) *cl (€,; t) df. + j G'oo (x , €,; t) *cl (€,; t) elf. 
rf re 

-f Goq (x, f.; v; t) * B8 (f.; t ) d€, - .f G'oq (x, €,; v ; t) * oc: (€,; t ) df. + ｾｯ ｣＠ = If ) 
r,p re 

for x Ere 

(5.10) - .f G'qo(x, €,; n; l ) * q8 (€,; t ) elf. - .f G'qo (x , €,; n; l) H/ (€,; t) elf. 
rf r e 

+ f Gqq (x, €,; n, v; t)*B 8 (€,; t) elf.+ f G'qq (x, €,; n, v ; t)*ee (€,; t) df.- ｾｱ ｣＠ = J:. 
rqs r e 

On the interface between the two subdomains, the continuity conditions concern 
flux and temperature, namely: 

(5.11) 

(5.12) 

n;q[ + qe = 0 

OF- Oe = 0 

on re 
) 

on re. 
In the BIEs, Eqs. (5.7), (5.8), (5.9) and (5.10), the terms containing data only are, 
respectively: 

(5.13) Jf = ＭｾＰ Ｘ Ｈ ｸ［ ｴ Ｉ Ｍ j Goo(x,€,;t) *q8 (€,;t)d€, 
rqs 

+ j Goq (x, €,; v; t) * 08 (€,; t) d€, + j Goo (x, €,; t) * Q8 (€,; t) d€, 
rf ns 

+ /(1 j Goo Ｈｸ Ｌ ｦＮ ［ｴ Ｉｏｾ＠ (€,) d€,, 
!]B 

(5.14) J: = ｾｱ Ｘ Ｈｸ［＠ t ) + j Gqo (x, €,; n; t) * q8 (€,; t) df. 
rqs 

- f Gqq (x, €,; n, v; t) * 08 (€,; t) df. - j Gqo (x, €,; n; t) * Q8 (€,; t) d€, 
rf nB 

-!(l j ｇｱｯＨ ｸ Ｌ ｦＮ［ｮ［ｴＩｏｾＨｦＮＩ､€Ｌ Ｌ＠
!]B 
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(5.15) jf = - j Goo (x, ｾ［＠ t ) * qa Ｈ ｾ ［＠ t ) ､ ｾ＠ + j Go9 (x, ｾ［＠ v ; t ) * B8 Ｈｾ［＠ t ) ､ ｾ＠
rqB r f 

+ j Goo (x, ｾ［＠ i ) * Qa Ｈｾ ［＠ t ) ､ ｾ＠ + le j Goo (x, ｾ［＠ t ) ｻｊ ｾ＠ ＨｾＩ＠ ､ ｾ Ｌ＠
nB nB 

(5.16) j: = j G9o Ｈｸ Ｌ ｾ［ｮ［ ｴ ＩＪｱ｡＠ Ｈｾ［ ｴ Ｉ＠ ､ｾＭ f G99 Ｈｸ Ｌ ｾ ［ｮ Ｌ ｶ ［ｴ Ｉ Ｊ ｻｊ ｡＠ Ｈｾ［ ｴ Ｉ＠ ､ｾ＠
rf r eB 

- j G91J(x, ｾ ［＠ n; t ) * Qa Ｈｾ ［＠ t ) ､ ｾ Ｍ 1e j Gqo (x, ｾ［＠ n; t ) ｻｊ ｾ＠ ＨｾＩ＠ ､ｾ Ｎ＠
nB nB 

The equations (5.1)-(5.3) concerning [2F, Eqs. (5.4), (5.5) concerning its bound-
ary not in common with na and the initial conditions (5.6) can be given, respect-
ively, the following compact operatorial formulations (in matrix notation): 

(5.17) [ - Olk ｾ＠ ｦｊ ＨﾷＩｾ ｦｊｸｩ＠ ｝｛ｾ ｾ ｝］｛＠ ｾ＠ l --+ N1Yl=h1 , 
- fJ(•) jfJx i -')'g(fJ (•) jfJt ) BF - QF 

(5.18) 
on FF 

r i}F --+ N2Y2 = h2 l 
on 9 

F ｾ＠ -p 
(5.19) -1e B (x, 0) = -1e B0 on [2 for t = 0 --+ N3y3 = h3 . 

Similarly the BIE's (5.7)-(5.10) which concern na and its boundary will be 
expressed in the more compact forms: 

J Goo * [ ·] ､ ｾ＠ - f Goq * [ ·] ､ ｾ＠ + 1/ 2 J Goo * [ ·] ､ ｾ＠
r e r e rf 

- f Gqo * [ ·] ､ｾ Ｍ 1/ 2 =j Gqq * [ ·] ､ ｾ＠ - f G9o * [ ·] ､ ｾ＠
r e r e rf 

J Goo * [ ·] ､ｾ＠ - f Goq * [ ·] ､ ｾ＠ J Goo * [ ·] ､ｾ＠
(5.20) 

r e r e rf 

- f G qO * [ . ] ､ｾ＠ =j G qq * [. ] ､ ｾ＠ - f G qO * [ . ] ､ ｾ＠
r e r e r f 

- f Goq * [ ·] ､ｾ＠ -e rB qe fo on r e q 

+ =j Gqq * [ ·] ､ ｾ＠ ee -e r e rB fq on 
q = --+ N4y4 = h4 . 

- f Go9 * [ ·] ､ｾ＠ qa -a ra fo on 
rB I} 
q 

+ =j G qq * [ · ] ､ ｾ＠ ea -a on r a f q q 
rB 

q 
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Finally, the interface conditions on re Eq. (5.11) and (5.12) are rewritten (two 
times) for convenience as follows. 

! [ ｾ ［＠
-ni 0 n i qf 0 

(5.21) 
0 1 0 () F 0 

== ｾ＠ NsYs == hs · 
2 0 1 0 -1 qc 0 

n · 0 1 0 ()C 0 
' 

Consistently with the above adopted compact notation, let us gather the (scalar) 

variables in the vector yT == [ pf, qf, ()F , qc, ()C, q8 , ()8 ) (superscript T denoting 

transpose), the data in vector 

and the operators into the matrix 

(5.22) 

N1 

N2 

N = N3 , 
N4 

Ns 

where the barred symbols have the foiJowing meaning: N1 = [N1, 0, 0, 0, 0], N2 = 
[0, N2, 0, 0, 0, 0], N3 = [0, 0, N3, 0, 0, 0, 0], N4 = [0, 0, 0, N4], N5 = [0, N5, 0, 0]. 
Now, denoting by y and y' two vectors of fields which belong to the domain of 
the above defined operator N (y, y' E V(N)), a bilinear form associated to this 
operator N can be generated as follows, according to the pattern adopted in 
Sec.4, Eqs. (4.1)-(4.4), on the basis of operator L: 

(5.23) ｾ＠ Ny, y' ｾ＠

= ] ] g(t + T) { J [NlYl(t)f y'l(T)df? + J [N2Y2(t)f Y2(T)dT 
0 0 [)F r F 

+ j [N4y4(t)]T y'4(T) dr + j [NsYs(t)f Ys(T) dr} dt dT 
rB+r c r e 

00 

+ J J g(T)[N3y3(t)] y3(T)df? dT. 
0 [)F 
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In ful analogy with Eq. ( 4.6), we construct the quadratic functional: 

( 
F F ()F C ()C B ()B ) _ 1 (5.24l F Pi , q;, , q , , q , - 2 ｾ＠ ｎｹ Ｌ ｹ ｾＭ ｾ＠ ｨ Ｌ ｹ ｾ＠

= 7 7 g(t + T) l ｾ＠ J - 'Y(! f) ();t(t ) ()F(T)dJl - ｾ＠ J ｾｾ＠ (t)()F(T)dJl 
o o nF nF 

1 J J 1 J f} ()F - 2 kpf(t ) pf (T)dn + q{(t )pf (T)dn + 2 axi (t) qr (T)dn 
nF nF nF 

- ｾ＠ J n;BF(t )q{(T)dT + ｾ＠ J niqr (t )()F(T)dT + J QF(t )()F(T)dJl 
r{ r,r nF 

+ J niOF(t )q{(T)dT - J ij( t )()F(T) dT1 dtdT 

r{ r,r 
00 - ｾＡ＠ g(t) J / e()F(t) (()F(0) - 206) d!l dt 
o nF 

+ 7 7 g(t + T) l ｾ＠ j j 0 00 * qc (t ) qc(T) df. dx 
0 0 r e r e 

- ｾ＠ j j Goq * ec (t ) qc (T) df. dx + ｾ＠ j j 0 00 * q8 (t ) qc (T) df.dx 
rere re r0B 

- ｾ＠ j j Goq * ()8 (t)qc (T) df. dx - ｾ＠ j j Gqo * qc (t) () c (T) df. dx 
r er: r er e 

+ ｾ ｪ＠ f ｇ ｱ ｱ Ｊｂ ｣ Ｈ ｴＩ ＨＩ ｣ Ｈ ｔ Ｉ ､ ｦＮ ､ ｸ Ｍ ｾｪ＠ j Gqo*q8 (t ) ()c (T)df.dx 
r e re rerf 

+ ｾ＠ f f Gqq * ()8 (t) ec (T) df.. dx + ｾ＠ J J Goo * qc (t ) q8 (T) df.. dx 

re r: rf re 

- ｾ＠ J f Goq * ec (t ) q8 (T) df.. dx + ｾ＠ J J Geo * q8 (t ) q8 (T) df.. dx 

r: r e r0B rf 

- ｾ＠ J f Goq * 88 (t ) q8 (T) d€. dx - ｾ＠ J f Gqe * qc (t ) 88 (T) df.. dx 

r:r: rqBr e 
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(5.24) 
[cont.] 

+ ｾｾ＠ ｦ ｣ ｱｱ Ｊｏ ･ Ｈ ｴ Ｉ Ｐ Ｘ Ｈ ｲ Ｉ ､ ｦＮＮ ､ ｸ Ｍ ｾｪ＠ f c q9 * q8 (t )08 (r ) df.. dx 
r qa r e rqa res 

+ ｾｾ＠ f Gqq* 08 (t )08 (r )df..dx - j ] f (t ) qe (r) dx 
r qa rqa r e 

- j ｝ ｾ Ｈ ｴ Ｉｏ ･ Ｈ ｲ Ｉ ､ ｸ Ｍ j ]f(t ) q8 (r ) dx - j ]q8 (t)08 (r ) dx] dt dr 

ｾ＠ ｾ＠ q 

+ llg (t + r ) ｛ｾ＠ j n iq{ (t ) Oe (r ) dx + ｾ＠ j OF(t ) qe (T) dx] dtdT. 
00 ｾ＠ ｾ＠

At this stage, the following two statements can be formulated. 

PROPOSITION 7. The operator N, Eq. (5.22), (which is both differential and 
boundary-integral), is symmetric with respect to the bilinear form (5.23). 

PROPOSITION 8. In the body t2 subdivided into subdomains t28 and f2F, and 
OVer the unbounded time 0 :::; t < oo, flux q8 (x , t) on r 9

8 and r e , temperature 
08 (x,t) on r q8 and r e , temperature 08 (x, t ) in f2F, flux q{(x, t ) in rv and 

temperature gradient pf (x, t ) also in {2F represent the actual response of the 
body to a given time history of external actions, if and only if they make stationary 
the above functional :F, Eq. (5.24). 

The proof of statement 7 for the present coupled formulation can be given 
following a rather lengthy path of reasoning similar to that adopted in Sec. 4 and 
Appendix D and, hence, will not be expounded here for brevity. It is worth noting 
that the operator symmetry disrupted by the coefficient 1/ 2 and - 1/ 2 of the free 
terms in Eq. (5.20) is recovered in the operator of the coupled problem (if there 
is no interface r e decomposing the domain n, those coefficients show up only 
in terms of data as seen in the preceding Sections). 

REMARKS 

A. In the expression (5.24) of the functional :F the first addend, denoted 
henceforth by symbol A 1, contains the product of the temperature field OF and 
its time derivative, over the finite element subdomain f2F. It is easy and com-
putationally useful to transform Al into the sum of two quadratic terms in eF 
alone. In fact we may write a sequence of alternative formulations for A 1: 

(5.25) 
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(5.25) 
[cont.] 

1 
00 00 arJF t 

00 

= 2 J ({! J W (s) Je-st at() dt J e-s-r()F(7)d7dsdn 
[]F 0 0 0 

= ｾ＠ j ｾｬ ･＠ J W (s) [ - BF(O) + s J e-st fJF(t)dt J e-s-r ()F(7)dT] ds drt 
[]F 0 0 0 

00 00 

= ｾＡ＠ J g* (t + 7) J ( {!() F(t )()F(7)dild7dt 
0 0 []F 

00 

+ ｾ＠ J g(t ) J ( {! fJF (t) ()F (0) d[l dt . 
0 [] F 

The first of the above expressions of A 1 has been achieved through Eq. (4.3), the 
second by rearranging the integrations, the third through an integration by parts 
over 0 ｾ＠ t ｾ＠ oo, the fourth by setting: 

00 

(5.26) g*(t + 7) = j s W (s) e-(t+-r)s ds. 

0 

B. The functional F defined by Eq. (5.24) is a multifield functional in the sense 
that over the subdomain flF it depends on temperature fJF' its gradient 8()F I a xi 
and heat flux qr, which represent independent unknowns on the subdomain [tF 
and, as such, can independently be modelled over [tF as a finite element dis-
cretization. Alternatively, Eqs. (5.2) and (5.3) can be a priori enforced, so that F 
reduces to a functional of temperature only over [tF x T 00, besides of tempera-
ture and flux on rq8 X T 00 and rf X Too. respectively. The former case, (multifield 
functional F ) might be desirable in order to construct parametric variational prin-
ciples with possible computational benefits, as pointed out by FELIPPA [35] in the 
context of the finite element methods. 

C. Operator N for the coupled problem turns out to be symmetric also with re-
spect to the bilinear form (3.11) convolutive in time i.e. < N y, y' > = < N y', y >, 
besides with respect to the new bilinear form ( 4.2) - ( 4.4 ), i.e. ｾ＠ N y, y' ｾ＠ = 
ｾ＠ N y' , y ｾ Ｎ＠ as stated by Proposition 7. 

6. Closing remarks 

With reference to the transient heat conduction in a homogeneous body as a 
typical linear initial-boundary-value problem, what precedes presented the results 
outlined and commented below as conclusions. 

(a) A formulation in terms of boundary integral equations, constructed by 
means of single and double layer sources, in such way that the boundary inte-
gral operator is symmetric with respect to a bilinear form convolutive in time 
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over the boundary and a finite time interval. The reciprocity properties of the 
time-dependent Green functions for the thermally homogeneous space were cru-
cial to establish this circumstance. 

(b) A variational characterization, corresponding to a saddle point, for the 
solution of the boundary problem formulated over a bounded time T 00 as outlined 
at (a). 

(c) A further, different saddle point characterization of the boundary solution 
over the unbounded time interval T 00, which is shown to represent a minimum 
with respect to the temperature and a maximum with respect to the flux, sep-
arately. This variational property and the variable separation in it have been 
achieved by generating another special bilinear form in the Laplace transforms 
of the boundary variable fields, and by using the sign-definiteness (proved in Ap-
pendix B) of the Laplace transforms of the two Green functions for temperature 
and heat flux due to discontinuities (concentrated in space and time) of ftux and 
temperature, respectively. 

(d) An extension of the variational theorem (c), preserving the variable sep-
aration, in order to cover cases where transient heat conduction is governed 
in a subdomain by the symmetric system of boundary (and now interface too) 
integral equations, and in the complementary subdomain by the original partial 
differential equations (Fourier and conservation laws) and the relevant mixed 
(Dirichlet and Neumann) boundary conditions. The computational potentialities 
and applications of the results expounded in this paper and summarized above, 
are regarded to be beyond the present purposes and will be discussed elsewhere. 
However, the following remarks may envisage possible developments towards the 
use of these results in numerical solution methods. 

(e) The variational approach mentioned at (b) and developed in Sec. 3, by 
modelling in space and time (either simultaneously or separately) the boundary 
fields over a time interval T, leads to a boundary element algebraic linear equation 
system endowed with symmetric coefficient matrix (the same is attainable from 
result (a) by means of a Galerkin weighted-residual approximate enforcement of 
the integral equations). Both the computational benefits of such symmetry and 
the difficulties of the hypersingular integrals are fairly well understood in the 
recent BEM literature, though with reference to physically different problems, 
see e.g. [8, 9, 14, 15, 16, 30, 31, 32, 33]. 

(f) The boundary element discretization based on the saddle-point theorem de-
rived in Sec.4 and above mentioned at (c) preserves symmetry in the resulting al-
gebraic equations and appears to be computationally promising for short-duration 
transient analysis, in view of the use of field modelling by means of shape func-
tions with exponential, asymptotical decay in time, as pointed out in a forthcoming 
paper. 

(g) The uselfulness, in terms of computing cost-effectiveness of large-size 
analyses, of multifields (or heterogeneous) models when approximating initial-
boundary-value problems over complex domain, has been demonstrated by a 
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growing literature in various contexts, see e.g. [36]. This fact motivates the vari-
ational approach (d) developed in Sec. 5 in view of a domain decomposition for 
BE-FE coupling motivated like in other contexts [26, 27, 28]. However, further 
work is required to assess the expected computational merits of result (d) from 
this standpoint (account taken of the present more stringent continuity require-
ments on the temperature field, compared to those in traditional BEMs). Another 
issue worth being pursued elsewhere concerns parametric variational principles in 
the sense of FELIPPA [35], which might be generated in the symmetric BE context, 
with possible computational advantages. 

Appendix A 

With reference to Sec. 2.3 on the properties of the time-dependent Green's 
functions for heat conduction in isotropic space no::» the statement given there on 
their singularities is corroborated here below by formal developments concerning 
kernel Coo alone for brevity. In two-dimensional situations (d = 2), Eq. (2.6) 
specializes to: 

(A.1) 

The Laplace transform of kernel (A.1) reads: 

(A.2) £(Coo) = - I<o - · 1 (rvs) 
21ra JO_ 

Heres is the transformation paremeter, 1 denotes Euler constant(/ = 0.577 ... ) 
and I<0 represents the modified zero-order Bessel function, namely, z being its 
argument (see [37]) 

(A.3) 

where 

(A.4) 

1 2 Ｈｾ ｺＲ Ｉ＠
2 

I<o( z ) = - [log (i) + 1] Io(z ) + Ｈｾ ［ Ｉ Ｒ＠ + ( 1 + ｾＩ＠ ;2!)2 

1 2 
-z 

Io(z ) = 1 + (i!) 2 + 

( 1 2)3 
( 1 1) 4z 

+ 1 + 2 + 3 (3!)2 + ... , 
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From Eqs. (A.2)- (A.4) it turns out that the only singular term in £ (Gee) is log r : 

(A.5) ｬｯｧＨｾＩ＠ =log ({f) + logr . 

In three-dimensional problems (d = 3), Eq. (2.6) becomes: 

(A.6) 

The Laplace transform of kernel (A.6) reads: 

(A.7) 2fo (1) Ｍ ｾ＠
(4a )3/27r :;:- e o' 

where it can be noticed that the only singular factor is r - 1• 

Appendix B. A proof of sign semi-definiteness for the Laplace transforms 
of kernels Gee and G99 

If La place integral transform ( 4.9) is applied to both its sides, the diffusion 
equation (2.1) becomes (s denoting the transform parameter): 

(B.1) 
1 

a V'2 £(0) = s£(0) - O(x, 0) - - £(Q). 
l g 

On the boundary r , interpreted as a surface in the space J200, consider a distribu-
tion of temperature discontinuities L10 = - fJ+ + o- and another one of heat flux 
jumps Llq = - q+ - q-, according to Eqs. (2.11)2 and (2.7)2, respectively. By 
virtue of the Gauss lemma and of equation (B.1) in the transform space, keeping 
in mind that the above sources are now the only external actions on J200, we 
write: 

(B.2) J £(o- / J£(O- ) dr = j cco- / J£(O- )n-:- dr on OX; t 

r - r-

8 (£(0) o£(O)) 2 
= J ox; dn = J o£(0) ac(O) dn + J £ (O) a £(0) dn 

OX; OX; OX; OX;OX; 
n n n 

= j oL(O) ace e) dn + ｾ＠ j £(0)£(0) dn 2: o. 
ox; ox ; a 

n n 
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Similarly, denoting by [ 2* the exterior domain, {2* = D00 - (Du F ), we obtain 
an inequality over r +: 

(B.3) 

= - j aL(O) aL(O) dD - ｾ＠ j £(0)£(0) dD ｾ＠ 0. 
ox ; o x ; a 

n· n· 

Fourier's law, q; = -k ::i, formulated at x+ and x- in the Laplace transform 

space with k = 1 and n+ = - n = - n-, yields: 

(B.4) aL(O- ) = -£( -) an q ' 

By adding inequality (B.2) to inequality (B.3) reversed in sign and, subsequently, 
by using Eqs. (B.4), we obtain: 

(B.5) - j L(O_)aL(O-) dF + j L(O+)aL(O+) dF an an 
r - r+ 

= j L(fJ- )L(q- ) dF + j L(O+)L(q+) dF::; 0. 
r - r+ 

Now, like in Sec. 3 for the symmetric BIE formulation, let the sources L1q be 
confined to the portion F0 of r, the sources £10 to Fq. In terms of their Laplace 
transforms this means that: 

(B.6) 

(B.7) 

As a consequence of Eqs. (B.6) and (B.7), the inequality (B.5) becomes: 

(B.8) j L(O)L(q- ) dF + j L(O)L(q+) dF + j L(O- )L(q) dF 

r-e 
r+ e r -q 

- j L(O+)L(q) dF = - j L(O)L(L1q) dF + j L(L10)L(q) dF ::; 0. 

ｾ＠ ｾ＠ ｾ＠
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In view of the definitions and mechanical interpretations of the Green functions 
C00 and G99 in Sec. 2, Eq. (B.8) can be re-written in the form: 

(B.9) - j j .C(t1q).C (Coo) .C(t1q) dr dr 
re re 

+ j j .cc t1B).c cc qq) .cc t1B) dr dr ｾ＠ o. 
rq rq 

Since the source fields are arbitrary (so that .C(t1q) = 0 and .C(t1B) = 0 are 
feasible choices), Eq. (B.9) yields the two inequalities which embody the sign-
sernidefiniteness of the two kernels in Laplace transform space: 

j j .C(t1q).C (Coo) .C(t1q) dr dr ｾ＠ o V t1q, 

(B.10) 
re re 

j j .C(t1B).C(Cqq).C(t1B)dFdF ｾ＠ 0 V ,:1(} q. e. d. 

rq rq 

Appendix C. A proof of the symmetry of the boundary integral operator 
with respect to a time-convolutive bilinear form over r X T (Proposition 1) 

In order to prove Eq. (3.12), let us write the bilinear form (3.11), in terms of y 
according to Eq. (3.9)1 and of y* interpreted as the integral transform of another 
field y' through operator (3.10): 

(C.1) < Ly, y' > 

=) j [j j Goo(x, f..;t - T)q(f.,;T)dE,dTJl q'(x;l-t) dxdt 
0 re 0 re 

- ) j [j j Co9 (x, f..; t - T)8 (f..; T) dE, dT] q' (x; l- t) dxdt 
0 re 0 rq 

- j J [j J Cqo(x, f..;t- T)q(f.,;T) df.,dT] e' (x;l- t) dxdt 
o rq o re 

+ j j [j j Cqq (x, f.,; t- T)B (f..; T) df.. dT] (}' (x; l - t) dxdt. 
o rq o rq 
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Let ts change the integration order and use the Heaviside function H (t - T) 
( = 0 for T > t; = 1 for T < t ): 

(C.2) j j [J j q (E, ; T) Goo (x, E,; t - T) q' (x; i- t ) dE, dx 
o o re re 

- j j B(E,;T)Go9 (x,E,; t-T)q' (x;i -t) dE,dx 
T'o rq 

- j j q(E,;T)G9o(x,E,; t-T)B' (x;i-t) dE,dx 
rq ro 

+ j j B (E.; T) G99 (x, E,; t- T) (}' (x; i -t) dE, dx] H (t- T) dT dt . 
rq rq 

Now take into account the kernel reciprocity properties, Eqs. (2.14)- (2.16), and 
adopt for convenience new time variables (J = i -T, s =i-t : 

(C.3) j j [J j q (E,; i- (J) Coo (x, E,; (J- s) q' (x; s ) dE, dx 
0 0 ro ro 

- j j B (E,; i- (J) Go9 (x, E.; (J - s ) q' (x; s ) dE, dx 
r0 rq 

- j j q (E,; [ - (J) G9o (x, E,; (J - s ) f)' (x; s ) dE, dx 
rq re 

+ j j f) (E,; [- (J) Gqq (x, E,; (J- s ) B' (x; s) dE, dx] H ((J- s ) d(J ds. 
r'q rq 

By re-arranging Eq. (C.3), using again symbol t instead of (J and T instead of 
s, and, finally , by interpreting the role of the Heaviside function in terms of 
integration intervals, an expression is achieved from which the symmetry property 
to prove clearly emerges: 

(C.4) j j [J j Goo (x, E,; t - T) q' (x; T) dE, dT] q (E,; i - t) dE, dt 
o re o re 

- j j [J j Go9 (x,E.; t-T)q'(x;T) dxdT] B(E,;i-t) dE,dt 
o re 0 rq 
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(C.4) 
[cont.) 

- ) j [J j Gqo(x, f.; t - T)O'(x;T)dxdT] q(f. ;t-t) df.dt 
o rq o ro 

+ j j [i j Gqq (x, f,; t- T) ()' (x; T) dx dT] () (f, ;i - t) df. dt 
o rq o rq 

= < Ly' , y > q. e. d. 

Appendix D. A proof of the symmetry of the boundary integral operator 
with respect to a new bilinear form over r x T 00 (Proposition 3) 

A path of reasoning similar to that in Appendix C can be followed here again 
with reference to the bilinear form defined by Eq. ( 4.2) in order to prove the 
symmetry property expressed by Eq. ( 4.5), with the same interpretation of y, y' 
and L as in Appendix C. 

(D.l) ｾ＠ Ly,y' ｾ＠
00 00 t 

= j j j g(t + ry)q'(x; ry) j j G00 (x, f,;t-T)q(f, ;T)dTdf. drydtdx 
ro o o ro o 

0000 t 

- j j j g (t + ry )q'(x;ry) j j coq (x, f, ;t-T)O(f.;T)dTdf.drydtdx 
ro o o rq o 

00 00 t 

- j j j g (t +ry)O'(x;ry )j j c qo (x, f.;t-T)q(f. ;T)dTdf, drydtdx 
rq o o ro o 

00 00 t 

+ j j j g (t + ry) ()' (x; ry) j j Gqq (x, f.; t- T) f) (f. ; T) dT df. dry dt dx. 

rq o o rq o 

Let us now take into account again the definition ( 4.2) and invert the integration 
sequence, to obtain: 

00 00 00 

(D.2) j j j W(s) j e-sTi q' (x; ry ) dry j e-stGoo (x, f, ; t) dt 
re re o o o 

00 

x j e - sr q (f. ; T) dT ds df. dx 

0 
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(D.2) 
[cont.] 

00 00 00 

- j j j W(s) j e-517 q' (x; ry) d17 j e-stGeq (x, f.; t) dt 
To Tq 0 0 0 

00 

x j e- sTe(E,;T) dTds df.. dx 
0 

00 00 00 

- j j j W (s) j e-srye' (x; ry) dry j e-stGqe (x, f.; t) dt 
Tq To 0 0 0 

00 

X J C 5T q (f_; T) dT ds df_ dx 
0 

00 00 00 

+ j j j W(s) j e-sTJe' (x; ry) dry j e- stGqq (x, f.; t) dt 
Tq Tq 0 0 0 

00 

X J e- ST e (f.; T) dT ds dE, dx. 
0 

The reciprocity properties (2.14)-(2.16) of the Green functions in point lead to 
a final expression which evidences the new symmetry of operator L, as stated by 
Proposition 3: 

00 00 t 

(D.3) j j j g (t +ry) q(x;ry) j j Gee(x,E,;t-T)q'(f,; T)dTdf, drydtdx 
To 0 0 To 0 

0000 t 

- j j j g (t+ry)O(x;ry )j j c eq (x,E,; t - T)q'(f, ;T)dTdf, drydtdx 
To 0 0 Tq 0 

0000 t 

- J J J g (t + ry)q (x; ry) J J Gqe (x, f. ; t- T) e' (f.; T) dT dE, dry dt dx 
Tq 0 0 re 0 

00 00 t 

+ j j j g(t+ry)B(x;ry) j j Gqq(x,E,;t-T)B'(f,; T) dTdf.. drydtdx 
Tq 0 0 Tq 0 

= ｾ＠ Ly' , y ｾ＠ q. e. d. 
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