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Crack in an anisotropic medium 

A. V. BALUEVA and S. V. KUZNETSOV (MOSCOW) 

A NUMERICAL method for the 3D problem of cracks in anisotropic media is developed, based on the 
variational approach to the crack opening problem. Properties of the pseudo-differential operator 
of the crack equilibrium problem are considered. Numerical examples are presented. 

1. Introduction 

SoLUTION of the 3D problem of a plane crack in anisotropic medium is not simple 
in view of the absence of effective algorithms for determination of fundamental 
solutions of the equilibrium equations. 

Presumably the first integro-differential equation for the plane crack in aniso-
tropic medium was constructed in [1, 2] by means of the Fourier and Radon 
transforms. The main difficulty in that approach lies in the necessity of construct-
ing several auxiliary solutions to the problem of determination of the root of 
elliptic polynomials in three variables. In fact, in the case of arbitrary anisotropy, 
the latter problem can be solved only numerically. That does not allow us to ob-
tain qualitative and quantitative results for cracks, which are known for isotropic 
case [3, 4]. 

The method developed for solution of the 3D problem for a plane crack of 
arbitrary shape in anisotropic medium is based on the construction of the elliptic 
pseudo-differential operator (p.d.o.) and application of the Goldstein- Klein -
Eskin variational method [5] for a numerical solution. 

2. Basic operators 

Anisotropic elastic medium is considered, for which Lame's equations of equi-
librium can be written in the form 

(2.1) A(Clx)u(x) = - div xC · · · \1 xu(x) = 0, 

where A is the matrix differential operator of the equilibrium equations, C is a 
fourth-order elasticity tensor, assumed to be strongly elliptic, while the medium 
itself is assumed to be hyperelastic, and u is the displacement vector field. 

Application of the integral Fourier transform 

l ' CO = j g(x)exp(- 27rix·Odx 
R3 
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to (2.1) yields the matrix operator A 

(2.2) 

As it follows from (2.2), operator A" is strongly elliptic, positive definite of degree 
2 and analytic in R3. 

Now, formal identity following from the definition of the fundamental solution 

(2.3) A" (O· E" (O =I, 

where E" is the fundamental solution, and I is a unit (diagonal) matrix, enables 
us to write E" in the form 

(2.4) E"(O = ｾＨＰ Ｏ＠ det A" (O, 

where AQ' is the cofactor of A". This formula shows that operator E" is also 
strongly elliptic, positive definite of degree - 2 and E" E C00(R3 \ 0, R3 ® R3). 

The inverse Fourier transform applied to the formula (2.4) leads to 

PROPOSIT IO N 1. Fundamental solution of the equilibrium equations (2.1) is 
positive definite of degree -1 and E E C00(R3 \ 0, R3 ® R3) . 

R EM A RK 1. It should be noted that, while for some specific groups of elastic 
symmetry the Fourier inversion of the formula (2.4) can be performed analytically, 
in the general case of elastic anisotropy it can be done only numerically (6] . 

3. Representation of solution 

The displacement field produced by a crack is represented by the double-layer 
potential 

(3.1) u(x) = j b(y')·T(oy, vy)E(x - y')dy' , 
{} 

where b is the crack opening, T is the operator of surface tractions, dy' is the 
Lebesgue measure on the ll11-plane, and n c ll v is the bounded plane region 
occupied by the crack at the il11-plane. 

Surface tractions acting at the ll11-plane are determined by the limits (evalu-
ated in non-tangential direction) 

(3.2) t(x') = lim T(ox, -vx') j b(y') · T(oy, vy)E(x - y')dy' , 
ｸ ｾ ｸＧ＠

x' E ll v. 
{} 

These limits are correctly determined according to the Lyapunov- Thuber the-
orem for elastic potentials (7]. 
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Application of the Fourier transform to (3.2) gives the amplitude [9] of the 
corresponding pseudo-differential operator 

(3.3) GA(O = (27r)2 vy • C · · ﾷ ｾ＠ ® EA(O ® C · · C · Vx. 

Properties of the amplitude (3.3) and the associated principal symbol were 
investigated in [7, 8] where it was proved that condition of strong ellipticity for the 
elasticity tensor C ensures strong ellipticity for the amplitude (3.3) and principal 
symbol. 

Reduction of the amplitude (3.3) to the .lJ11-plane gives the principal symbol 
we are looking for, which depends on t E 1J 11 variables alone: 

00 

(3.4) G-(()=(27r)2 F.P. j G;\(0df', 
-oo 

ｷｨ･ｲ･ｾ＠ E R3, t = ｐｲｮ ｶｾＧ＠ ｾｾｾ＠ = Prv(0 ｳｯｾ＠ = t + f'v. In (3.4) F.P. stands for 
the Finite Part of the diconvergent improper integral. 

4. Regularization technique 

To evaluate integral in (3.4) we observe that the integrand in (3.4) has an 
obvious asymptotic property due to (2.4) 

(4.1) IIG;\(011 = ＰＨＱｾＱﾰＩＬ＠ ＱｾＱ＠ --+ 00. 

Moreover, the limit of the integrand when le'' I --+ oo can be easily obtained from 
(3.4) using Eqs. (2.3) and (2.4), that is 

(4.2) V f lim GA(O = v·C·v. 
{'ytO l€"1-+oo 

Now, from Eqs. ( 4.1) and ( 4.2) it follows that 

(4.3) IIGA(O- v · C · vll = O(lf'l - 1
), le'l --+ oo. 

Analysis of the expressions ( 4.2) and ( 4.3) shows that the asymptotic terms of 
the highest order O(lt'l- 1), Ｑ ｾＢＱ ＭＭＫ＠ oo are odd functions off' . So, the improper 
integral in (3.3) exists in the Principal Value sense at any f 'f= 0: 

00 

(4.4) G-(f) = P.V. j (G;\(0 - v·C·v)df'. 
- oo 

Thking into account oddness (with respect to f'-variable) of the highest asymp-
totic expression in ( 4.3), the integral in ( 4.4) can be finally rewritten in the fol-
lowing form, which can be more convenient in computations 

00 

(4.5) G-(f) = j [G;\(0- G;\(-0 - 2v·C·v] df' , et= o. 
-oo 
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5. Properties and structure of the operator c-

Proof of the following proposition can be found in [7, 8]: 

PROPOSITION 2. a) Operator G- is symmetric; b) G- is positive definite of 
degree 1 with respect to lel; c) symbol c- is strongly elliptic; d) work produced 
by the surface loadings to E H _112 ( [2 , R3) acting on the crack faces 

(5.1) j to·bdx' > 0 
n 

is positive, where JL1; 2 is the Hormander functional space; e) quadratic functional 

(5.2) F (b) = j b-(()·G- (() ·b-(e')d( 
JI.., 

representing the elastic energy is coercive in Hormander's space H 112• 

CoROLLARY 1. Normal loading on the crack surface to = pv, p > 0 pro-
duces crack opening and increases the crack volume, independently of the elastic 
an isotropy. 

COROLLARY 2. Variational problem 

(5.3) inf [!F(b)- l(b)] , 
VcHl /2 2 

l(b) = j t0 ·bdx' = j to- ·lrd( 
n JI.., 

has a unique solution provided V is a closed sub space in H1; 2( [2, R3) . 

REMARK 1. It should be noted that for an anisotropic medium, normal load-
ing of the crack surface can also produce components of displacement lying in 
the crack plane (together with necessarily present normal components, due to 
Corollary 1 ). 

PROPOSITION 3. If anisotropic material possesses a plane of elastic symmetry 
and the crack lies in it , then c- may be represented in the form 

(5.4) 

where g1 is a tensor with components lying in the ll v-plane: v • g1 = 0, g1 • v = 0, 
and g2(() is a scalar-valued function. 

P r o o f. At first we remark that if v is the unit normal to the plane of 
elastic symmetry, then the fourth-order elasticity tensor C can have only an even 
number of indices corresponding to the v-direction. Otherwise it would not satisfy 
the symmetry condition. Now it becomes obvious that term v • C · v in ( 4.3 ), ( 4.4) 
does not contain mixed indices, that is referring to v and in the ll v-plane. 
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Similar considerations based on the decomposition (5.4), show that both op-
erators A" and E" consist of odd or even components with respect to ｾＢ Ｍｶ｡ｲｩ｡｢ｬ･ Ｌ＠

provided these components have, respectively, odd or even number of indices cor-
responding to the v-direction. Analysis of the formula (3.3) with the preceding 
remark yields the conclusion that the mixed components of G" are odd functions 
of the ｾＢＭｶ｡ ｲｩ ｡ ｢ｬ･ Ｎ＠ This, together with ( 4.3), completes the proof. 

REMARK 2. When the crack lies in the plane of elastic symmetry, then in 
contrast to the general case noted in the Remark 1, normal loading produces 
only normal components of the crack opening. The preceding proposition shows 
that the inverse statement is also true. 

6. Construction of the p.d.o. 

Fourier inversion in the 1I 11-plane of ｴｾ･＠ operator c-which gives the p .d.o. of 
the crack theory, can be done by the method similar to the multipolar expansion 
method [6] . 

Let the operator c- be expanded into harmonic series on the unit circle 
S C ll v, 

(6.1) 

2::::: Gn exp(in<p) 

c -(() = Ａ･ｬＲＭＧＭＧＭｮ｟｟ＬＬＭｾ ＬＬ ＭＭ

ｾ Ｑ＠ = j( j COS<p, 6 = le' I sin <p. 

Matrix coefficients Gn in Eq. (6.1) are determined by integration along the circle 
S (at If! = 1): 

(6.2) 

271" 

Gn = 71'-
1 j c - (<p) exp(in<p) d<p. 

0 

R EMARK 3. In the expansion (6.1) are presented harmonic functions of even 
order only. That is due to positive definiteness of the operator c-. 

Now the inverse Fourier transform of (6.1) can be obtained by Bochner's 
inversion formula which leads to an operator with weak singularity. This gives 
the p.d.o. we are looking for 

(6.3) 

2::::: i nGn exp(in<p) 

G( x') = (2 7l')-2 __:n.:._______,---:--- • 1..1 x' , 
jx'j 

X 1 = jx'j COS<p, x2 = jx' j sin <p. 

Remark 3 shows that formula (6.3) defines a weakly singular operator with the 
zero imaginary part. 
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7. Numerical method 

The variational equation relating the crack closure to the surface tractions 
may be written in the form 

(7.1) 
W(b) - l(b) = 0, 

W(b) ::::: j b·G·bdx' , 
[} . 

l(b) = j to·bdx ' , 
[} 

where W is the quadratic functional defining the energy necessary for the crack 
opening. The condition of vanishing of the gradient of expression (7.1) leads to 
the Euler equation 

ｾｨ＠ [W(b) - l(b)] = 0, 

which coincides with (3.2). Equation (7.1) may be represented by means of the 
integral Fourier transform and Parseval's identity in the form 

(7.2) j b-(e')·G- (()·b-(()d( = j b-(e')·to-(()d(, 

ll ll 

where JJ is the plane of the crack n. We will find the Fourier-transform of the 
crack opening in the series form [10] 

(7.3) 
m 

where 'Pm E H 1; 2 are the coordinates, and the unknown vectorial coefficients bm 
are defined from the condition of minimization of the quadratic functional (7.1). 
It gives the linear system enabling the determination of bm [10]: 

(7.4) L bm J 'P-m(()c.p-k(e')G-(e') d( = J 'P-k(()Co(e') d( , 
m ll ll 

or in a coordinate form 

(7.5) L iJ m j c.p-m(()c.p-k(e')G-afJ(e') d( = j c.p-k(()tcro(e') d(, 
m n n 

where indices a , (3 run from 1 to 3. 

8. Example of numerical calculation 

A crystal of MgAI 20 4 (spine!) was taken for model calculations with the fol-
lowing anisotropy coefficients: 

C uu = 1, C u22 = 0.548, C u33 = 0.548, 

C 2222 = 1, C 2233 = o.s4s, C 3333 = 1 , 

c 1212 = C 3232 = c l3l3 = o.548, 
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which correspond to the cubic crystal. The crack is placed in one of ttie main 
symmetry planes, and the crack is subjected to the normal loading. 

F IG. 1. Opening of a crack of elliptical form. The semi-axes ratio 1 : 1. 

FIG. 2. Opening of a crack of elliptical form. The semi-axes ratio 2 : 1. 

1Wo examples of a circular crack and an ellipti cal crack with semiaxes ratio 
1 : 2 were calculated. The computer results showed that in case of this loading 
and crack position in the cubic crystal, only normal crack opening occurs (the 
tangential displacement jumps are equal to zero), what is also in a good agreement 
with the theoretical results. The cracks openings are represented graphically in 
Fig. l and 2. 
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