Arch. Mech., 49, 1, pp. 233-239, Warszawa 1997

BRIEF NOTES

Non-polynomial representations of orthotropic tensor
functions in the three-dimensional case:
an alternative approach

S.JEMIOLO and JJ. TELEGA (WARSZAWA)

THE OBIECTIVE of this paper is to extend some of the results obtained in [1] to the three-dimensional
case. Functional bases and generators for symmetric second-order orthotropic tensor functions are
derived.

1. Introduction

THE THEORY of representation of tensor functions has been developed for more
than thirty years [2-5]. The results obtained within the framework of this theory
yield general forms of isotropic [6—15] and anisotropic [16—22] tensor functions.
Most complete results were obtained for scalar-valued, vector-valued, symmetric
and skew-symmetric tensor-valued functions of the second order, dependent on
vectors as well as symmetric and skew-symmetric tensors of the second order.

Theoretical foundations of the formulation of anisotropic constitutive rela-
tionships were laid, among others, in the books [23 -26]. There the group theory
and the theory of representation of tensor functions were exploited. Anisotropic
materials constitute an important class of structural materials in many fields of
engineering. Hence the need for further development of the constitutive theory,
where the theory of representation of tensor functions plays an important role,
cf. [3, 27-30].

The determination of a representation of a tensor function in the so-called
canonical form reduces to finding irreducible sets of basic invariants and gener-
ators of this function. One distinguishes polynomial and non-polynomial repre-
sentations of tensor functions [3, 23]. To find the polynomial representation of a
tensor function it is sufficient to determine the relevant integrity basis. Once this
basis is established, generators are obtained by a simple process of integration
[23]. An integrity basis is said to be irreducible if none of its elements can be
expressed as a polynomial in the remaining elements, cf. [23]. A set of invari-
ants is said to constitute a functional basis, for given arguments and a symmetry
group of the considered function, if any other invariant of the same arguments
can be expressed as a scalar function of these invariants. A non-polynomial rep-
resentation is irreducible if none of the generators can be expressed as a linear
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combination of the remaining generators, with the coefficients being arbirary
functions of the functional basis. WANG [6-8], SmiTH [9, 10] and BOEHLER [11]
proved that in the general case a non-polynomial representation, if compared
with the corresponding polynomial representation, contains less generators and
invariants.

The aim of this note is the determination of the representation of a non-poly-
nomial orthotropic scalar function as well as orthotropic, symmetric tensor-velued
function of the second order. Our approach is alternative to that used by BOEHLER
[18, 19]. Those functions depend on a finite number of symmetric, second crder
tensors. Thus we extend to the three-dimensional case the results presented in
our earlier paper [1].

2. Formulation of the problem

Our aim is to determine the non-polynomial representations of the following
functions

s = f(A,;H), FiT, % e X Ty = R,
_\/_J
(] ) (P+1)—times
S = F(A,; H). BT, % Ty~ T,,
(A S

(P+1)—times

where A, are symmetric second order tensors, A, € 1%, T, = {A € T:A = AT},
p=1,....pand T = E ¢ E; A" stands for the transpose of a tensor A. Here F
is the three-dimensional Euclidean space and H is a symmetric, positive-deinite
tensor of the second order. The tensor H plays the role of a parametric teasor,
i.e. H = const. The function [ is a scalar-valued function while F is a symmetric,
second order tensor function. Suppose that (1) are to be constitutive relationships.
Then A, are causes, H models the structure of a material while s and § are
responses or effects. Within the framework of the classical continuum mechznics,
such relationships should be invariant with respect to the group of automorphisms
of the space /7, cf. [25]. In other words, they have to satisfy the so-called principle
of isotropy of the physical space. Consequently, the functions appearing in (1)
fulfil the following conditions:

o vQ € O: f(A,:H) = f(QA,Q";QHQT),
QF(A,;H)Q" = F(QA,Q";QHQ"),

where () denotes the full orthogonal group, that is

3) 0= {QE 7 QQ' =Q'Q= 1}.

Here I stands for the identity tensor.
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According to our assumption, the tensor H has three distinct eigenvalues, say
H; (@ = 1,2,3). Thus we may write

(4) H= e @e + Hyep ey + Hiyes ey, Hy # Hy # Hy # H,,

where e; are unit eigenvectors of the tensor H. We observe that the group of
external symmetries of the tensor H, given by

(5) S = {Qe 0O: QHQ":H},

is the orthotropy group. Moreover, the eigenvectors of H determine the so-called
principal axes of orthotropy of a material. This statement becomes obvious if we
compare (4) and (5) with the corresponding definitions given in the papers [3,
18-20, 25].

Let

(6) M, =e e (no summation on : = 1,2, 3),

then we recover, by taking account of (4) and (6) in (1), provided that (2) is
satisfied, the problem considered in the papers [18, 19].
From (2) and (5) it follows that

¥Qe S [AH) = f(QA,Q":H),
QF(A,; H)Q" = F(QA,Q";H).

In other words, the functions f(...; H), F(...; H) are orthotropic functions of the
tensors A,

(7)

3. Determination of the orthotropic functional basis

Since the tensor H has three distinct eigenvalues, therefore in order to deter-
mine the functional basis for the scalar function (1); we may exploit the results
obtained by Smrta [10]. To this end it is sufficient to consider the case (Z2ii) stud-
ied by Smrtn [10, pp.905-907]. The functional basis derived in this manner is
presented in Table 1.

It can easily be proved that the representation of the scalar function (1)
depicted in Table 1 is equivalent to the results obtained by BOEHLER in [18, 19].
Boehler’s orthotropic functional basis is presented in Table 2.

Both functional bases are equivalent because:

trA, = trMjA, + trMA, + trM;zA,

trA2 = trMjAZ + trMpA] + trMAZ
(8)  wH'A) = H{uMA) + HtrMyA) + H5trM;A)
trA A, = trMjA A, + trMA A, + trM3A A,

trtHA A, = H{trMiA A, + H{trMyA A, + HittM3A A, , a,b=1,2,
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where tr stands for the trace of a tensor; for instance trAB = tr(A B), where
AB = II’(ZJ)A ® B.

Table 1. Functional basis for the scalar function (1);.

Arguments Basic invariants
A, trA,, trA’ trA), trHA,, trH?A,, trHAZ, trH?A?

A trAA,, trAZA,, trA A2, trHA,A,, trH?A A,
Ay, Ay, A trAAAy, pgr=1,.P;, p<q<r

Table 2. Orthotropic functional basis after BorHLER [19].

Arguments Basic invariants

A, trMyA,,, trM AL, trA), trMLA,, trMaAL trMaA,, trMA2
Ay, A, trMiA A, trAZA,, trA, AL, trMaA A, trM3ALA,

Ay Ay A trA,AGA,, pgr=1,..P; p<q<r

4. Determination of generators of an orthotropic tensor-valued function
of the second order

In order to derive the representation of the function (1); under the condition
(2)2, we shall apply the method similar to that used in the papers [1, 13, 14, 31,
32]. This method is based on the idea primarily proposed in the paper by the
second author [30]. First, we construct a scalar function, say ¢, defined by

(9) g =trFC,

linear with respect to the second argument or C. Here C is a symmetric second
order tensor while F is the function (1),. The function ¢ has the following form:

S

(10) 9(A, CH) = §(1,, 1) = 3 61 s,

s=1
where /; are invariants listed in Table 1 whereas .J, are invariants linear in C, see

Table 3 below.
The canonical form of the tensor-valued function (1), is found from

B,

1(dg g\ _dg & Sy
SO (uc * (')C"') " Jc ;OS(I‘) ac ;QSU‘)(’S'

The results of calculations are summarised in Table 4, where the generators G,
are listed.
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Table 3. Invariants linear in C.

Arguments Invariants J.

C trC, rHC, trH*C

C, A, trA, C, trAZC, trHA,C, trH?A,C
C, Ay A trA,A,C, pgr=1,...P; p<yq

Table 4. Generators of the function (1);.

Arguments Generators

I, H, H?
A, Ay, A2, HA, + A H, H’A, + A, H
Ay, Ay AyA, +AA, pg=1,..P;, p<yg

The generators obtained in this way are equivalent to those derived by
BoeHLER [19] and listed in Table 5. To corroborate this statement, it is sufficient
to exploit the following identities:

I =M +M;+Ms,
H" HiM, + H5My + H{M3 , a=1,2,
(12) 2A, = MiA, + MiA, + MpA, + MpA, + M3A, + M3A,,,
H°A, + H°A, Hi(MA, + MjA,) + H5(MA,
+MA,) + H:';L(M_gAp + M3A,).

Table 5. Boehler’s [5] generators of the orthotropic tensor function.

Arguments Generators
My, M;, M3
A, MiA, + MjA,, MA, + MaA,, M3A, + MaA,, A2
Ay Ay AA, +AA, pg=1.P, p<y
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