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BRIEF NOTES 

Non-polynomial representations of orthotropic tensor 
functions in the three-dimensional case: 
an alternative approach 

S. JEMIOLO and J.J. TELEGA (WARSZAWA) 

THE OIJJECn vE of this paper is to extend some of the results obtained in(!] to the three-dimensional 
case. Functional bases and generators for symmetric second-order orthotropic tensor functions are 
derived. 

1. Introduction 

THE T HEORY of representation of tensor functions has been developed for more 
than thirty years [2- 5). The results obtained within the framework of this theory 
yield general forms of isotropic [6 - 15) and anisotropic [16- 22) tensor functions. 
Most complete results were obtained for scalar-valued, vector-valued, symmetric 
and skew-symmetri c tensor-valued functions of the second order, dependent on 
vectors as well as symmetric and skew-symmetric tensors of the second order. 

Theoretical foundations of the formulation of anisotropic constitutive rela-
tionships were laid, among others, in the books [23-26). There the group theory 
and the theory of representation of tensor functions were exploited. Anisotropic 
materials consti tute an important class of structural materi als in many fields of 
engineering. Hence the need for further development of the consti tutive theory, 
where the theory of representation of tensor functions plays an important role, 
cf. [3, 27- 30). 

The determination of a representation of a tensor function in the so-call ed 
canonical form reduces to finding irreducible sets of basic invariants and gener-
ators of this function. One distinguishes polynomial and non-polynomial repre-
sentations of tensor functions [3, 23). To find the polynomial representation of a 
tensor function it is sufficient to determine the relevant integrity basis. Once this 
basis is established, generators are obtained by a simple process of in tegration 
[23). An integrity basis is said to be irreducible if none of its elements can be 
expressed as a polynomial in the remaining elements, cf. [23). A set of invari-
ants is said to constitute a functional basis, for given arguments and a symmetry 
group of the considered functi on, if any other invariant of the same arguments 
can be expressed as a scalar function of these invariants. A non-polynomial rep-
resentation is irreducible if none of the generators can be expressed as a lin ear 
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combination of the remaining generators, with the coefficients being arbi:rary 
functions of the functional basis. WANG [6 -8), SMITH [9, 10) and BOEHLER [11] 
proved that in the general case a non-polynomial representation, if compared 
with the corresponding polynomial representation, contains less generators and 
invariants. 

The aim of this note is the determination of the representation of a non-poly-
nomial orthotropic scalar function as well as orthotropic, symmetric tensor-valued 
function of the second order. Our approach is alternative to that used by B OEH.LER 

[1 8, 19). Those functions depend on a finite number of symmetric, second crder 
tensors. Thus we extend to the three-dimensional case the results presented in 
our earli er paper [1) . 

2. Formulation of the problem 

Our aim is to determine the non-polynomial representations of the foll owing 
functions 

(J) 

f: Ts X . . . X Ts - R. 
ﾷ ｾ＠

(P+l) - times 

F: Ts X ... X Ts - Ts , 
ｾ＠

(P+l)- times 

where A" are symmetric second order tensors, Ap E Ｑ ｾ Ｌ＠ Ｑ ｾ＠ = {A E T : A= AT}, 
p = 1, .... p and 'r = E n £ ; AT stands for the transpose of a tensor A. Here E 
is the three-dimensional Euclidean space and H is a symmetric, positi ve-de:inite 
tensor of the second order. The tensor H plays the role of a parametric t nsor, 
i.e. H = const. The function I is a scalar-valued function while F is a symmetric, 
second order tensor function. Suppose that (1) are to be constitutive relationships. 
Then Ap are causes, H model the structure of a material while s and are 
responses or effects. Wi thin the framework of the classical continuum mechmics, 
such relationships should be invari ant with respect to the group of automorphisms 
of the space E, cf. [25). In other words, they have to satisfy the so-called principle 
of isotropy of the physical space. Consequently, the functions appearing i:1 (1) 
fulfil the follow ing conditions: 

f (Ap; H) = f Ｈ ｑａ ｐ ｑ Ｚｲ［ ｑｈｑ ＧｾＧＩ Ｌ＠

Q F(A11 ; H)QT = F ( Q A"QT; Q H Q7') , 

where 0 denotes the full orthogonal group, that is 

VQ E 0: 
(2) 

(3) 

Here I stands for the identity tensor. 
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According to our assumption, the tensor H has three distinct eigenvalues, say 
lJ ; (i = 1, 2. 3). Thus we may write 

(4) 

where e; are unit eigenvectors of the tensor H . We observe that the group of 
external symmetries of the tensor H, given by 

(5) 

is the orthotropy group. Moreover, the eigenvectors of H determine the so-called 
principal axes of orthotropy of a material. This statement becomes obvious if we 
compare ( 4) and (5) with the corresponding definitions given in the papers [3, 
18-20, 25]. 

Let 

(6) (no summation on i = 1, 2, 3), 

then we recover, by taking account o f (4) and (6) in (1), provided that (2) ts 
satisfi ed, the problem considered in the papers [18, 19]. 

From (2) and (5) it fo ll ows that 

.f(A71; H) = f (QAPQT; H) , \:IQ E S': 
(7) 

Q F(A 71; H)QT = F ( Q ApQT; H). 

Tn other words, the functions f( ... ; H), F( ... ; H) are orthotropic functions of the 
tensors Ap. 

3. Determination of the orthotropic functional basis 

Since the tensor H has three d istinct eigenvalues, therefore in order to deter-
mine the fu nctional basis fo r the scalar function (1)1 we may explo it the results 
obtained by SMITH [10]. To this end it is suffi cient to consider the case (2ii ) stud-
ied by SMITH [1 0, pp. 905- 907]. The functional basis derived in this manner is 
presented in Table 1. 

Tt can easil y be proved that the representation of the scalar function (1 ) 1 

depicted in Table 1 is equivalent to the results obtained by BOEHLER in [1 8, 19]. 
Boehler's o rthotropic functio nal basis is presented in Table 2. 

Both functional bases are equivalent because: 

trAp = trM 1A71 + trMzAp + trM3A71 , 

ｴｲａ ｾ＠ = ｴｲｍ Ｑ ａ ｾ＠ + trMzA; + trM3A;, 

(8) ｴ ｲｈ Ｂ ａ ｾ＠ = Ｑｉ ｦ ｴｲｍ Ｑ ａ ｾ＠ + ｈ ｦ ｴｲｍ ｺ ａ ｾ＠ + ｈ ＳＧ ｴｲｍ Ｓ ａ ｾＬ＠

tr ApAc1 = tr M 1 ApAq + tr M2ApAq + tr M3ApAq , 
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where tr stands for the trace of a tensor; for instance trA B = tr(A B), where 
AB= tr (2,3)A 0 B. 

Table J. Functional basis for the scalar function (1)1• 

Arguments Basic invariants 

Ap trAp, tr Ai,, tr ａ ｾＬ＠ tr HAp, tr H2 Ap, tr HAi,, tr H2 Ai, 
Ap, Aq tr ApAq, tr ａ ｾ ａｱＬ＠ tr ａ ｰ ａ ｾＬ＠ tr HApAq, tr H2 ApAq 

Ap, Aq, Ar trApAqAr, p, q, r = 1, .. . P; p < q < r 

Table 2. Ortbotropic functional basis after BoEHLER [19]. 

Arguments l3asic invariants 

Ap tr M, Ap, trM,Ai,, ｴｲａ ｾ Ｌ＠ trMzAp, trMzAi,, tr M3Ap, ｴｲｍ Ｓ ａ ｾ＠

Ap, Aq trM 1ApAq, trAi,Aq, trApA! , trM 2ApAq, tr M3ApAq 

Ap. Aq , Ar trApAqAr, p, q, r = l , ... P; ]J < q < T 

4. Determination of generators of an orthotropic tensor-valued function 
of the second order 

In order to derive the representation of the function (1 )2 under the conditi on 
(2)2, we shall apply the method simil ar to that used in the papers [1 , 13, 14, 31, 
32]. This method is based on the idea primarily proposed in the paper by the 
second author [30]. First, we construct a scalar function, say g, defined by 

(9) g =trFC, 

lin ear with respect to the second argument or C. Here C is a symmetric second 
order tensor whil e F is the function (1)2. The function g has the foll owing form: 

s 
(1 0) g(Ap, C; H)= g(Jt, Js) = 2:::: r/; (I t)ls, 

s=l 

where 11 are invariants li sted in Table 1 whereas } 5 are invariants li near in C, see 
Table 3 below. 

The canonical fo rm of the tensor-valued function (1)2 i found from 

(11) 
1 

( 
ｾ Ｉ＠ ;::} ) ｾＩ＠ $ ::l J s ug ug ug · u. s ｾ＠

F(Ap. H) = 2 a C + a CT = 8C = 2:::: rPsCTt) a C = 2:::: IPsUt)Gs . 
s = l s=l 

The results of calculations are summarised in Table 4, where the generators Gs 
are listed. 
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Table 3. lnvariants linear in C. 

Arguments T nvariants J. 

c trC, tr H C, tr H2C 

C, Ap tr ApC, tr ａ ｾ＠ C. tr HApC, tr H2 ApC 

C, Ap. Aq trApAqC, p, q, r = l , ... P ; p < q 

Table 4. Generators of the function (1)2 . 

Arguments Generators 

I, H, H2 

Ap Ap, ａ ｾＬ＠ H Ap + ApH, H2Ap + ApH2 

Ap, Aq ApAq + AqAp, p,q = l , ... P ; p < q 

The generators obtained in this way are equivalent to those derived by 
BOEHLER [19] and li sted in Table 5. To corroborate this statement, it is suffi cient 
to exploit the foll owing identit ies: 

I = M I + M2 + M3 ' 
Ha = I1f M 1 + H2".M2 + H) M3 , a = 1, 2, 

(12) 2Ap = M1Ap + M1Ap + M2Ap + M2Ap + M3Ap + M3Ap, 

Ha Ap + f-JOAP = // I(M ,Ap +M tAp)+ 112_(M2Ap 

+M2Ap) + H3(M3Ap + M3Ap)· 

Table S. Boehler's [SJ generators of the orthotropic tensor function. 

Arguments Generators 

ｍ ｾＬ＠ M2, M3 

AI, MIA]> + MIAp, M2Ap + M2Ap, M3Ap + M3Ap. ｾ＠

Ap. Aq ApAq + AqAp, 71, q = l , ... P; p<q 
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