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An integrity basis for plane elasticity tensors

M. VIANELLO (MILANO)

AN 1s0TROPIC functional basis of 5 polynomials is shown to be also an integrity basis for the space
of plane elasticity tensors. A decomposition of each element in this space into a direct sum of
“harmonic” tensors is used to compute or estimate the distance between an arbitrary elasticity
tensor and the three non-trivial symmetry classes, to allow for the determination of the material
symmetry when the elastic coefficients are known only to within a given approximation.

1. Introduction

Ler Ela BE THE spacE of two-dimensional elasticity tensors, which describe the
constitutive equations for plane linarly elastic bodies, and let (J(2) be the group of
orthogonal transformations on the two-dimensional Euclidean space. A function
¢ defined on Ela is isotropic, or, equivalently, an O(2)-invariant, if ¢(C) =
(Q + C) for all C € Ela and Q € O(2), where, as we shall see more precisely
later on, the asterisk denotes an action of O(2) on Ela. A finite collection B of
such invariants is a functional basis if each other invariant is a function of the
elements of B. If these elements are polynomials, and all isotropic polynomials
are also expressible as polynomial functions of them, this collection is an integrity
basis (or Hilbert basis) for the action of O(2). A similar set of definitions covers
the case in which the action of the group of proper rotations S((2) is considered,
and the corresponding invariants are said to be hemitropic.

It is a classical result that every integrity basis is also a functional basis. The
proof, which is far from trivial, is based on a lemma which shows that “polynomials
separate the orbits”. More explicitly, this statement means that whenever two
elements do not lie on the same orbit, there is at least one invariant polynomial
which takes different values on them. For a modern proof of this important result
we refer to the paper by WINEMAN and PipkiN [17, Sec. 6]. On the other hand, it
is not difficult to provide counterexamples showing that, in general, a functional
basis is not an integrity basis.

In Sec.4 we construct a functional basis of 5 polynomials /,, for the isotropic
invariants on [Ela. Similar results were recently obtained by ZHENG [18] and by
BLiNOWSKI, OSTROWSKA-MACIEJEWSKA and RycHLEwWsKI [3]. Indeed, the technique
used in the present paper is very similar to the discussion contained there, and
the basis found is essentially equivalent. However, in addition, here it is shown
that the set {/,} is also an integrity basis for the action of (O(2) on Ela, which is
the main goal of this paper.

For the sake of clarity and self-completeness we choose to offer a detailed
presentation of some mathematical preliminaries, even if this can be seen as an
alternative derivation of similar results contained in [3].
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The key mathematical step is the decomposition of an elasticity tensor into
a quadruplet formed by: two scalars A and s, a second-order tensor H and a
fourth-order tensor K, both symmetric and traceless. A description of this tech-
nique, when applied for other goals to the three-dimensional case, is contained
in some papers by Backus [1], BAERHEIM [2], CowiN [6], FORTE and VIANELLO [8]
and, moreover, in a classical treatise by SCHOUTEN [15]. However, except for ref-
erence [3], we are not aware of any other presentation of a similar decomposition
for plane elasticity.

The insight coming from this approach is used to represent the action of O(2)
on Ela through a pair of orthogonal transformations on the two-dimensional
spaces to which H and KK belong. This point of view allows for a natural construc-
tion of a functional basis, thus providing a confirmation, with a slightly different
approach, of a similar conclusion reached in [3]. Moreover, the proof that the set
{/,} is an integrity basis is strongly dependent on the isomorphism between the
action of (J(2) on Ela and the action of the same group on products of complex
planes, which can be easily deduced only in view of the previous considerations.

Constitutive equations for two-dimensional linearly elastic bodies are divided
into four symmetry classes by a relation stating that two elasticity tensors are
equivalent when their symmetry groups are conjugate in (J(2). Once a functional
basis has been established, it is not difficult, through its geometric interpretation,
to obtain a complete characterization of the symmetry classes as zero-sets of ap-
propriate collections of invariant polynomials. As noticed in [3], this is a useful
result in itself, since it allows for an easy determination of the symmetry class of
an elasticity tensor. Moreover, it shows clearly that the collection of tensors with
non-minimal symmetry group is a set of measure zero.

An interesting problem originates from the experimental errors contained in
the numerical data describing elasticity tensors, as it was recently noted also by
Frangots, BErTHAUD and GEYMONAT [S]. In view of the above considerations,
the question of symmetry class has, with “probability one”, the same answer:
The material has no special symmetry. What is really important is a comparison
between the precision of our experimental apparatus and the distance between
C and the closest tensor of a given symmetry. If this distance is smaller than
a certain value, we may reasonably say that, within the approximation allowed,
the material described by C does belong to that symmetry class. In view of our
geometric approach, we propose some formulas, ready for applications, which
allow for a quick evaluation of the relevant distances. We believe some of the
results 1o be new.

2. Symmetry groups and symmetry classes

We use small (resp., capital) boldface letters for vectors (resp., second-order

tensors) of V, the translation space of a two-dimensional Euclidean space &.
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Scalars are denoted by Greek letters and fourth-order tensors are written with a
blackboard bold font, such as C. A superscript 7" is used for the transpose and the
space of symmetric tensors is called Sym. We use subscripts for the components
of vectors or tensors with respect to a fixed orthonormal basis e; (2 = 1, 2). Thus,
for instance, v = v;¢; and T = 1} e; - e;, where the sum over repeated indexes is
understood and the symbol ¢ stands for the tensor product. The subspace of Sym
formed by all traceless tensors (such that A;; = 0) is Dev, while the space of all
fourth-order tensors H which are symmetric and traceless is Dev. More precisely,
H € Dev if H,,;; is unchanged by any permutation of the indexes and, moreover,
H i = 0. The group of orthogonal transformations of V is O(2), where the unit
element is denoted by I, and the subgroup of rotations, formed by all Q € 0O(2)
with determinant equal to one, is SO(2). We write Q(#) for the rotation such
that

(2.1) Qe = cosfle; + sinlle; . Qe; = —sinfle; + cosle; ,

and we denote by Q the reflection with respect to the e; direction: Qel = e,
Qe; = —e,. Obviously, O(2) is generated by SO(2) and Q.

For an extensive introduction to linear elasticity we refer to classical conven-
tions (see, e.g., GURTIN [10]). Here, we simply recall that an elasticity tensor C
is a symmetric linear map of Sym, which gives the stress tensor T as a function
of the infinitesimal strain E: T = C[E]. Thus, the components of C satisfy the
following index symmetries:

Cijrt = Cjire = Cijie = Chaij -

The symmetry group ¢(C) is the collection of all orthogonal transformations
Q such that
CIQEQ'] = QCI[EIQ’, VE € Sym.
It is convenient to define an action of ()(2) on [Ela, the 6-dimensional space of
(plane) elasticity tensors. For each Q € O(2) and each C € Ela, let Q + C be
defined by

(Q % Clogrp = @5l i@k QaiCisit .
Thus, the symmetry group is

9(C):={Qe 0()|Q+C=C}.

A straightforward consequence of this definition is that ¢(Q + C) = Qq(T)Q".
Moreover, by continuity, ¢(C) is closed. Hence, as a consequence of classical
results (see, e.g., the book by GoLuBITSKY, STEWART and SCHAEFFER [9, Ch. XITII,
Th.6.1]), we know that ¢(C) is conjugate to exactly one of the elements in the
following collection:

Y=L Z. D, S0Q2),02)) (0 >2),
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where 7, and D), denote, respectively, the cyclic and dihedral groups of order n
(for an extensive coverage of this topic see also MILLER'S book [11]).

The space Ela is divided into symmetry classes by a relation defining C; and
C, as equivalent when ¢(C,) is conjugate to ¢(C;) in O(2). Let Ela((¥) be the
collection of all elasticity tensors such that their symmetry groups are conjugate
to (+ € Y. Then, C; and C, have conjugate symmetry groups if and only if they
belong to the same Ela((+), and the problem of finding the number and type of
symmetry classes is equivalent to the problem of determining which Ela((7) are
empty and which are not. The answer is known (see, e.g., RycHLEWsKI [14, Sec. 8]),
even if some contradictory statements can still be found in the literature (cf., e.g.,
ZHENG [19, Sec.3.3], where the Author seems to suggest otherwise). However,
the discussion of Sec. 3 has the following statement as a direct consequence: There
are exactly four non-empty sets Ela((?), for G = Z, Dy, Dy, O(2).

We use the following terminology to classify the symmetries, depending on
which element of X the group ¢(C) is conjugate to: anisotropic for Z,, orthotropic
for D, tetragonal for D4 and isotropic for O(2). Notice that only Ela(O(2)) is a
linear subspace of Ela.

As mentioned before, it is almost impossible that an elasticity tensor obtained
from experimental data might have any special symmetry at all. As we recall in
Sec. 5, the set of tensors with symmetry 1)y, D4 or O(2) has the structure of an
algebraic manifold of measure zero, formed by the null-set of a finite number of
polynomials. Thus, anisotropic elasticity tensors are dense in [Ela. From this point
of view, the question of interest becomes a different one: We would like to know
how close a given C is to classes of non-minimal symmetry.

The final section contains a computation of the distance between C and
Ela(()), for ¢ = D4, D4 or O(2), which is defined to be the infimum of the
distance between C and C~, as the latter varies over Ela((+) (an obvious Eu-
clidean norm and a corresponding distance are defined in the space of elasticity
tensors).

3. A decomposition for the space of elasticity tensors

A finite-dimensional vector space is decomposed into a direct sum of subspaces
which are irreducible under the action of a compact group (see, e.g.. [9] or [11]).
In our particular context it is possible to show that the decomposition of Ela is
described by an SO(2)-invariant isomorphism which maps C into a quadruplet
(A, ;1. H,K), where A and y are scalars, while H and K belong to Dev and Dev,
respectively. More explicitly, for a given C € Ela:

A= (3("]),)[,,1 = 2(7'1”1/"/)/& p= (20 papg (7'z>mr1)/8-

Hy. = [2C 'a'/»k.v - ('[,,”,,1(5,';\.]/12.
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Rigkr = Gigrt = [0 Crply 601G ingp + OiCotpgn + 015 Gintn + 081G 1ty + 05 Ciipitn ]/ 6
+ [( 'pq];r,(Séa'j(Sk[ - 61'}:6” - 6516_)&)]/]2 - [C'ppqq(3((’fj6kl = 6:31:6!) = 6il6jk)]/8a

(0,; is Kronecker’s delta). Vice versa, the elasticity tensor C corresponding to
(A, e, H, K) is:

(’U“ = ]\',‘j;‘-[ + 65]'Hk1 ¢ Hij(sk[ < 5,jkf[1j + Hgkégj o 5i1ffjk . I f;{ué]‘k
+ A8ij0r + p(8irbij + 6udjx).

The validity of this decomposition can be directly checked through substitu-
tions followed by lengthy computations. Moreover, it is not difficult to see that
this is a variation, and an indirect confirmation, of a quite similar result presented
by Brinowsk1 et al. [3]. However, it is perhaps useful to spend a few words on a
short description of the rationale behind our derivation, for which we followed
the scheme adopted by BAERHEIM [2] in three dimensions. The first step con-
sists in writing (';;;; as the sum of a completely symmetric part S;;;; and an
“asymmetric” part A,

Siiet 2= {Ciu + Cipty + Citze)/3, Aijir i= @Cijui — Cikij = Cajr)/3.

This corresponds to a decomposition of Ela into a direct sum of two orthogonal
subspaces. Since the dimension of Ela is 6 and the space of completely symmetric
fourth-order tensors has dimension 3, it follows that A;;;, is a scalar multiple of
a fixed asymmetric tensor, say:

Aijr = (2601 — 6ir0ij — 6ubjk).

Next, we use the fact that for each S;;;; there is a unique pair of tensors A € Sym
and K € Dev such that

Siikt = Kijer + 63 Aryy,

where the parenthesis denotes full symmetrization with respect to the enclosed
set of indexes or, more precisely,

f)(!'.[' .’-‘{H) = (‘)1’\‘,/‘11'-1 + .-*"\,’J,‘(S;,-g + 5,’;‘./1[_,‘ + Aiké!j + 6,‘[14jk + Ai[(sjk .

This property is a reformulation of a well-known result on polynomials, which
naturally correspond to symmetric tensors, as discussed in [9, Ch. XIII, Sec.7,
Prop. 7.1].

Finally, we use the decomposition of each element of Sym into the sum of a
“spherical” part (i.e., a multiple of I) and an element H of Deyv, so that we may
write

,"L‘_/' = ]1,", + 13(()1//2



202 M. VIANELLO

Trivial substitutions followed by an appropriate change of names yield the de-
composition, which, with obvious meaning, is written as

(3.1) C = (A, 1, H, K).
An action of ()(2) on Dev is defined by
Q+A:=QAQ7, VYQeO(2), VAcDev.
It is a matter of simple computations to check that
Q+xC=(\p,Q+H,Q+xK), VQe€ 0OQ),

and, consequently, ¢(C) = g(H)N ¢(K), where g(H) is defined in the natural
way. It is now clear why the action of O(2) on Dev and Dev is of great interest,
and the importance of the geometric description of this action which is obtained
in the final part of this section.

It is convenient to define an appropriate orthonormal basis in each of these
spaces. For Dev we use:

2 2
E, = —Z—(el © e — ey e), E, = %_(el @ ey +e@ep).

The basis for Dev is more complex:

V8 o ey , .
Ey:= ?(el e Rt ®e—e e Reaer—e@e@e Xe;
—ep e e e —eRe NepHe —e Dey ey e —e e e e,
V8 , , S
Ey:= —(eyne ey Dey+e e Dey e +e e e e +epRe e @e

8
—epelepne —eele@e—eRe Hepde —e e e ey).

In view of (2.1), through direct substitution it is not difficult to show that
Q") + E; = cos(20)E, + sin(20)E, . Q) + E; = —sin(20)E, + cos(20)E; .
while more lengthy computations are needed to prove that
Q) « Ey = cos(40)E; + sin(40)E, . Q(7) x E; = —sin(40)E; + cos(40)E, .
Moreover, since Qel = ¢ and Qez = —gy,

Q+E, =E,. Q+E; = -E,, Q+E, =E,, Q+E, = -E,.

In conclusion, each Q(#) acts on Dev as a rotation of 20 and on Dev as a
rotation of 40, while Q is simply a reflection with respect to the “horizontal”
axes spanned by E; and E,. The geometric insight provided by this point of view
makes easy a proof of the fact that there are only symmetry classes corresponding
to groups 7y, s, Dy, and O(2).

http://rcin.org.pl
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4. An integrity basis

The Euclidean structure of Dev and Dev is obtained by introducing the inner
products A-B = A, B;; and H-K = H, ;1 ;;1;. We use the symbol | +| to denote
the norm in both spaces. For a given C = (A, i, H, K), let a be the angle between
H and E, and let /J be the angle between K and E,. Furthermore, we need the
following definitions:

Iy := [H|cosa = H-Eq, H, := |H|sina = H-E; ,

4.1 ‘
-1 |IK|cos3 = K-E,, Ky = |K|sing = K-E,.

[\1f

The geometric view of the action of O(2) on Dev and Dev makes the choice
of four independent polynomial invariants quite obvious:

=) |L=g Li=H> L:=|K>

Thus, we only need to find a fifth invariant, and, to this end, we consider the
angle v := 2a — /3. Since the action of Q(f) maps a onto a + 26 and /3 onto
7+ 440, it follows that ~ is left fixed. However, it is also straightforward to see
that, under Q, 7 is mapped onto —~. Thus, the conclusion is that this angle is an
SO(2)-invariant, but not an ((2)-invariant. A natural choice for the fifth isotropic

invariant 7 is the cosine of ~:
1 = cosvy = cos(2a — F).
This function is not a polynomial and thus we expand it as
7 = (cos® o — sin® o) cos /3 + 2sin & cos a sin 3
and use definitions (4.1) to obtain the fifth polynomial isotropic invariant:
Is:= HP|K|Z = (H} - H})K, + 2H,H, K, .

The steps followed for the construction of the collection {/,} show that a
necessary and sufficient condition for C; and C, to be on the same orbit is that
[.(Cy) = 1(Cy) (1 < n < 5). It is a well-known result that this condition is
necessary and sufficient for {/,} to be a functional basis (see, e.g., WEYL [16],
WiNEMAN and Pipkin [17, Sec. 4, p.190]).

As an additional remark, we notice that if the SO(2)-invariant polynomial

I := |H*|K|siny = 2H, Ho Ky — (H? - H}) K,

is added to the previous list, we obtain a functional basis for S(O(2)-invariant
functions on [Ela. However, in this case, there is a relation (or syzygy) among the
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elements of the collection {/,,} (1 < m < 6): IZ + [? = [}1,. This is obviously
due to the trigonometric identity between sin~y and cos~.

Our aim is now to prove that the collection of invariants {/,} is indeed an
integrity basis, and not only a functional basis.

TeOREM 1. For each O(2)-invariant real-valued polynomial p on Ela, there is a
polynomial w in 5 variables such that

p(C) = 7(1,(C). I(C). I3(C). 14(C), I5(C)), vC¢ Ela.

A convenient technique of proof is based on the idea of looking at the action
of O(2) on Dev and [Dev as an action on the complex plane C, and then to apply
straightforward considerations from the complex number theory. This method
was applied by PIErRCE [12] to a similar problem.

More ‘precisely, the product between Dev and Dev is seen as C2. Then, the
action of a rotation Q(/) € SO(2) on this space is defined through the unit
complex number exp(:f)) as

Q * (21, 22) := (exp(i20)z1, exp(i40)z3), ¥ (z1,22) € C%.

Moreover, the action of () (reflection with respect to the “horizontal” axes) cor-
responds to complex conjugation: Q * (z1, z2) := (Z1. Z2). According to this point
of view, we rewrite three of the invariants as

B ) — .22
(4.2) =2’ Ii=|z  Is=R(50)

In view of the decomposition of Ela described in Sec.3, we now choose to
look at polynomial functions of elasticity tensors as being defined on R? x (2,
Moreover, we notice that each polynomial in the real variables = and y can be

written as a polynomial in the complex variables > and Z, where z = x + 1y. For
this reason, we have

: . T l,,m_r=s_t=
(43) /)((C) - L Clmistu /\\ /[ i l.,i "'f"’z“'é( 5
where the index range depends on the degree of p. However, since we are only
interested in real-valued polynomials, the restriction ¢j,.500 = Cpsrwt Mmust be

satisfied. Moreover, invariance under the action of Q is guaranteed by ¢, 50 =
Clmsrut, Which combined with the previous condition, implies that all the coeffi-
cients are real.

The action of Q(f) € SO(2) yields

PQ+C) =" Clmpsr N 1™ 2] 2] 2535 expli(2r — 2s + 4t — 4u)]

and, from p(C) = p(Q * C), we deduce that invariance under the action SO(2)
is guaranteed when the non-zero coefficients in (4.3) satisfy a relation which
simplifies to

r—s=2(u-t).
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Thus, by inspection, we deduce that there are three types of non-zero terms in
the sum defining p: (a) Those for which » = s and u = ¢; (b) Those for which
7:=u—1tand r — s = 27 are positive integers; (c) Those for which 7 := 1 — u
and s — r = 27 are positive integers.

Case (a) is simple, because we rewrite each such addendum as

ml:’,l[Zr- IZuﬂ

ClmrrunN ™ (2121) (2222)" = Clmprun Al gt |22 (no sum),

and, in view of (4.2), this is a monomial in the invariants /5 and /4. The symmetries
of the coefficients ¢;,,,, 5, imply that the sum of the terms corresponding to cases
(b) and (c) can be written as

53t ¥ 83T 1 St ,~ ) q
Z(h)ustu'\ /Im[~i~]s~ -vi ~is~;~él~2]w r<s, t < u,

which is
ZZ ('lmis'{u/\ ltm%[vi 212 u]. T <& Sy l < .

Since r = s + 27 and ©v = { + 7, we conclude that this sum is
22('[,,,l,,_g,u,\l/ﬂ”'l.:1|25[:2]2‘?R[(31252)r], P<s, 1<€U.

Finally, in view of the binomial formula, the real part of z7 is always a polynomial
in the variables = := Rz and y? := (32)? = |z|? — 2% Thus, we deduce that
R[(=%7,)7] is a polynomial in /3, /4 and Is, and this concludes the proof that
the collection {/,} is an integrity basis. As a final remark, we wish to draw the
reader’s attention to the fact that, with a similar technique, it is possible to prove
that this collection, plus the sixth invariant /g, is also an integrity basis for the
action of the group SO(2) on Ela.

5. Symmetry classes and invariants

A complete characterization of each one of the three non-trivial symmetry
classes mentioned in Theorem 1 as the intersection of the zero-sets of isotropic
polynomials is directly deducible from the geometric interpretation of the invari-
ants introduced. This was also shown in [3], but, for the reader’s convenience,
we repeat here a formulation of this result, which can be easily proved using the
concepts previously introduced.

ProrosITion 1.

CeEla(OQ) & =1,=0, CeEla(Ds)e =0, I4#0,
I3#0, I;=0,

I #0, I4#0, IZ2-131,=0,
CeFEla(Z) e #0, I4#0, I}-T1¥,#0.

C@EMHﬂﬁ{

http://rcin.org.pl
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We are now left with the problem of determining the distance between an
elasticity tensor obtained through experimental observations of a given material
of unknown symmetry and the symmetry classes Ela(0(2)), Ela(D4) and Ela(D>).
As we shall see, only the distance with the first two classes can be computed
explicitly, while for the third one the problem is left in a more general setting.

Before completing this discussion, it is important to make clear a further
point. In principle, we are not so much interested in the distance between a
given C, which here we shall assume to be anisotropic, and the other three sym-
metry classes, but, rather, in the distance between them and the orbit of C. The
reason is clear when we think that two different elasticity tensors C; and C,
lying on the same orbit (i.e., such that there is an orthogonal Q with the prop-
erty that C;, = Q * C,) represent the same material differently rotated in space.
Thus, properly speaking, physical meaning pertains to the orbits, rather than
to the elasticity tensors themselves. This observation, which is also discussed by
BoOeHLER, KiriLLOv and ONAT [4], shows the importance of having at our dis-
posal a functional basis of isotropic invariants, to separate the orbits and decide
when two elasticity tensors correspond to the same material body. Incidentally,
we note that a functional basis for three-dimensional elasticity is not yet known,
even if a partial answer is provided in [4], and a complete solution was recently
announced by ZHENG and BETTEN [20, Abstract] and is expected to be published
in a forthcoming paper by the same Authors.

However, we now prove that all the elasticity tensors on the same orbit have
equal distance from any given symmetry class. Direct substitution shows that the
action of O(2) on Ela is distance-preserving: d(Cy,C;) = d(Q + C;,Q + Cy), for
all Q € O(2). In other words, this action is a homomorphism of ((2) into the
group of orthogonal transformations of Ela. For convenience of notation, we let
S be any one of the four symmetry classes of elasticity tensors. Then Q+S§ = §
for all orthogonal Q. Thus,

nf d(Q + C.Q + C7)

(/(Q * (C.\q) = .]nf (/(Q * C.Cx) — ,i
C*es (®
= inf d(C,C") =: d(C, S).
C esS

C™es

The interested reader will find a more complete discussion of many aspects of
the geometry of the orbits of elasticity tensors under the action of the orthogonal
group in a paper by RyCHLEWSKI [13].

Our goal is now to compute explicitly the square of the distance between a
given tensor C = (\, u. H, K), which is assumed to be aelotropic, and each one
of the three remaining symmetry classes. We write this quantity as follows:

A(C, G) := |d(C, Ela(G))*.

Let G = (J(2). Then, for a generic isotropic C™ we may write the decomposi-
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tion (3.1) as C* = (A", *, 0, 0). Thus,
1d(C,CH> = (A= AV + (- p*)? + H? + K%

It is now obvious that minimization as C™ varies over Ela(Q(2)) requires C™ =
(A. 2. 0.0) and, consequently,

AC,0Q) = H* + |K|*> = I1 + 1.

A geometric interpretation of this result is straightforward: C* is simply the
orthogonal projection of C onto the subspace of isotropic tensors, and A(C, O(2))
is the square of the distance between the two. The problem of determining the
isotropic elasticity tensor which is the closest to a given C is classical and, for
three-dimensional elasticity, this solution is discussed in many textbooks (see, e.g.,
Feporov [7, Ch. 5, Sec. 26, pp. 174-175].

We now address the issue of determining A(C, Dy4). The decomposition of a
generic tetragonal elasticity tensor is: C™ = (A", p¢*, 0, K™). Thus,

|UC,CH?> = (A= AP+ (u— P + H? + |K - K2,
and minimization implies that C™ = (A, ;1. 0, K). In conclusion,
A(C,Dy) = |H?* = I.

The computation of A(C. 1)) is more complex. In view of Proposition 1, the
symmetry class Ela(/);) can be seen as the union of two disjoint subsets S; and
S», formed, respectively, by elasticity tensors such that /4 = 0 and such that
[4 # 0 with [2 = [$[4. Minimization of the distance between a given C and S,
yields the inequality

A(C, Dy) < 14,

which, in any case, is a useful estimate of A(C, /);). To complete our analysis we
need a better description of the set S, which is characterized by the condition
cosy = +1. Let ¢» and ¢ be the angles that the two tensor components in the
decomposition (3.1) of a generic element of S, form, respectively, with E; and
E,. Then, v» = ¢/2 + kw /2, for some integer k. The element of $; minimizing
the distance from C = (A, g, H, K) is obviously C* = (A, u, H*, K"), where H*
and K" are chosen in such a way that the sum [H— H*|?>+ |K — K"|? is an absolute
minimum. We may now use elementary geometry considerations to show that

H - H* >+ |K - K*|? = (K, sin ¢ — K, cos ¢)? + (H, sin(¢/2) — Hacos(¢/2))>.

Let A” be the minimum of this distance as ¢ varies over [0, 27). In view of the
definitions (4.1) we deduce that

A* = nl*j]irzl {IK|?sin®(¢ — B) + [H|?sin?(¢/2 — a)}.
»€l0.27)

http://rcin.org.pl
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Moreover, since this quantity is invariant under the action of O(2) on C we may
also assume that o = 0 and, as a consequence, v = — /3. Thus, in conclusion,

I o Bar o .2
A* = <i:E[111()l.gr){I4 sin“(¢ + ) + I3sin“(¢/2)},

and
A(C, D;) = min{l4, A™}.

The research supported by GNFM of CNR (Italy).
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