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Slow viscous flow about a permeable circular cylinder

SUIT KUMAR KHAN and D.PALANIAPPAN (SANDUR)

SLOW STEADY two-dimensional motion of a viscous incompressible fluid about a porous circular
cylinder is considered, using Darcy law for the flow in the porous region and Jones conditions on
the contour of the cylinder. The problem is formulated in terms of Stokes stream function and
velocity, and pressure fields of the modified flow in the presence of porous cylindrical boundary
are obtained explicitly. It is observed that the Stokes paradox exists even in this case. Several other
illustrative examples are presented to justify the usefulness of the method. It is found that the
potential (point) singularities in the presence of a cylinder produce uniform flow at large distances,
its strength being independent of porosity. However, the Stokes singularities (such as Stokeslet
etc.) produce uniform flow at infinity, and its strength depends on the porosity as well as on the
location of those singularities in the presence of the cylinder. The known results in two-dimensional
Stokes flow are deduced as special cases from our result.

1. Introduction

THERE EXISTS an extensive literature on two-dimensional creeping flow (Stokes
flow) problems, in which the inertial effects are negligible in comparison with the
viscous effects in a viscous incompressible fluid. The problem, in general, can be
reduced to finding solution of biharmonic equation that represents two-dimen-
sional slow viscous flow past a finite body. It is quite well-known that there is
no solution of the biharmonic equation for the streaming flow past a finite body,
what is widely known as Stokes paradox. However, the slow streaming flow at
large distances from a finite body may be obtained from the solution of the bi-
harmonic equation for locally generated two-dimensional flows in an unbounded
fluid. JerreRY [1] has shown that two rigid circular cylinders of equal radius, ro-
tating with equal but opposite angular velocities, produce a uniform stream at
large distances. DORREPAAL ef al. [2] have also explained such phenomenon by
considering a rotlet or a Stokeslet in front of a rigid circular cylinder which lead
to a uniform flow at infinity. SMITH [3] considered the simplest situation of a
single sink positioned in front of a circular cylinder, and concluded that there
was a uniform stream in this case also. The solution due to SmiTH [3] was also
obtained earlier by AVUDAINAYAGAM and JOTHIRAM [4] by an approach similar to
that of DORREPAAL ef al. [2].

The purpose of the present paper is to discuss the solution of biharmonic equa-
tion representing the two-dimensional Stokes flow in the presence of a porous
circular cylinder. The corresponding three-dimensional problem with spherical
and plane boundaries have been investigated by several authors in different con-
texts [S—12]. In this paper, we consider a general Stokes flow past a stationary
infinite circular porous cylinder (using Darcy model) in a viscous, incompressible
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fluid. The velocity and pressure fields in the Stokes region are obtained explic-
itly from the stream function which satisfies the biharmonic equation. The Darcy
region velocity is derived by using the fact that the Darcy pressure satisfies the
Laplace equation. The solutions of the two regions are matched at the contour
of the cylinder using the boundary conditions due to Jones [13]. It is shown that
the Stokes paradox continues to exist with these conditions at the contour of the
cylinder. Several illustrative examples are worked out to justify the usefulness of
the present method. It is noted that the point singularities located in front of the
cylinder produce a uniform stream at infinity, and its speed

1) depends on their location alone in the case of potential singularities;

2) depends on their location as well as porosity in the case of Stokes singu-
larities.

This fact may be due to the validity of the Darcy equations which are restricted
to low porosity of the region. The above observation would have to be chécked
by using Brinkman model equations which are valid for high porosity.

2. Mathematical formulation

Consider the slow steady flow (creeping flow or Stokes flow) of a viscous
incompressible fluid past an infinite circular permeable (porous) cylinder (Darcy
region) of radius a. For the flow outside the cylinder, the governing equations
are the linearised Navier - Stokes equations or simply the Stokes equations

2.1) wViq = Vp,
(2.2) Veq=0.

Here q is the velocity vector with components (¢, ¢o. 0) in the radial and trans-
verse directions (7, #) respectively, p the pressure and ;. the coefficient of viscosity
of the fluid.
The flow inside the porous infinite cylinder (0 < r < a) is governed by Darcy’s

law

/‘.

Q=--VP,
H

2.3
(23) V.Q =0,

where Q is the volume rate per unit cross-sectional area, P the Darcy pressure
and & > 0 is the permeability coefficient.
The appropriate boundary conditions on »» = « are as follows:

(i) the pressure is continuous across the boundary of the cylinder

(2.4) p(a.0) = P(a,0);
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(ii) the radial velocity is continuous at the boundary of the cylinder
(2.5) ¢-(a,0) = Q. (a,0);

(iii) Jones condition [13] for tangential velocity on the cylinder is that the
tangential stress is proportional to the difference in the tangential velocities of
the two regions, i.e

. . _ 1dq. . 0 (q o«
(2{)) //'()lp':u - l” Ii; ?)T) + ! m (7—‘)]’.=u - ﬁ [(19 - Q&]V:!l k.

where 74 is the tangential stress component and « is a parameter which com-
pletely depends on the porous medium.
3. Method of solution

It is well-known that the Stokes equations (2.1) and (2.2) in two dimensions,
when expressed in terms of stream function, reduce to

(3.1) v =0,

where
P1a 1R

.2 — — — — —
i r? + r or + r2 902
and
1oy
(3.2) TR
'()' ‘1
(3.3) qs = %

(., qg are the components of velocity along » and ¢ directions, respectively. The
general solution of (3.1) in polar coordinates is given by

Cu = D'”z (cosnl + sinnf),

7~71 7-‘/1—

(3.4) = Z [A,; r® + Bt
n=0

where we have excluded the terms which give nonzero vorticity at infinity. The
constants A, and 3, are assumed to be known and will be determined from the
given flow field. For convenience we proceed further with the terms involving
sin 6/ in the Fourier expansion (3.4) only, since the calculation for the other part
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involving cosn6 is similar. Now the components of velocity and pressure in the
Stokes region obtained from (3.2), (3.3) and (2.1) are

- 3 D,
g = — Z [Anr”'l + Br*tl 4 ,.E+1 + T_TT} ncosnf,
n=1
i 37
(335 ¢ = Z [nA "t (n + 2)B,r" an+1 —(n- 2);;—_—1-] sin nf,

n=1
lx\

p=po— U Z [4(11 + 1)B,r" + 4(n - l)%] cosnd.
n=1

In the porous region (i.e » < «) the Darcy pressure satisfies the Laplace equation
V2P = 0. Therefore,

(3.6) P=PF+ Z E,r" cosnf.

n=1
The components of velocity inside the porous cylinder in r and ¢ directions now
become

n

Q= —— o= —— nkE,r"!cosnd,
(3.7) o
Qs = _/_l MW = — Zn E,r" !sinn.

The stream function for the Darcy region may also be defined and given by

(3.8) A — Z E,r"sinnb,

n=1

where V2" = 0. It should be noted here that in (3.6) we have omitted the terms
which do not produce finite velocities at the origin.

The general expressions for the pressure and velocity fields in both the regions
will now be solved for the constants (', [),,, I, expressed in terms of A, and
B, using the boundary conditions (2.4) - (2.6).

Application of the boundary conditions (2.4)-(2.6) in the general solutions
yields

aa 4k
c ( ])\/_ (,2”(” - 1)2> A

a?n M,

(2n+ —n+4
& vk

a\/—

(n—1)(n+ 2))
J’\f[n
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, e nA,
(3.9) Uy vk

[cont.] a*n—2 M,
aa | davk 4k 2
) (\/—I + —n+ ?n(n + 1)) (n 4+ 1)a*B,
M, '
aa
-2+ —= ) n(n-1)A,
. 4p ( \/Z)
bn=a M,
X (Zn, - \C}—%(n — 2)) (n +1)a*B,
M, ’
where i
. aa k 4k
M, =2n + TF + 4o —a—n('n -1)+ ?ﬁn(n + 1)(n — 1).

4. Examples
4.1. Uniform flow along OX
For the uniform flow with a speed U/ along OX, we have
qr = —=U cosd, gs = Usind
and
(4.1) g = Ursinf.

Threfore we have A4y = U, A, = 0foralln > 2 and B, = 0 for all n. The
coefficients (', 1D, and £, as calculated from (3.9)—(3.11) are

(42) ("1 = 0, 1)] = —(,/, E] = 0.

This implies 1> = 0. Thus a uniform flow about a porous cylinder is not possible,
which is the usual Stokes paradox known in the literature.

4.2. Quadratic potenial flow

In this case

U
(4.3) Yo(r,0) = — 37-3 sin 3¢
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(U7/3 is a shear velocity) and A; = Ay =0, A3 = -U/3, A, =0forall n > 4
and B, = 0 for all n. The coefficients ('3 and D5 are found from (3.9) and are
given by
aa ke U
2 483 ) (—*—) a®
B
(3 = - v/
— +
(6 + 7 + 24— < 96(12)
oo 2) v
(4.4) Dy = k f
aa a
6+ —=+24—— + 96—
7 3l
aa
2 (2 + )
T E

a? od a\/_
(o0 2 022k o)

Now the complete stream function for the two flow fields are given by

2cca 48k
vl . (F-E) e
5

ad \/1._ E\ 3
6+ + 24c0— + 96—
( VETT )

(2 " (m.)
—= 4
vk i sin 30,

aa avk 7
6+ —+24—— + 96—
(o4 57+ 222 +953)

(4.5) +3

%)
ot o= 8"’1-‘ vk 73 sin 30.

g
‘ (6+%+24(\ﬂ+96/‘)

Stream lines in Stokes’ region are plotted for different values of porosity in Fig. 1.
We observe that in the limit (a/vk) — oo, k = 0, we recover in (4.5); the
stream function for the quadratic potential flow past a circular cylinder [14].
When (a/Vk) = 0, k = 0, we obtain the quadratic potential flow past a shear-free
cylinder [15].

http://rcin.org.pl
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k=10" (Avudainayagam et al.)

4 5 6

v =-0.05

U = 012
a = 10°
a= 10

1. 1. Stream function ¢(r, #) in Stokes region.

Another interesting special case may be deduced from Eq.(4.5),. If we let
(a/Vk) — (1/Aj) and k = 0, then (4.5), reduces to
U 2(1 - 3) r_:(: o 33 d*

U i < | sinap,
{ 3 { 1 (‘.)!_*_2) 73 (|j+2) r Sin

(4.6)

where 7 = 1+ (a/2Ay). This solution corresponds to the quadratic flow past
a cirular cylinder with mixed slip-stick conditions [16]. In the present case the
boundary condition (2.6) becomes ¢; = A7,; on r = a where A is here the
slip parameter. Thus our solution includes all the possible quadratic flows past
a cylinder indicating that the boundary conditions (2.4) —(2.6) are assumed in a
more general form.
4.3. Source outside a circular cylinder

Consider a source of unit strength located at (c. 0), ¢ > «. The stream function
corresponding to a source in an unbounded flow is
rsin {/
4.7 o(r, 0) = tan™! ———— .
(47) o(r, ) = t c—rcosf
Equation (4.7) may be expanded into a Fourier series as

(4.8) o =3 — sinn.
’ ne'

n=1
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Therefore A, = 1/nc™ and B,, = 0 for all n. The coefficients C,, and D,, can
be calculated from (3.9) and the modified stream function in the presence of a
porous cylinder is:

for r > a,
a4 (() - 1)\/{ - ﬂn(n 1)2) g2
4. 0= S |
(4.9)  y(r,0) X::l rt o+ A -
aa
(2 + ﬁ) noam-z| g i
M, = | en o0
forr < a
aa
. (z + _) .
(4.10) Bt = 4 Z f - Y2l (n— ) sinnd.

n=1

It will be of some interest to study the asymptotic behaviour of (4.9) as r ap-
proaches infinity. In the limit as » — oc, Eq.(4.9) becomes

(4.11) P = H%‘rsinﬁ.
This is a uniform flow along the negative z-direction at large distance from the
porous cylinder.

This conclusion has already been drawn by SmitH [3] in the case of a source
acting outside a rigid cylinder. We remark that the porosity has no effect on the
speed of the uniform stream at large distance. Perhaps, this may be due to the
fact that the porosity is small in Darcy flow.

4.4. Stokeslet outside a circular cylinder

Now let us consider a Stokeslet of strength /' located at (0, ¢), ¢ > a. The
stream function corresponding to the Stokeslet in an unbounded region is

(4.12) o = F'(rcost — c)log Ry ,
where /2 = 1% + ¢* — 2¢rcosf. The constants A, B,, (., D, and E, can

be obtained in the similar way as that explained in the above example. The
stream-functions for the two flow fields in the presence of a Stokeslet in front of a
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porous circular cylinder may be constructed with these constants. The asymptotic
form of the perturbed external flow field as » — oo is given by

aa\ 1 ada avk  8k\ a2
F[— (2+ﬁ> §+ (\/_E+4—a +”—2) ﬁ]

>+

Hence, at large distances, the Stokeslet produces a uniform flow whose strength

depends on the location of the singularity and on the porosity. The variation of

the speed for different values of o/v/k are shown graphically (see Fig.2). The
077

(4.13) p(r,0) = rcosfl.

1.0
1.5 k=10

[
nmn

0 | ul |

el s,
10 10 10 AT 10 10

I'16. 2. Stokeslet-cylinder combination-effect of permeability on the speed at large distances.

effect of porosity on the stream function at large distances is shown in Fig. 3.
In the limit when % = 0 and (aa/Vk) — o, we recover the result obtained by
DORREPAAL et al. [2] for a rigid circular cylinder. In the limit of (a/v/k) = 0 and
k=0 we get

=

(4.14) h(r,0) = —%rcos().

Therefore a Stokeslet in the presence of a shear-free circular cylinder produces a
uniform flow at large distances, its strength being independent of the location and

3 —
porosity. If we let I u, where 7 = 1+ (a/2\p) as in example

VEk A a

http://rcin.org.pl
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I1ci. 3. Stokeslet-cylinder combination-effect of porosity on the stream function at large distance.
(4.2), Eq. (4.13) reduces to

2
—B+(B-1)5
=

Sk = F “cos (.
(4.15) = 53 1" COS

This solution corresponds to the asymptotic behaviour of the Stokeslet in front
of the cylinder when mixed slip-stick conditions are applied at the contour of the
cylinder.
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