Arch. Mech,, 49, 1, pp. 159-176, Warszawa 1997

Plasma double layer system leading to chaos, intermittency
and flicker noise

A.J. TURSKI and B. ATAMANIUK (WARSZAWA)

ELECTROSTATIC DOUBLE LAYERS appear in plasma and semiconductor systems with flow of electric
current. The systems display bifurcations, chaos, intermittency and power-law of spectral power
density that is 1/ f-noise also called flicker noise. Fractal analysis of experimental data recorded
in time (time-series analysis) indicates that the plasma dynamic systems are of low dimension.
Colored and fractal noise influence on measured data may disqualify that conclusion. A piecewise
lincar dynamical system is considered to clarify this problem. Bifurcation tree, intermittent chaos
and 1/ f-noise are revealed by the dynamic system.

1. Introduction

THE STUDY OF PLASMA systems may be performed by analyzing experimental data
recorded as a series of measurements in time of pertinent and easily accessible
state variables of the system, e.g. electric current, voltage, densities and veloc-
ities. In most cases, such variables describe a global or averaged properties of
the system. Although there already exists a vast literature describing experimen-
tal results concerning bifurcation, intermittency and chaos in plasma discharge
and turbulent systems, a complete and coherent discussion and theory derived
from plasma equations are still lacking. Plasma discharges produced by electric
current flow and revealing self-oscillations (Hopf bifurcation), saddle-node and
period-doubling bifurcations, intermittency and chaos are of our interest. We as-
sume that the cause of the occurring phenomena is charge separation leading to
double layers (DL), which are localized in space. The wave length of the wave
phenomena is much greater than the physical size of the system and we can
consider DL as a lumped element. The assumption allow us to construct a sim-
plified model. Tt is based on piecewise linear voltage-charge characteristic of a
capacitor simulating DL. The model can be realized in the form of nonlinear
electrical circuit and the measured variables are to be compared with those an-
alytically computed. By virtue of the circuit equation analysis [1], Poincaré map
is derived. Calculation of bifurcation trees and strange attractors for different
parameter sets are displayed and intermittency, saddle-node and period-doubling
bifurcations are revealed.

Plasma experimental data recorded as a series of measurements in time are
analyzed by use of fractal dimension and the average dimension, most often cor-
relation dimension, is low and that implies the low-dimensional dynamical system
[2, 3]. This conclusion was very recently criticized for the two reasons. One stems
from the fact that the apparent correlation dimension may result from the class of
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stochastic noises with a power-law of spectral power density, f~“, the so-called
colored noise, which leads to a low finite value for the correlation dimension,
see [4]. The second reason is related to intermittency which leads to the same
power-law spectra and low fractal dimension. The low correlation dimension of
such noise means that the trajectories in the state space exhibit fractal behaviour
along the trajectories, while the fractality of a strange attractor associated with a
chaotic system is perpendicular to the motion such that each trajectory returns
at time close to the starting points. The methods which have been used in the
studies of the correlation dimension [3, 4] do not distinguish between these two
kinds of fractalities. The situation around this topic has remained unclear and
we offer some nonlinear circuit analogue models, which show promising results.
We introduce two notions — one is a colored stochastic noise and its power-law
spectra for low frequencies, and the other one is intermittent chaos leading to
= noise. It deserves notice that the [~ noises are ubiquitous phenomena con-
cerning elements of electronics, acoustics, mechanics, traffics, etc., see I3, 6, 7]
Consideration of dynamical system with piecewise linear nonlinearity may con-
tribute to understanding of the problem.

2. Colored noise

Colored stochastic noise 7(t) is based on an extension of the space of variables
so that 7(1) itself becomes a variable driven by white noise ((f). In particular,
if 1(t) is exponentially correlated Gaussian noise then one can write the set of
stochastic differential equations

(2.1) 2(t) = G(x) + g(z)n(t),
22) o) = ——n(t) + )

where (/(r) is the deterministic “force” and ((?) is Gaussian white noise with
correlation function

(2.3) (CE)C(r)) = 2D (L - 7).
Then it can be easily seen that (2.2) leads to the exponential correlation function

—|t—7]|

D
24 (n(on(r)) = ¢

The probability density P (x,7; (1 /o), m0) obeys a Fokker-Planck equati(?n.
Bicolored stochastic noise assumes two additional variables -)71(1.) and n,(t) with
constants 7., and 7., see Eq.(2.2), driven by white noises with )y and D,

respectively.
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We note that colored noise had a low correlation dimension as determined
from the Grassberger - Procaccia (GP) algorithm [4]. The stochastic process gen-
erated by one or two colors can be expressed as discrete Fourier series [4]

N/2

(2.5) X@) =S Creos@mik/N - ¢y),

k=1

where ¢, are random phases in the range [0, 2] for each wave number £, [ =
k/N is a frequency, and the coefficients ('), are related to the power spectrum
P(k) = @ k=2, that is

(2.6) g, & {P(k)%”]l/z

for bicolored noise, we have two powers aj, aj, and «; is valid for the range
k < k. and ay is valid for k& > k.. Critical value k. is such that it relates to
a frequency at which there is a break in the power spectrum of the measured
variable. The condition of continuity is fulfilled if () k=1 = k2.
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F1a. 1. Exponential correlation functions — f1, f2; f3; versus i, related Fourier transforms
F1, 2, I'3, and power Fourier transforms PF'1, PF2, PF3, versus j.

Computer calculated and plotted Fig. 1 refers to the correlation functions (2.4)
and exhibits f;; = Aexp(—kit;), where [ = 1,2,3; k; =025, ky =1, k3 = 1.5
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and ¢; = 0+ 63. Also Fourier transforms /'y ; = FFT'(f), I3, I3 ; are shown
as well as power spectra P} ; = (|F1,j|')2, PF,;, and PF3 ; are depicted.
The Fourier transform

(2.7) F= c. JOE SN P

ey
is the well known Lorentzian spectral density revealing flicker noise. This ap-
proach is to be used in cases of more complex correlation functions.

3. Intermittency and flicker noises

The phenomena of flicker noise have long posed some enigmatic questions.
First and foremost is the question of how is it possible that in systems of minute
physical size there occur processes on the time scale so long as to allow for
divergences in their spectra? The appearance of broadband spectra and, at the
same time, the rising of the low-frequency end have long been associated with the
onset of chaotic behaviour. Chaotic signals as well as stochastic ones are assumed
to have stationary statistic and the correlation function

£3.1) (x(1) a(1)) = Cu(7).

Since noise waves have infinite energy but finite power, we must define a power
spectral density.

The autocorrelation function for a noise wave x(?) is defined as the time av-
erage

L
(3.2) Co(r) = ,jli_rr’lx‘ 21]1 / a(t + r)x(t)dl
e

and then
Co(7) = G (-7).

The spectral density of the noise wave () is defined as the Fourier transform
(3.3) S.(f) = / Crye2i7f dr,

where S5,.(f) must be real and positive and if () is real, we have

So(f) = Se(=1).
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Bifurcation and chaotic features of dynamical systems of finite number of
freedom-degrees are investigated by use of Poincaré maps, which are discrete
processes. In case of one-dimensional map

(3.4) Tn+1 = G(Tn),
the discrete autocorrelation function C',.(m) of @, is

.
(3.5) C.(m) = L P\,1+ : ;f\ Tt T s
and spectral density
(3.6) S()= Y Cutmyedmis
By virtue of symmetry, we have o
(3.7) Sp= i C'(m) cos(2m m f),
m=0
where
(3.8) Cr(m) = hm - Z Tty Tt s
n=0

Let us consider a logistic map
(3.9) Zat1 = Rz, (1 + 2,) = g(zs)

where 0 < R < 4.

Just below period 3, there is a saddle-node bifurcation for /. = 1+ (8)!/? and
then at £ = R, — =, an intermittent signal appears. For any £ > 0, correlation
functions (',(in) decay exponentially with a decay time 7 ~ £~ 1/2, see [5]. By
plotting the power spectrum of the third iterate ¢3(x) we can thus get an apparent
1/ [* divergence, with a cut-off that can again be pushed down to arbitrarily small
frequencies by lowering . There are three types of intermittencies. The first one
is connected with transition from saddle-node bifurcation to chaos, second with
Hopf bifurcation and the third one with period doubling bifurcation. Figure 2
demonstrates the computed results of the intermittent signal x, versus n for
I = 3.74474 < R, its correlation function

) 1 N+1-s
(310) (.rs = m Z Th+sLg

k=0

and Fourier transform A (', := F'FT(C,) as well as power spectral density, that
is PRNC', = (|[N(])% Spectral densities reveal 1/ f divergence in vicinity of
[ =0, (s = 0). This approach is to be used in cases of more complex Poincaré
maps.
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FiG. 2. a) Intermittent signal z,, versus = for logistic map x,41 = Rx.(1 — z,) where
R = 3.74474 and its correlation function C'.. b) Fourier transform A'C, and PK C. versus s
The right-hand side drawings of A'C'. and P C. are enlarged in vicinity of s = (0 and
demonstrate 1/f - noise behaviour.

4. Charge separation and double layer simulations

Charge separation in plasmas takes place due to electric current flow. Forma-
tion of DL starts when electron and ion convection velocities of the flow satisfy
Bohm conditions, e.g. see Galeev and Sagdeev, Ch. 1 in the monograph [8]. The

http://rcin.org.pl
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negative anomalous resistivity of plasma discharges leads to self-oscillation [9]
and then nonlinear voltage-charge characteristic is responsible for bifurcation,
intermittency and chaos. The characteristic is similar, if not identical, to that of
junction capacitance of semiconductor diode, which is based on charge separation.
Self-oscillations of plasma discharges are revealed by use of electrical circuit with
nonlinear resistance, e.g. see [10]. The problem is classical in plasma discharges.
The next step is a simulation of plasma discharge system by a driven R-L-Diode
circuit, see [1, 9]. The circuit ordinary differential equations are reduced to the
following 2-D Poincaré map [1, 9]:

Tp+1 =

{4 a1Ty for z, >0,
T
e —y T, for z,-<0,

(4.1)

Yn+1 = bl'”.
where 7, and y,, are responsible for charge and current in the circuit, and

ay = eM+ e,
(4.2) h = —eMth = _6,—12/214’

iR et (@)2__1;_”2
W= TR F= 2F AT 7

R, L, (', Cy are circuit elements and [ is the frequency of the driving voltage.
Characteristic values Ay, are real or complex conjugate, hence a; and b are
always real positive and real negative numbers, respectively. A piecewise linear
characteristic (C', (') is a satisfactory substitute for the nonlinear voltage-charge
characteristic, see [1, 9]. The coefficient a; depends on amplitude and frequency
of the driving voltage and can be numerically determined. The graphs of a; versus
driving voltage for a given number of frequencies [ are given in [1]. We note,
that the following equation

d*u du

(4.3) B

T RS fn) + By = B(D),

where

Py = at for u >0,
flu) = Bu for u<0

is a piecewise linear function and
E(t) = EYsin(wt) ~ sgn (sin(wt))

possesses the Poincaré map given by Eq. (4.1).
From extensive laboratory measurements and digital computer simulations,
S. TANAKA et al. [1], have found that in order to reproduce the same qualitative
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behaviour of the dynamical system, a piecewise linear voltage-charge characteris-
tic is satisfactory. Furthermore, it was observed that the sinusoidal voltage source
can be replaced by square wave voltage of the source period 7' = 1/ f without
altering the bifurcation structures. Therefore, we analyze Eq.(4.1) as a structure
representing dynamics of the system with a nonlinear element responsible for
charge separation. We believe, that intermittent chaos and flicker noise have not
yet been revealed for the system. We exhibit our numerical calculation results.
Figure 3 shows the “bifurcation tree” that is x;,, versus a, where [ = 650, 651,
... 750 represents the iteration number, see Eq.(4.1) where n = [, whereas m
is responsible for a;(im), which changes from 0 to 10 as m changes from 0 to
M, e.g. M = 200. The second variable y,,, is similar since 41, = bxyn.
It reflects the physical situation that each point in this bifurcation tree diagram
represents a 1-D Poincaré section of electric current trajectory taken at each fun-
damental period 7' = 1/ f of the sinusoidal voltage source. Iteration results for
[ =0,1.2,... 649 are not depicted here. They concern mainly transition points
to periodic and chaotic states. The following striking features are seen in this
diagram.

0 3 '“ﬁgﬂ

a2(m)

Fic. 3. Bifurcation tree of Eq.(4.1), [ = 650, ... 750, l is iteration number n < [ and m is
responsible for ay(m) changes along horizontal axis.

(i) A succession of large periodic windows whose periods increase exactly
by one as we move from one window to the next at its right side (saddle-node
bifurcation). On the left side of each chaotic band we observe transition to chaos
via period-doubling bifurcation.
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(iiy Going along trajectories we can expect a Ist-type intermittency at the
right-hand side of boundary of each band of chaos and a 3rd-type one at the left
side of the boundary of chaotic bands.
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Figures 4 and 5 show a 2-D Poincaré sections taken for ¢y = 4 and ap = 8,

that is the second and third chaotic bands, see Fig. 3. They are strange attractors
associated with a chaotic motion perpendicular to the trajectories. The attractors

http://rcin.org.pl



168 A.J. TURSKI AND B. ATAMANIUK

are composed of a number of branches and the number increases as we move
from left to the right bands.
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FiG. 6. Bifurcation tree for Eq.(4.1), @, versus az(m) = m, where [ is iteration number and
ay = 1.13,b = —0.5.
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F1G. 7. Strange attractor for a; = 3.
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Figures 6, 7 and 8 show the bifurcation tree and strange attractors for selected
parameters ¢; = 1.13 and b = —0.5. There is only one chaotic band and two large
periodic windows. The strange attractors are composed of 5 branches for ay = 3
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and 3.5. The number of periods jumps from 1 to 5 as we move from left to the
right-hand periodic windows. One can expect 1/ [ fluctuations along trajectories
due to the 1-st and 3-rd- type of intermittency.
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Fic. 8. Strange attractor for a; = 3.5.

Figure 9 exhibits computed Lyapunov exponents-A, determining variation of
r,, versus ay for the bifurcation tree depicted above. We note that the calculated
negative values of A, and stable periodic windows of the bifurcation tree as well
as positive values of A, and chaotic band are related, respectively.

To demonstrate intermittency of our system given by Eq. (4.1) we determined
a number of values of a; for which intermittent chaos occurs. We may expect such
values of a at the transition of periodic windows and chaotic bands. It is worth
noting that, in some cases, very high precision of calculation of «; is necessary.

Figure 10 shows intermittent state variable (signal) x, versus n, strange at-
tractor y,, versus r,, power spectrum £ X, that is a fast Fourier transform (FFT)
of 2, correlation function (', computed according to Eq.(3.10) and its power
spectrum density for a selected value a; = 1.94610199282. This figure shows
intermittency of saddle-node type, which is located at the boundary of the first
chaos band and 3-period window, see Fig.3. The intermittent signal consists of
chaotic part and inclusions of 2, 3 and 4-periodic parts. Also, the strange attractor
reveals periodic parts in the form of isolated points. Power spectrum density —
P X, displays 1/f fluctuations (flicker noise) in the vicinity of n = 0. The cor-
relation function diagram and the power spectrum of the function confirm this
property.
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IF1G. 9. Lyapunov exponent A, versus «; in relation to bifurcation tree of Eq. (4.1) a; = 0.7,
b =-0.13, and @, = 0+ 10.

Figures 11 and 12 show two intermittently chaotic regimes. They concern
transition from the chaotic band to the 4-periodic window (Fig.3). For a given
value of @y, see Fig. 11, we have predominantly chaotic 2, but if we add only 10-4
to a; then x, changes drastically (4-periodicity prevails). The shape of strange
attractors is nearly the same but that one responsible for the more chaotic case
seems to be more “dense”. Also here, the power spectrum has no sharp peaks,
in contrast to the less chaotic case. Correlation functions are distinctly different.
One is similar to the purely chaotic correlation and the other one to the periodic
case. Flicker noise components are more significant for the case of less chaotic
variable.

The last figure, Fig. 13, shows the state variable x, versus n for the bifur-
cation tree presented in Fig.6. We found the value of a; = 3.7241, which is
characteristic for a transition from chaotic band to 5-periodic window. The se-
lected value of a5 is such that nearly a half of the variable «,, is chaotic and a half
is 5-periodic. Power spectrum correlation function and flicker noise contributions
are characteristic for intermittency.
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The intermittent signals presented here were selected from a great number of
computed examples of chaotic regimes. We note that the state variable y,, can be
easily obtained in virtue of the following relation: v, +1 = bz, see Eq.(4.1). We
see that the chaotic bands are self-similar and therefore, intermittent variables x,,
can be found inside of each chaotic band. For instance, the central chaotic band
of Fig. 3 is composed of three self-similar sections, which appear as we divide the
band by two horizontal lines and each section is similar to the entity. The same
property shows all chaotic bands of Fig. 3.



-5

n e, e
=g u
-1 1 1 1
-5 0 5 10 15
X
n
10 T T
1 -
0.1 =
0.01 =

px  0.001 = !

__"mu:; = _"ma:; -]
110_ — i (el ol -
1100 - 00 - B
ru_, i i — 110 - | -
110 =10

500 1000 1500 10 20
n n
30 T T T T T
0 .
c
$
10 =
g L L 1 1 |
0 50 100 150 200 250 300
s
1 T T
01 -1
PKC,_ g gy .
0001 [~ -
S 1 1 o L |
0 100 200 00 0 10 20
£ $

I'1G. 13. Intermittent state variable x,, versus n (here time), strange attractor y, versus r,, power
spectrum PX,, = FFT(x2) versus n (here frequency), the correlation function C. versus s (here
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5. Conclusions

The dynamical system considered here is advantageous as it may be easily mea-
sured and computed. There are three parameters «, b and a; which allow for
applications and simulations of different dynamical processes. Three fundamental
features deserve attention. The assumed piecewise linear approximations of non-
linear characteristics allow to expose the most complex properties of nonlinear
systems, e.g. important types of bifurcations, self-similarity, chaos, intermittency,
fractality and flicker noise. A number of papers are devoted to the theory of
piecewise linear maps, we refer to the following [5, 11, 12] and [13].

The next features concern flicker noise or 1/ fluctuations of intermittently
chaotic variables. In principle, we are not able to distinguish colored noise, com-
ing from outside to the system, from the intermittent signal of the system, which
generates the noise. In the case of colored noise, however, the trajectory produces
a fractal curve that wanders erratically; the correlation dimension is a measure
of the fractal dimension of this curve and is unrelated to the existence of an
attractor. In addition, the correlation dimension is related to the power law spec-
tral index a(f~®) by Dy = 2/(a — 1), see [4]. Fractal dimension of strange
attractors is the last feature of our comments. Varying the parameter a, we may
select intermittently chaotic variable of higher or lower contents of chaos. In this
way, we may change fractal dimensions of an attractor as well as the power law
spectral index . According to our computer calculations, lowering content of
chaos in intermittent signal causes higher content of [~ fluctuations but lowers
fractal dimension of strange attractors. This conclusion concerns only the ranges
of parameters a1, b and a, considered here.
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