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Stability of micro-periodic materials
under finite deformations

E. WIERZBICKI (WARSZAWA), C. WOZNIAK (CZESTOCHOWA)
and M. WOZNIAK (LODZ)

A NEW APPROACH to the stability analysis for highly-elastic micro-periodic composite materials
subjected to finite deformations is proposed. The analysis is based on the refined macrodynamics
of periodic structures which describes the effect of the microstructure size on the dynamic body
behaviour. It is shown that the loss of stability can take place both on the macro- and micro-level
and that the internal dynamic instability depends on the microstructure size. The obtained results
are illustrated by a simple example.

1. Introduction

STABILITY OF HOMOGENEOUS elastic materials under finite deformations was in-
vestigated in the series of papers [1-9, 11-15, 18]; the main results can be found
in the monograph [10]. The aim of this contribution is to outline a new approach
to the problem of stability for composite bodies made of perfectly bonded elastic
constituents subjected to large strains. It is assumed that in the natural configu-
ration the material structure of the body is micro-periodic. The analysis is based
on the refined macro-dynamics of composite materials, introduced in the frame-
work of linear elasticity in [19] and extended to finite elastic deformations in [16,
17]. The effect of the unit cell length dimensions on the dynamic stability of a
micro-periodic body and the existence of new kinds of material stability, related
to the microstructure of a composite, are most important features of the proposed
approach.

Notations

Indices a, /3, ... and ¢, 7, ... run over 1, 2, 3 and are related to the material and
spatial coordinate systems, respectively. Capital Latin indices A, B, ... run over
1, ..., N; N > 1. Summation convention holds for all aforementioned indices if
not otherwise stated. By Vi we denote the region (—{1/2,1;/2) x (=13/2,13/2) x
(—13/2,13/2) in a three-space of points X = (X?). An averaged value of any
integrable Vz-periodic function f(-) of X will be denoted by

. U
([(X)) := @‘/ FX)dX' dX?dX?,

Here and in the sequel the subscript 17 is related to the known reference configur-
ation of the body under investigation.
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2. Foundations

Let the highly-elastic composite body in the natural (reference) configuration
occupy a region f/p in a physical three-space and have in this configuration
the Vi-periodic structure. The microstructure length parameter defined by [ :=

\/ (11)? + (I2)* + (I3)?* is assumed to be sufficiently small compared to the smallest

characteristic length dimension of (Zp. The position of an arbitrary point X,
X € (2, of the body at an instant ¢, ¢ > 0, will be denoted by x = p(X,1),
X = (X?) € (2. Hence u(X.1) := p(X,1) — X is a displacement vector from
the natural configuration. The properties of the composite under consideration
are determined by a mass density op(+) and a strain energy density function
cr(+.Vp), which are Vi-periodic functions defined almost everywhere on (/g
and related, as densities, to the reference configuration.

The idea of the refined macrodynamics, explained in [19] and applied in a
series of related papers, is based on the heuristic constraint assumption that the
displacements w«;(X,1) in a periodic composite can be represented by certain
averaged displacements (/;(-,!) on which highly-oscillating disturbances are su-
perimposed, caused by the micro-inhomogeneity of a medium. To describe this
situation, the concept of a regular macro-function was introduced in [19]; roughly
speaking, a function F: {2y — R is called a macro-function (for the known mi-
crostructure length parameter / and a certain accuracy ¢y assigned to numerical
calculations of the values of [) if for every X,Z € (25 such that | X - Z|| < [
condition | (X — F(Z)| < ey holds. If similar conditions also hold for all deriva-
tives of /' then /' is said to be a regular macro-function. The aforementioned
constraint assumption specifies a class of motions given by

@1 wX ) =UX )+ X)X 1), Xefgp, 120,

where (/;(+.1), Q*(+.1) are certain arbitrary regular macro-functions, and /(+)
are the postulated a priori Vp-periodic functions (hence depending on /), satis-
fying for every X the conditions #4(X) € O(/), k" (X) € O(1) as well as the
condition (h') = 0. Functions /*(+) are called micro-shape functions and from
the qualitative viewpoint, they determine the investigated class of disturbances in
displacements caused by the Vj-periodic structure of the composite. Functions
[7;(+), Q(+) are the basic dynamic variables of the refined macrodynamics be-
ing referred to as macro-displacements and macro-internal variables, respectively.
By virtue of Eq.(2.1), macro-internal variables ()' describe the aforementioned
disturbances in displacements from a quantitative viewpoint. Define by F a field
with components
Fioi=68,,+0",

which will be called the macro-deformation gradient. Hence every I, (-, 1),
t >0, is a certain regular macro-function. In the framework of the refined macro-
dynamics the deformation gradient Vp is approximated by F + VA1Q4, [19]. Tt
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follows that the function 75 defined by
rr = mr(F,Q):= (r(X,F+ VAA(X)Q1)), Q:=(Q,....,QY)

represents an averaged strain energy. Macro-deformation gradients F and macro-
internal variables Q are restricted by the condition

det(F + VA" Q") > 0.

Let us define ¢ := [~'h*; obviously, values of functions ¢ satisfy conditions
¢ (X) € O(1). The field equations for (/;(+), Q(+) which were obtained in [17],
after neglecting the body forces, can be written down in the form

(2.2) SKo—(em UM =0, Hi' + P(org*g®) Q% =0,
where
e f)TFR ; (')7TR
3 ,H Y — . Al — .
(2 ) ) R i)['l‘m [[R _dQ-:l

Fields S}y and /" are called the Piola - Kirchhoff macro-stresses and the micro-
dynamic forces (related to (2p), respectively. In the natural configuration, i.e. for
F = 1 and Q = 0, the macro-stresses S}5" and micro-dynamic forces /{;}' have
to be equal to zero. If this condition is not satisfied by the derivatives of (cp)
with respect to F and Q then the strain energy function 75 in Egs.(2.3) has to
be assumed in the form

(2.4) rr = 7a(F,Q) := (er(X,F + VAA(X)Q?)) — AS(Fia — bia) — nA'Q4,

| d(cR) 1i . O(er)
2.5 Jig e 2V « g = =
( ) R dl’z’n F=1, Q=0 1 ()(2;.“

F=1, Q=0

Formula (2.4) defines the macro-strain energy function related to the natural
configuration of the body.

Let /'y be a part of d{2x on which surface tractions s}, (averaged over the
surface area) are known. The related boundary conditions are given by

(2.6) SR NRa = Sp on [p

with ny; as a unit outward normal to df2p. It will be also assumed that on
A2p\ ', values ["P of macro-displacements are prescribed:

(2.7) U=UY on 902p\Igr.

http://rcin.org.pl
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Equations (2.2), (2.3) and boundary conditions (2.6), (2.7) hold for every ¢ > 0

and together with initial conditions for [/;, {7;, Q#, Q#, describe a certain bound-
ary-value problem formulated in the framework of the refined macro-dynamics
of a highly-elastic micro-periodic body and for a class of motions given by (2.1).
The main feature of the refined macrodynamics is that the above problem takes
into account the effect of the microstructure length-parameter / on the dynamic
behaviour of the composite. It has to be emphasized that a solution to this prob-
lem has a physical sense only if (/;(+,1), Q(-,t) are regular macro-functions
for every t > 0. For more detailed information the reader is referred to the
references given in Introduction.

3. Analysis

Let us assume that a certain static deformation of the composite described
by Eq.(2.1) is known, where the fields U/; = U;(X), Q = Q4(X), X ¢ 2 are
constant in time and hence satisfy in (2 the field equations

3.1) ({)WI?(F;S);?[:‘Q(X))> e am(F,-g)é))ng(X)) =0 Xeil,

and fulfil on Jf2y the time-independent boundary conditions of the form (2.6),
(2.7); in (3.1) F(X) = 1 + VU(X). Every static deformation of the composite,
defined by a pair E = (U(-), Q(+)) satisfying Eqs. (3.1), will be referred to as the
equilibrium state. In order to investigate the stability of the above equilibrium
state, the line of approach described in [10] will be applied. To this end let
us assume that on the static deformation represented by a displacement field
w(X) = U(X) + A (X)QA(X), X € 2p, a small deformation is superimposed,
given by ¢ ‘u;(X.1) = ['Uy(X, 1) + h4(X) 'QA(X, )], t > 0, where ¢ is a small
parameter, the squares and higher powers of which will be neglected as compared
to =, and where 'U/;(+, 1), ‘Q:(+, 1) are arbitrary regular macro-functions. Using
Egs.(2.2), (2.3), (2.6), (2.7) and denoting

O*7r(F(X), Q(X)) B

Ajia | _ dzfl{(F(X)Q(X)) )

J.H_/.»j o,
.‘I‘l o

BFdF, RS O, 007
(3.2) |
‘ 0?7 R(F(X), Q(X)) ;
(:.\IH(A,' v C R - X .f,) .
i Q1 0Q T

after simple manipulations we obtain the linearized homogeneous field equations
for (;, 'Q#, which have to be satisfied in {25 x (0, 00):

(‘,z%l;;,/.i 4 '_/";f g ]3;,?2'(\ 1(25-{) _ <_{)R> /[" 7

SO

i
=

(3.3)

Il
=

2orgtg®)'Q P+ CRPV QP + BRI 'Uj,
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together with the homogeneous boundary conditions:

)P rrr [ B / B = o)
(‘4;% U+ BRM™'Q )”’Hrz =0 on [rx(0,x),

J

(34) IU;‘ =0 on BIZR\FR X (O OO)
From the definitions (3.2) and since F = 1 + VU, it follows that solutions '{/;,
'(Q# to the boundary-value problems described by Egs. (3.3), (3.4) depend on the
known static deformation represented by the equilibrium state E = (U(+), Q(*)).
At the same time, every pair (F, Q) satisfying the last of Eqs. (3.1) will be referred
to as the local equilibrium state. Obviously, if a composite is in the equilibrium
state (U(+),Q(+)) then every (F(X), Q(X)), X € {2p, represents a certain local
equilibrium state (but not conversely).

Now we shall pass to the analysis of some special cases.

First, let us assume that the superimposed deformations are time-independent,

ie.
Ui="UxX), ‘QF='QMX), Xeln.

Under this assumption two special cases of instability can take place.

Cask 1.1. Let for every X € {25 the linear transformation R* — RV given
by (,-'ﬁB” be invertible for the known equilibrium state E = (U(+), Q(+)). In this
case the macro-internal variables ‘(¢ can be eliminated from Egs.(3.3), (3.4)
and we arrive at

(j\;;'?cv_iﬁ /["r,i‘,f'f) = in 2n,

Ne
ricey 3 T .
(3'5) ‘/\/II'-("J/ Il’j‘fﬂ.l Ra = 0 on [R 9

IUL' =0 on aﬁ]g\]}g.,
where we have denoted

17\/.}?,7[5 — 14}?_/13 . ]3;31.11.\]),[‘%8“8;31.;,?
and where D}P*' determines the linear transformation R*¥ — R*" inverse to
that given by C'A#* 1f there exist non-trivial solutions to Egs.(3.5) then the
body in the equilibrium state E = (U(+),Q(+)) is assumed to have a hidden
macro-instability, [10], and we deal with a bifurcation of the equilibrium state E.
Moreover, if /'y = () then we arrive at the problem of the internal macro-instability
investigated by Biot [1, 2] as the internal buckling.

Case 1.2. Now assume that under the known equilibrium state, a linear trans-
formation R*V — R*N determined by C'/iP*" is singular for some local equilib-
rium state (F(X), Q(X)). In this case the body at the point X is said to be in the
state of a hidden micro-instability and we deal with a bifurcation of the local equi-
librium state (F(X), Q(X)). Moreover if F = const, Q = const in (/5 and [ = 0,
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then Egs.(3.3) are satisfyied by 'l/; = 0, 'Q# = const in 2z and we deal with
what can be called the internal micro-instability.
Second, let us assume that the superimposed motion is given by

VX, 1) = Ui(X)e™,  'QI(X, 1) = Qi (X)e™",
where w is a certain complex number. Substituting the right-hand sides of the
above formulae into Egs.(3.3), (3.4) we obtain for U/;, Q7 the following system
of equations
(AR"T,p + BRQ}) — (er)®T" = 0,

(3.6) & =1
(CR™ ~ Plong*e®) 69?) QF + B Uso = 0, in g,
together with the boundary conditions

(‘4};\‘_1;‘?( a2 & BMMQ )HRa = () on er

37
( ) [.,/,' =0 on f).()n\[!}}.

It has to be remembered that the eigenvalues w? in Egs.(3.6) depend on the
known equilibrium state E = (U(-),Q(+)) since the coefficients in Egs. (3.6),
(3.7) are functions of F(X) = 1 + VU(X) and Q(X), cf. formulae (3.2). The
analysis of Egs.(3.6), (3.7) leads to the so-called dynamic instability, [10]. Two
special cases will be considered below.

Caske 2.1. Let us assume that for the known equilibrium state E = (U(-), Q( )
and for every X € (2 the linear transformation R? — R given by (' R ~
*(org” g0 w? is invertible. Then every inverse transformatlon can be repre-
sented in the form of the asymptotic expansion

DM + PDEP* (org"g®) DEPY + o).
Neglecting terms o(/?) we can eliminate (¥ from Egs.(3.6), (3.7). Defining
JI,’;‘-"’ - Bi\]}:kn /)ﬁ[)k‘l(L)H!jUgI‘,')Dl[;;'b’lm Bg_lﬂb'i(QH)——I.

after some manipulations we arrive at the following system of equations for (7,
which have to be satisfied in {25 x (0, ):

(3.8) (N§9PT,5)  + (en) [Fi - P (MU, ) :Iwz =1
."Ll Rey
together with the boundary conditions
(\, - (@R>[2w21w;j;”f’-’) U;snre =0  on Tgx(0,00),

(3.9) e )
Uj = () on [f)ffR\Fn] x (0, ).
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Following [10] we shall assume that if Imw > 0 then the equilibrium state
E = (U(+),Q(-)) is stable. If in the vicinity of E there exists a passage from
Imw > 0to Imw < 0, then we deal with the loss of the macro-vibrational stability
(provided that Rew # 0) or the loss of the macro-static stability (if Rew = 0) in
this state. Moreover, if [’z = () then it is the loss of the internal macro-vibrational
or macro-static stability, respectively.

Case 2.2. Assume that for the known equilibrium state values w? are the

generalized eigenvalues given by (C'n"" — 1w (0pg?gP)67)QP = 0 for some
local equilibrium state (F(X), Q(X)). If Imw attains a negative value in this local
equilibrium state then we shall deal with the loss of the micro-vibrational stability
(for Rew # 0) or the micro-static stability (for Rew = 0). Moreover if F = const,
Q = const, in {2;; and I'y = () then Egs.(3.6) are satisfyied by 'U; = 0, Q4 =
const in (/i and we arrive at the problem of the loss of internal micro-vibrational
or micro-static stability, respectively.

All the aforementioned cases of instability can be referred to as the local loss
of stability. However, for micro-periodic highly-elastic materials we can also deal
with the special case of a non-local instability described below.

Case 3. Let us assume that for a certain X € {2p there exists the macro-
deformation gradient F(X) for which the last of Eqs.(3.1) has more than one
solution Q satisfying together with F condition det(F + VA4(Z)Q?) > 0 for
every Z € V;; + X. In this case we deal with the non-local micro-instability. This
kind of instability can be also referred to as the material instability strictly related
to the micro-periodic heterogeneous structure of the composite body.

Summing up, the stability analysis for highly-elastic micro-periodic composites
leads to the following three types of stability:

1. Local macro-stability described by Cases 1.1 and 2.1, which can be investi-
gated similarly to the instability of homogeneous body.

2. Local micro-stability described by Cases 1.2 and 2.2 related to the investi-
gations of the linear transformation given by ("};"”}(F. Q).

3. Non-local micro-stability described by Case 3, related to the analysis of the
last of Egs.(3.1).

The problem of the non-local macro-stability is not investigated in this con-
tribution. It has to be emphasized that the concept of the micro-stability is char-
acteristic for composite micro-periodic bodies subjected to finite deformations.

4. Analysis: incompressible bodies

The refined macrodynamics of micro-periodic composites made of highly-elas-
tic incompressible constituents will take as a starting point the averaged incom-
pressibility condition

(4.1 (det(F + VA4(X)Q*)) -1 =0.
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It has to be emphasized that in the framework of the proposed macro-model,
the exact incompressibility condition det(F + VA*4(X)Q*) — 1 = 0 may not be
satisfied at every point X of (2. Equation (4.1) can be also written in the explicit
form

,
(42)  detF+ ze'heo (3(h* ohB 5)Q%: Q; Fi,
+(h 2hB 5hC )QA QP Q%) —1=0,

where %, 7 are the Ricci symbols.
In many special problems the analysis can be confined to a class of motions
(2.1) in which all micro-shape functions satisfy the conditions:

(A hB sy =0 if a# 8,

(4.3) i ]
(h"’_(, /1,3‘,3110 4 =0 if a#p#v#a.

This situation is typical for many disturbances investigated in dynamics of com-
posite materials. In the simplest case relations (4.3) hold if every micro-shape
function ~(+) depends exclusively on one arbitrary material coordinate X°.
Under (4.3) the averaged incompressibility condition (4.2) reduces to the follow-
ing one

(4.4) detF—1=0

being independent of macro-internal variables Q. The above condition repre-
sents the internal constraints imposed on the class of motions determined by
Egs.(2.1). Introducing the concept of a macro-pressure pp = pr(X) as a La-
grange multiplier related to Eq.(4.4), bearing in mind definitions (2.5) and mod-
ifying Eq.(2.4) to the form

(45)  7r=7R(F,Q) = (ca(X, F + VA (X)Q")
~ A (Fia = 6ia) = 1 Q' + pr(det F - 1),

we shall assume that the equilibrium equations (3.1) holds also for incompressible
bodies (in the averaged sense explained above).

Summing up, under definitions (4.5), (2.5) and bearing in mind that F =
1+ VU, the equilibrium equations of the form (3.1) together with Eq. (4.4) lead
to a system of equations for macro-displacements U, macro-internal variables Q!
and a macro-pressure pp. This result holds true under conditions (4.3). If the
above conditions do not hold then the averaged incompressibility condition has
to be taken in its general form (4.2), and in Eq.(4.5) the term detF — 1 has to
be replaced by the left-hand side of Eq.(4.2).

The stability analysis for incompressible bodies has to be carried out similarly
to that of the compressible bodies described in Sec.3. Apart from the superim-
posed small motions ('l/; + A 'Q#), also a small excess of a macro-pressure
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< 'pp has to be superimposed on pr. Hence in the incremental equations, which
for compressible bodies were given by Egs. (3.3)-(3.9), we deal with terms involv-
ing 'pp and with the incremental form of Eq.(4.4). Under notation Ly := F~!
this equation is given by
L 'U; . = 0.

The general line of approach to the stability analysis for incompressible com-
posites, outlined in this section, will be illustrated by a simple example in the
subsequent section of the paper.

5. Example

The general results obtained in this contribution will be now illustrated by
the micro-stability analysis for a laminated body made of two perfectly bonded
incompressible isotropic rubber-like materials. The scheme of the laminate is
shown in the left-hand side of Fig. 1. Moreover, every lamina is assumed to be

. [/2 /2 " g
i = A
[ [1 R — ! i
o o o o [1 = e P s T S
[ [} o ] o N
3 2
—l X ,X
/
[} o ) o
b X
$ X!

reinforced by a system of periodically distributed inextensible fibres parallel to
the X7-axis. Let the body be subjected to finite deformations caused by the
uniform axial macro-strains along the coordinate axes. Using (3.1), the class of
displacement fields under consideration will be expected in the form

up = U(XY) + AI(XHQ + p3(XH0O3,
(5.1) uy = Up(X?) + h2(XHQ3,

usz = 0,

Il

where

(XY = (Fy - DX, Ua(X?) = (Fy — 1)X72,
and (for the time being) /1, Iy, Q1, @3, 3 are constants constituting the
system of basic unknowns. We have tacitly assumed that the effect of periodic
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inhomogeneity along X?-axis on the displacement field is small and can be ne-
glected. That is why a term A*(X?)Q4 in the second equation of (5.1) was not
taken into account; the analysis involving this term is more complicated and will
be given separately. The diagram of the micro-shape function h!(+) is shown
on the right-hand side in Fig. 1; we also assume h?(X') = [cos(2rX'/l) and
h3(X?) = lysin(2r X? /1), where [, is the period of the reinforcement along
X2-axis. In the problem under consideration Vi = (=1/2,1/2) x (~12/2,12/2)
and it is assumed that X! = 0 is the plane of symmetry of the material structure
of VR.
Let us denote the basic unknown variables by means of

Fii=Fy, F=F, Q=Q, Gi=Q, Qi=¢3.
It can be shown that the averaged incompressibility condition (4.1) yields
(5.2) FiF;-1=0.

Under Eq.(5.2) every quintuplet (F}, /5, (), (1, (J2) represents a certain micro-
equilibrium state (now constant throughout the whole body) provided that the last
of the equilibrium equations (3.1) holds; the first of these equations is identically
satisfied since Sj§' are constant.

As we have stated in Sec.2, in the framework of the refined macrodynamics
the deformation gradient is approximated by F + VA4(X)Q", where now X =
(X1, X'?). In the problem under consideration, under extra notations

d = d(X"):= b )(XV),
dy = di{ Xy = B0,
dy = dy(X?) := h? 5(X?),

the deformation gradient matrix is given by
Iy +d0Q dy()y 0
dy ()2 o0
0 0 1
and for every X € Vp :=[~1/2,1/2] x [~13/2, l5/2] has to satisfy conditions
Fi +dX)Q) > 0, Fy >0,
FiFy + d(X) 150 — di(X)da(X)1 Q2 > 0.
The components ¢, 3 of the deformed body metric tensor are given by the matrix
(Fy +dQP + (1Q2F  doFy + dQ)Qy + dy150Q; 0

dy(Fy + dQYQy + dy 50 F2 4+ (da@y)? 0
0 0 1

(5.3)



STABILITY OF MICRO-PERIODIC MATERIALS UNDER FINITE DEFORMATIONS 153

and the strain invariants /;, [, [3 are equal to

I = 6%c, =1+ F+ F? + 2dFQ + (dQ)? + (d1Q1)* + (d2Q2),
[y = [36,5¢" = 1+ FE+ F7 + 2d(F) + F2)Q + (dQ)* (A + FP) + (da@h)*
+(d1Q2)* + (dydyQ1Q2)* - 2d1d2Q1Q; — 2ddydy FrQQ1 Q3
I3 =detcys = [(Fl + ([Q)Fz = (11(12Q1Q2]2.
It has to be emphasized that in the applied approach, the local incompressibility
condition /13 — 1 = 0 does not hold and we deal exclusively with the averaged
form of this condition, given by Eq.(4.1) which now reduces to Eq.(5.2).
The strain energy function for rubber-like materials will be assumed in the
known form

ern=C(l —3)+ D, - 3),

where the material moduli (', [) are now [-periodic functions of X1, attaining
different values in the adjacent laminae. Due to the presence of a reinforcement
we shall also treat (7, I as l-periodic functions of X?2. Hence (' and D as well
as the invariants /;, I, are Vz-periodic functions of X = (X!, X?). The formula
(4.5) for the macro-strain energy function of an incompressible isotropic material
is given by

mr = (ep(X, 1(X), L(X))) — A (Fia — 6ia) — pA' Q2 + pr(detF — 1),

where the averaging operation has to be carried out with respect to X, and \ig,
pa* are defined by Egs. (2.5). After some calculations we obtain

= (C+ DYFE+ FF—=2)+2[((C + D)) Fy + (Dd)F>] Q
+ [((C + D)d?) + (DA% FF) Q* + ((C + D)d3)Q}
+((C' + DYdQ3 + (D(dyd2)*)(Q10Q2)?

—2[(1)([1(12> 4 (D(la’ﬂ[z) *“262] (21(22 s ((v -+ D)(Fl + ]‘12 — 2)
“2[((C + D)) + (D] Q + pr(F1F3 — 1).

Under notations
a:= (C + D)d?), oy := ((C + D)d?), ag == ((C' + D)d3),
B3 = (D(d;dp)?), v 1= (Dd%), ¢ := (Ddd,dy),
i = ((C + D)d), v = {Dd), X := (Ddydy)

and setting
F= Fy= (1;'1)—17
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the second of the equilibrium equations (3.1) takes the form

(a +yFHFQ - ¢F*Q1Q2 + (1 - F)(u — vF) = 0,
(5.4) (1Q2 + AQ207 — (x + ¢F Q)1 = 0,
(@2Q1 + A)1Q3 — (x + ¢FQ)Q2 = 0.

At the beginning let us consider two special cases.

First, assume that the laminae are not reinforced. In this case C'(+) and D(+)
are independent of X'? and

¢ := (Dddydy) = (Dddy){(d,) = 0,
Y = (Ddydy) = (Ddy)(d) = 0,

because of (d;) = 0. In this case there exists the unique solution to Egs. (5.4)
given by

_(F = 1) —vF) LY
(55) (J_ (Q‘+‘)’F2)F » QI—QZ—O'

Second, let the body be homogeneous. Then, apart from conditions ¢ = y = 0,
we also obtain ¢ = 0 and v = 0. In this case () = ()1 = ()2 = 0 and by means of
Egs. (5.1), an arbitrary uniform biaxial strain, given by F; = ['~1, [, = F, holds
for every ' > 0.

Now we shall pass to the general case of the micro-periodic body under con-
sideration. In order to investigate the bifurcation of a micro-equilibrium state
(F1, F2,Q,0,0) let us assume that @1 = ¢ '@y, Q2 = ¢ 'Q),, where ¢ — 0. Let us

also denote -
6=y —maz, 6=y + Joaz

and assume that 60 # 0. If ¢ # 0 then the non-zero solutions (), ()5 to the
second and third of Egs. (5.4) exist either if

. o)
(5.6) &) = kc)—[
or if

6
(5.7) = P

The two aforementioned conditions will be treated separately.
Substituting the right-hand side of Eq.(5.6) into the first of Eqs. (5.4) (where
now Q102 = =2'Q1 'Q, — 0) we arrive at

(5.8) (vé — 8V F? = d(u + V)F + pig — ab = 0.
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The above equation together with the condition /' > 0 represent the solution
in which the bifurcation of a micro-equilibrium state (F'~!, F,Q,0,0), where

Q) = —6(oF)71, takes place. Now assume

5:9) vp—v6#0

and define

(5.10) p.= Yty _ ab—ug

B S el T C .= = 7 .
¥0 — v YO — v

It can be shown that the bifurcation can take place in the following cases:

(i) If c <0 and 1 + b+ ¢ < 0 then there exists one positive root /' = Fp of
Eq. (5.8) such that Fz > 1. In this case the bifurcation occurs under extension of
the body along X 2-axis.

(ii) If c < 0 and 1 + b + ¢ < O then there exists one positive root F' = Fp
of Eq.(5.8) satisfying condition 0 < F» < 1 and the bifurcation occurs under
compression of the body along X 2-axis.

(i) If ¢ > O and 1 + b + ¢ < O then there exist two positive roots /' = Fi,
I" = Iy of Eq.(5.8) related to the compression and extension of the body along
X2.axis, respectively, i.e., 0 < Fi < 1 and F > 1.

(iv) If v¢p — 46 =0 and

P Lo — ad
v6 + pod’
then we obtain /' = Iy > 1if (6/d)u+v)>0o0r F = Fr,0 < Fe < 1, if
(6/0)(p + v) < min{0, (u/a)(p + v)}.

Let us also observe that since ¢ # 0, @ > 0 and v > 0, then the bifurcation
cannot take place in the natural state in which /' = 1.

If one from the above conditions takes place, then the value of () for which the
bifurcation occurs is determined by Eq.(5.6). The analysis similar to that given
above can be carried out if the constant & will be replaced by the constant é. In
this case the value of () related to the bifurcation state will be determined by
Eq.(5.7) and instead of parameters b, ¢, under condition

I/(f) - 73 # Oa
we shall introduce the parameters

E s o + v) B ad — o

b —vp ' v —vo
Hence the discussion of cases (i)—(iii) remains unchanged if moduli b, ¢ will

be replaced by moduli b, ¢, respectively. Similarly, in the case (iv) 6 has to be
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replaced by 6. Tt means that apart from values /', /' of a macro-deformation
gradients for which the bifurcation can take place, we also obtain two other values
Fe, Fg related to the constants 0, b and ¢, where F¢: € (0,1), and Fg > 1.

Now let us investigate the problem of the nonlocal (postbifurcation) microsta-
bility. To simplify the calculations let us assume «; = a an denote ap = a1 = ay.
Using this assumption from Eqgs. (5.4) we obtain either

(0 + 7 FHFQ - ¢(FQ1)* + (1 - F)(u—vF) = 0,
(5.11) agQ1 + BOT - (x + ¢ FQ)Q) = 0,
QZ = le
or

(@ +yFHFQ + ¢(FQ)* + (1 - F)u - vF) = 0,
(5.12) ag@r + Q7 + (x + ¢FQ)Q1 = 0,
Q2= -G
The two above cases have to be treated separately.

Case 1. From Egs. (5.11), apart from the solution

_ (" =1)(p - vF) — . =
(5.13) Q= Gt PO Q1=0Q,=0

which holds for every /' > 0 (and coincides with that given by Eqgs. (5.5)), we also
obtain two other solutions
s & (Br + agd — xOVF? - B(u+ )F + Bu
a [af + (By - DF?F

(5.14)
(Vd> — % — o + ) — pgp + ab

. b -
== af + (B — $2)F2 (2=

where we have denoted 6 := y — ay.

Case 2. From Egs. (5.12), apart from the solution (5.13) which holds for every
I > 0 we obtain two other solutions
8= - (Bv — agd — YO)F? — B + v)F + Bu
a [af3 + (By — oD F2]F :

(5.15)
_j(ucﬁ — YO F? — ¢(p + V)F — pop — ad

af + (By - $O)IF2 ‘

Q2= -G,

Qi
where § := X + g

http://rcin.org.pl
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Under assumption 37 > ¢? and using notations introduced above solutions
(5.14) hold, for /' € (0, Fv] and I > F, where Fo <1< Fg. If F' € (F¢, F)
then there exists solution given by Egs. (5.13). At the same time solutions (5.15)
hold for I € (0. F¢ -]and F > Fp, where Fo <1< Fg. If F e (Fg, Fg)
the solution is given by Egs. (5.13). It means that there can exist two kinds of
bifurcations; in the first case after the bifurcation we obtain (); = (), and in the
second ()1 = —()5.

It has to be remembered that all the obtained results have the physical sense
if and only if conditions (5.3) hold for every X ¢ V.

The micro-bifurcation cannot take place in materials for which either condi-
tions b* < 4¢ and 6% < 4 or conditions b < 0, ¢ > 0 and b < 0, ¢ > 0 hold.
In this case there exist one micro-equilibrium path (£}, I3, ¢, @1, J2) in which
Iy = I, Fy = F'~1 and Egs. (5.5) hold for every I' > 0.

To make the above example more clear from the physical viewpoint we have
stated at the begining of this section that the variables F}, I, as well as (1, )2,
()3 are constant throughout the body. However, all investigations given above also
hold true if the aforementioned variables are arbitrary regular macro-functions
of X € (/. In this case we can also take into account the first of Egs.(3.1) and
after that pass to the analysis of the macro-stability of a body.

6. Conclusions

The obtained general relations concerning stability of highly-elastic periodic
composites under finite deformations yield the analytical basis for calculations of
different special problems. Following the general comments given at the end
of Sec.3 we can mention here the problems of macro-stability and those of
the local and non-local micro-stability. It can be seen that in the problems of
macro-stability, after neglecting the effect of the microstructure length dimen-
sion on the dynamic behaviour of the body, the obtained formulae are similar
to those of the nonlinear elasticity of homogeneous bodies. Under this approxi-
mation terms involving /% drop out from Egs.(3.8), (3.9). Hence the first new
result is the investigation of the effect of the microstructure length parameter /
on the dynamic macro-stability of the body. The second new result is the exis-
tence of the local and non-local micro-stability in highly-elastic composites. This
phenomenon is due to the micro-periodic material structure of the body and was
illustrated in Sec. 5. More general applications of the obtained results are under
consideration and will be presented in a separate paper.
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