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in a wind tunnel. A semi-direct boundary element method in the study of an in-
compressible flow in a channel was also applied by A CARABINEANU and A DrNu 
[2). They used the stream function. 

2. Mathematical formulation 

A fluid flow of velocity U00 = (Uy(l-y), 0), is placed between two walls being 
parallel to the Ox-axis. It is perturbed by the presence of an obstacle r2;, with 
the boundary r. We determine the perturbation produced and the hydrodynamic 
forces acting on the obstacle. We suppose that the walls, denoted by L 1 and L2, 

have the equations: 

L1 = {(x, y) I x E IR, 
L2 = {( x, y) I x E IR, 

y = 0} ' 
y = l} ) 

where l > 0, and xOy is a Cartesian system of coordinates. 
Also, the Reynolds number of the flow, denoted by Re, is supposed to be very 

small and hence the motion equations can be reduced to the creep equations and 
continuity equations, respectively (i.e. the Stokes equations): 

(2.1) 
divv(x) = 0, 

grad P(x) - J.Lb.v(x ) = 0, 

X E D , 

X E D , 

where v(u, v ) is the global fluid velocity, P the global pressure and J.l the dynamic 
viscosity of the fluid. By D we denote the domain of the flow (Fig. 1 ). 
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FIG. 1. 

Using the stream function 'lj; , the above equations are reduced to the bihar-
monic equation 

(2.2) tl2'lj; = 0 
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with the following boundary conditions: 

(2.3) 

where C and b are unknown constants. 
We have the following asymptotic conditions at infinity: 

(2.4) 

lim 
lxl-

Ｈ Ｑｪ［ Ｈ ｸＬ ｹ Ｉ Ｍｕ ｹ Ｒ ＨｾＭｾＩＩ＠ =0, 

81/; oy = Uy(l - y), as lxl ___.. oo. 

oV; = o ox ) 

131 

After a simple analysis, we deduce that the rate of the flow in the channel, 
denoted by Q, is given by 

(2.5) Q = C. 

On the other hand, from the boundary condition (2.3)2, we obtain 

(2.6) 

Let us now denote by <P the stream function of the perturbation flow. Using the 
form of the stream function at infinity, we obtain that the global stream function 
can be written as: 

(2.7) 1/J (x, y) = Uy
2 ＨｾＭ ｾＩ＠ + </J(x y). 

The perturbation will be evaluated from the biharmonic equation 

(2.8) t} <fy(x, y) = 0 in n, 

with the boundary conditions: 

(2.9) 
<Pj = <P j = 0, 

ＮｾＮＮＬ＠ £2 

and the asymptotic conditions at infinity 

(2.10) lim </J(x, y) = lim grad </J(x, y) = 0. 
lxl-oo lxl-oo 
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3. The Green function of the biharmonic equation in an arbitrary simply 
connected domain 

Let D be a simply connected domain in the (z ) plane, z = x + i y, with the 
boundary C, and let w = f (zo, z) be the conformal mapping of the domain D 
onto the domain lwl < 1, in the w plane, such that the fixed point zo E D is 
mapped in w = 0. 

We determine the function G(.A10, M ), where the points M0 and M corre-
spond to zo and ::: , with the fo llowing conditions: 

a) fl x,,G(Mo NI) = o, for M ::f J'vi0, 

b) in the neighbourhood of the point j'vf0, G has the representation 

1 
G(Nfo NI) = 

8
7r llvfoMI2 [In IMoMI - 1] + g(Mo, NI ), 

where the functio n g(J\110, j'vf) is a biharmonic function with respect to the point 
M, throughout the domain D; and 

c) G(Nfo, NI ) = 0. 
The foll owing theorem determines the function G. 

THEOREM. 7he function G is given by 

(3.1) G(Mo M) = Ｘ ｾ＠ lz- zol2 ln lf (zo, z) l. 

Proof. We prove that the function defined by (3.1) satisfies the conditions a), 
b), c). Because the functi on w = f( z0 , .:) defines -a confo rmal mapping between 
D and the unit disc, then it is an analytic function, with f(z, zo) :f 0 fo r z :f zo. 

Also the function log f(zo ::: ) = In lf (zo, z)l + i arg f(zo z) is analytic in 
the domain lJ, with the exceptio n of the point :::o. The function In lf (zo, :::)1 = 
Re logf(zo, :::) is a harmonic function and hence G given by (3.1), satisfy the 
condition a). Since .f'(:::, :::0) ::f 0 in the domain D including the point z = :::o 
and f (::: 0, zo) = 0, the point zo is a fir st order zero of the function f. Then, in a 
neighbourhood of this point we have: 

(3.2) f( z, zo) = (.:-- zo)<,o(z, zo), 

where ;,p(z :::0) is an analy tic function in the respective neighbourhood of zo, and 

;,p(:::, zo) :f 0. So 

C(NJ0. AJ) = 2_1:::- zol2[ln 1:::- :::ol- 1] + -
8
1 

lz- zol
2

ln el<,o(:::, zo)l, 
87r 7r 

and the last function is denoted by g(.M0, 1\1!). The condition b) is a lso satisfied. 
Since f (::: . ::o) lc = 1, from (3.1) fo ll ows the condition c). 



http://rcin.org.pl

BOUNDARY E LEMENT IVfETHOD TO THE STUDY 133 

COROLLARY. The Green function of the biharmonic equation in the domain 
r2 = {(:e, y) I .rE JR., 0 < y < l} is given by 

7r 7r 
1 ch - (x-x0) - cos- (y-y0) 

G(Mo, M) = 1:"6 [ex-x0)
2 + (y-y0)

2] ln fr. fr. , 
7r eh y (x - xo)- cos y (Y + Yo) 

(3.3) 

where Mo(::ro .. Yo) and ./III( x, y) belong to n. 

P r o o f. The conformal mapping of the domain [2 onto the interior of the 
circle lwl < 1, has the fo rm 

. _ _ exp ( T z) - exp ( T zo) 
ｊＨ ｾ ｯ Ｌｺ ＩＭ ( ) ( ) . 

exp Tz - exp ?[zo 
Performing elementary computations and applying the above theorem, we obtain 
Eq. (3.3). 

4. The integral representation of solution 

We remark that the biharmonic equation t::.2cp = 0 is equivalent to the fo ll ow-
ing system: 

( 4.1) 
t::. cp = w, 

t::.w = 0, 

where u) represents the vorti city of the perturbatio n fl ow. 
In the preceding section we have determined the Green function G for the 

biharmonic operator in the infi nite stri p [2 = {( x, y) lx E JR., 0 < y < l} . 
This function satisfies the fo ll owing equation: 

(4.2) ｴＺＺＮ ｾｇ Ｈ ｰＬ＠ q) = c5(1JJ-ql) , for 0 < 17 < l , 

where 8 is the D irac distri butio n, p(x, y) is a variable point in [2 where the 
solu tio n is sought, and q(e, 17) is a general point located on the boundary or in 
the domain [2 . From (3.3) we have 

7r 7r 
1 eh- ( x - 0 - cos - (y -17) 

G'(T,y;C77) = -16 [C:r- 0 2 + (y -77)2] In fr. fr. ' 
7r eh T ( x - O - cos T (y + 17) 

( 4.3) 
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The Green function F of the Laplace operator in the strip [2 satisfies the 
following equation: 

(4.4) l).qF(p, q) = o(IP- ql) , for 0 < 7J < l 

and is given by (see [2]): 

7r 7r 
1 eh-( x - 0 - cos - (y -7]) 

F (x y· t n) = -In l l 
ＮＬ Ｌ ｾＬ Ｌ Ｎ Ｌ＠ 4 7r 7r ) 

7r chy (x -0-cos y(y+ry) 

(4.5) 
sh 2 ｾ＠ ( x - 0 + sin 2 ｾ＠ (y - 7]) 

F 1 2l 2l 
Ｂ Ｈ ｸＬ ｹ［ｾ Ｌ ｲｹ Ｉ］Ｒ Ｗｲ ｬｮ＠ 21r ·2 7r · 

sh 21 ( x - 0 + sm 2zCY + 7] ) 

Using Green's identity for the functions cjJ and l).qG, w and G, and for the 
functions w and F, we obtain the following integral representations: 

c/J(p) = j [c/J(q) Ｐ ｾｾ ｇ Ｉ＠ (p, q) - l).qG(p, q) g: (q)l dsq 
&D q q 

(4.6) + j [w(q) 
Ｐ ｾｾ ［＠ q) - G(p, q) 

Ｐ ｾｾＺ Ｉ｝＠ dsq, 
&D 

p E D , 

w(p) = j [ w( q) ｧｾ＠ -F ::J dsq , p E D, 
&D 

where D is the domain of the fl ow, exterior to the obstacle Di and enclosed by 
the wall s La, L1• 

By 8/ Onq we denote the differentiation with respect to the outward normal 
of D, in a point q of the boundary, denoted by fJD . 

We have satisfi ed the following properties: 

(4.7) 

(4.8) 

and 

(4.9) 

F (x, O;C17 ) = ｆ Ｈ ｸＬｬ ［ ｾＬ Ｗｊ Ｉ＠ = 0, G(x, O;Cry ) = ｇ Ｈ ｸＬ ｬ ［ ｾＬＷｊ Ｉ＠ = 0, 

oF j oF oG 
ｾ＠ (x, 0; C 77) = ｾ Ｈ ｸ Ｌ＠ ｬ［ ｾ Ｌ＠ 17) = ｾ Ｈ ｸＬ＠ Ｐ［ ｾＬ＠ 17 ) 
unq an unq unq 

fJG = ｾ Ｈ ｸＬ ｬ ［ｾ Ｌ Ｑ ＷＩ＠ = 0 
unq 
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Al so, we have 

(4.9') 2.f(q) = 0 
anq 

for 1J = 0 or 1J = l . 

Using the above properties and the asymptotic conditions at infinity (2.10), 
we derive the integral representation of solution, valid in any point of the flow 
domain: 

( 4.10) p E D , 

p E D, 

where 

aF(p,q) = ..!._ [sh}- (x-On1 -sin }- (y+ry)n2 

anq 4[ ｣ ｨ ｾ Ｈ ｸＭ Ｐ Ｍ ｣ｯｳ ｾ Ｈ ｹ ＫｲｹＩ＠
l l 

_ sh T ( x - On 1 + sin T (y - ry )n2] 
1r 1r , 

chT(x -0-cos T (y-ry) 

( 4.11) 

1r 1r 
fJG(p ) 1 ch- (x-O - cos-,(y-ry) 

r ,q = -- [(x- 0n1 +(y - ry )n 2]1n fr 1r 

anq 81r chT (x-O-cosT (y + ry ) 

1 [shT(x-On1-sin T (y + 77)n2 
--. [cx- 02 +(y-ry)2] 1r 1r 

16l chT (x-O - cos T(y + ry) 

_ shT (x-O n1 +sin T (y-77)n2] 
1r 1r . 

eh T ( x - ｾ Ｉ＠ - cos T (y -ry) 
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Now, we suppose that the rigid obstacle denoted by Di with ani = r, is 
fixed. The physical implication of vanishing of the fluid velocity on the boundary 
r provides that there is no tangential velocity on r, hence 

( 4.12) ｡ｾ ｦ［＠ I = o an r l 

and so 

- = - Uy(l- y)_}j_ . ac/J I a I an r an r 
If we use the Green's identity in the domain Di, we obtain that the second 

integral term in ( 4.1 0) 1 is given by 

)
. [ ( 2 (l 17))a(D.G) 877 ] b- U17 --- . + U D.G-. - ds 

2 3 Onq anq q 
r 

. [ fJG fJ l = -U j (2ry- ｬＩｾＨｰ Ｌ＠ q) - G(p, ｱＩｾＨＲｲｹ Ｍ l ) dsq . 
unq u n q 

r 

We remark that we must satisfy the boundary conditions (2.9). Using the 
properties ( 4.7)- ( 4.9), it is easy to show that for p E D _, p0 E L 1 or L 2, 

we obtain the equality with zero on the two sides of (4.10)1. Using the Plemelj 's 
formula (see [6]) and the equation (4.10)2, we deduce the equali ty: w(po) = w(po), 
for all Po E L1 or L2. For p - Po E r, from ( 4.10), we obtain a set of two 
equations with four unknowns: w and (owjonq) on r, and won L 1 u L2• Then 
we impose the followi ng arbitra1y condition on the wall s: 

(4.13) w(:r, 0) = w(x·, l) = 0, V x E JR. 

From ( 4.10)- ( 4.13), we obtain the follow ing integral representation on the 
boundary r only: 

c/J(p) = j [w(q) ＨＩ Ｈ ｾｾ ［＠ q) - G(y, q) 
Ｐ ｾｾｾＩ｝＠ dsq 

r 

/
. [ fJG I f) l (4.14) - U . (277 - l) fJnq (p, q) - G(p, q) dnq (2ry - l) dsq, 

r 

P E r , 

w(p) = j [w(q) ｡ ｬ ｾｾ｝ｊ Ｌ＠ q) - F (p, q) ｡ｾ Ｈ ｱ Ｉｬ＠ ds9 , ]J E r. 
n q unq 

r 

The integrals which appear at the right-hand side of Eqs. (4.14) can be under-
stood as a principal value in Cauchy' sense. 



http://rcin.org.pl

BOUNDARY ELEMENT METHOD TO T i lE ST U DY 137 

Because the fluid pressure P must be 21r -periodic around the obstacle [2 we a ' 
require / az: ds = o, where a 1 at represents the differentiation with respect to 

r 
the unit tangent vector of r . If we use the property that the functions w and p 
are harmonically conjugate (see [6]), then we obtain the equation 

( 4.15) l aw 
an ds = 0. 

r 

5. Discretization of the integral equations 

If p E f, from Eqs. (4.14) and (4.15) we obtain the followin g Fredholm integral 
system: 

. 2 ( l y) J [ aG(p, q) I ow(q)l b - Uy - - - = w(q) - C(p , q)-- dsq 
2 3 anq anq 

r 

(5.1) 

I· [ aG a ] - U j (2ry - l) an: (p, q)- G(p, q) onq (217- l) dsq, 
r 

ｾ ｩＮ＼Ｍ Ｇ Ｈ ｐ Ｉ＠ = I [w(q) a F(p, q) - F(p, q) ｡ｾ Ｈ ｱ Ｉｬ＠ dsq, 
2 . Onq anq 

r 

I aw(q)d = 0 
·-) Sq ' 

. Onq 
r 

where the symbol 1 means the principal value in Cauchy's sense of the integral. 
For simpli city, this symbol will be omitted. 

Our unknowns are the functions w, aw I on on r and the constant b. 
In order to reduce the integral system (5.1) to an algebraic system, we use the 

collocation method. The contour T is approxjmated by a polygonal lin e deter-
mined by the segments !j (j = 1, 1'/ ) , and it is supposed that the midpoints 
.\ 1.

1 
Ｈ Ｎｲｾ Ｎ＠ u; ) of these segments are representative. Assuming the discretizatio n 

equations (5.1) to be sati sfi ed for (x, y) = (:t:i, y'[), i = 1, N, we obtain the 
fo ll owing lin ear system: 

(5 .2) (
f ｾＩ＠ N N (f) ) ｢ Ｍ ｕｬＧｊｾ＠ __ V, ="' w·A ·+"' __!::!__ B-. ' 2 3 L..._.- J !J L..._.- an . !J 

;=1 J = l J 

N N 

-U L(2Y.i- l)Aij + 2U L n21Bij, 
j = l j = l 
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(5.2) 

[cont.] 

N (f)w) L fJn . j dsq = 0, 
J = l Jr 

J 

i = 1,N, 

where w; = w(:r: i,yi), ＨｾｾＩ ｩ＠ = ｾｾＨ ｸ［ＢＬ ｹｩＩＬ＠ and n2(x;", yi) = (ni ,nD is the 

normal unit vector to the segment F;. 
The coefficients of the above system are given by: 

1 . . ｣ｨｾＨ ｸｩ Ｍ ｏ Ｍ ｣ｯｳ ｾ Ｈ ｹｩ ＭＷＷＩ＠
A ij =si [Cxi-Oni + Ｈｹ ｩ ＭＱＷＩｮｾ｝＠ In ｾ＠ ｾ＠ clsq 

1r r
1 

cby(xi-O-cosy(Yi + 17) 

1 j [ * 2 * 2] [shy ( xi-. On{- sin y(Yi + 77)n; -w (xi - 0 +(y; - 77) 1r ·* 1r * 
T] eh T ( x; - 0 - cos T (y i + 77) 

h 1r ( , * 1:) j . 1r ( * ) j l s T x. i - ., n1 - sm T Yi -17 n2 
- 1r 1r dsq , 

chy(xi - 0 - cos y (Yi - 77) 

1 ･ｨ ｾ＠ (xi - 0 - cos ｾ＠ (y;" - 17) 
B i.i = --

6
-j [Cxi- 0 2 +(yi -77)2] tn ｾ＠ ｾ＠ ds9 , 

1 1r r
1 

chy (xi -0-cos y (y,* + 77) 
(5.3) 

: = ｾ＠ .J [shy (:r;" - On·{- sin T. (y;" Ｋ ＷＷＩｮ ｾ＠
c,.l 4l 7r 1r 

r
1 

chy (.?;i-O-cosy(Yi + 17) 

h 1r ( ·* 1:) .i . 7r ( * ) j l s T X;-., n1 - sm T Yi - 17 n2 
- 7r 7r dsq, 

chy (xi - 0 - cos y (Yi -17) 

_ 1 chy (x;"- O-cosT(y;" + 17) 
Di; - - - jln 7r 1r dsq , i,j =1 ,N. 

· 4
1r r

1 
chy (xi- O - cos y Cvi-17) 

To evaluate the above integrals, we denote by (xi, y{) and Ｈ Ｚｺ Ｚ ｾＬ＠ YD the coor-
dinates of the ends of segment F;, in the order leaving the inside of the obstacle 
to the right. Then r i will be parametrized by taking (see for example, [5]): 

(5.4) 
'> ' j - ,.J ,, 2 ,, 1 

.r = .r.i + 
2 

t , iE [- 1, 1], 



http://rcin.org.pl

B OLT. D A RY ELEMENT M ETHOD TO THE STUDY 139 

where xj = (:r{ + ｸｾ Ｉ Ｏ ＲＬ＠ Y.i = (y{ + YD/ 2 are the coordinates of the midpoints 

of the segment l j , j = 1, N . 
From Eqs. (5.4), it fo ll ows that ds = (L / 2) dt, where L is the length of the 

segment r i, given by 

(5.5) 

The coordinates of the unit vector ni will be calculated as fo ll ows: 

(5.5') J - . 2 1 '"2 .... 1 . ( y.i - y j ｾＮｊ＠ - ｾｪ＠ ) 
n- L ,- L. 

For i = j we obtain: 

(5.6) 

f t ;; = Ｘ ｾ ｪ ｛ ｃ ｸｩ Ｍｏ ｮｩ＠ + (y£-ry)ni] tn[ch y (xi-0-cosy(Yi + ry)]cl sq 
r, 

+ _2__ j [ sh ftc.ri -Och ffi (xi -Oni -si: ftCYi + 17) cos ftCYi Ｋ ｲｹＩｮｾｬ＠
16/ r, sh2 2/(xi - 0 + sin2 2l(yi +ry)(y'j' + 17) 

· [Cx;' - 02 + (yi - ry)2] dsq, 

8;; = Ｑ ｾ ＷＡＧ＠ j [Cxi - 02 + (y;" - 17)2] tn [chy(xi- 0 - cosy(y;" + ry)] dsq 

n 

. = _2_
1 

- n 1sh21 x;- ( ch21 X; - <., n t 

[ 

i 7l' ( * ) 7l' ( "' {:) 

c" 1 7l' 7l' 4 ·h2 ( * {: ) . 2 ( * ) r, s 21 xi-'> + sm 21 Yi + ry 

n2 sm 21. Yi + 1J cos 21 y.; + 1J i . 7l' ( * ) 7l' ( * ) l 
+ 7l' 7l' ds9 , 

sh2 
21

(xi - O + sin2 
2/ yi + ry ) 

D = -- In . 1 ; · 
ll 271' 

r, L 
1 7l' L L In 2 

+ - L In - - - + - -
27!' 2/ 271' 271' 

The coefficients (5.6) may be computed numericall y, using the same technique 
as for the coefficients (5.2)- (5.3). 
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6. Numerical results 

From ( 4.1 0), we can obtain the discretization form of the total stream function 
·tj; in any point of the domain D: 

(6.1) "·(p) _ u · 2 (z v) ｾ＠ J oG(p,q)d Ｑ ｾＭＧ＠ - y - - - + ｾ ｷ＠ s 
2 3 . 

1 
1 on9 

9 

J = r ) 

N (ow) j N * j oG - L on . ' G(p, q) dsq - u L(2yj - l ) on (p, q) dsq 
J = l J r J=l r q 

J J 

N 

+ U L n2j j G(p, q) dsq, 
J=l r ) 

p E D . 

Numeri cal computatio ns of the method were performed for a fixed circular 
obstacle. It was considered that the circle had the center (Xo , Yo), 0 < Yo < l 
and the radius a. The maximum value chosen for N was 60. Also, we supposed 
that the segments ri were of the same length. 

The test of the method is given for the drag coefficient C'o, defin ed by: 

where B( q) is the angle between the unit normal vector n( q) to the boundary r, 
and the positi ve Ox-axis. Symbols 

(6.3) 
o2'lj; 

ｾ ｴｴ＠ = - P + --
oton 

denote the components of the stress tensor referred to the (t, n) axes. 
From (2.1)1 and using the foll owing property (see (8]) : 

(6.4) 
o24, - o27/J 1 o?/J 
ot2 - os2 - ｾ＠ on ) 

we obtain the drag coeffi cient C' o in the fo rm: 

2 J ( ow 1 ) 2Yo J (6.5) Co = ga2U2f4 77 on (q) - ｾｷ ＨｱＩ＠ dsq - ga3U2 w(q) dsq . 
r r 

If we assume (} = 0.8, a = 1, l = 4, U = 1, X 0 = 0, }'0 = 2, then for 
47 ::; N ::; 60, we obtain the same value for the drag coeffi cient: C'o = 7.8537. 
Also, if we choose (} = 0.8, a = 1, l = 4, U = 2, X0 = 0, Y0 = 2, and 
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47 ::; N ::; 60, it follows that C 0 = 3.92699. These remarks show the extremely 
rapid convergence of the results when the number N of discretization elements 
increases. Tn the first case the constant b is equal to 0.5, for all N 2:: 47, and in 
the last case b is equal to 0.3. 

The Table J gives the values of the drag coefficients as the function of the 
velocity U, when a = 1, l = 4, X 0 = C1-, Yo = 2. We observe that if the Reynolds 
number (Re = (gaU !2)/ J.l, (!, J.l are supposed to be fixed) increases, then the 
drag coefficient C 0 decreases. 

Table 1. Table 2. 

(j N Drag coefficient C'o !} N Drag coefficient C' o 

1 60 7.8537861 0.8 60 7.8537861 

1.5 60 5.2352625 0.6 60 10.4717147 

2 60 3.9269824 0.5 60 12.5660577 

4 60 0.4908738 

For U = 1, a = 1, l = 4, X 0 = 0 and Y0 = 2, respectively, the Thble 2 gives 
the values of the coefficient C 0 for some values of the density g. Finally, Figs. 2 
and 3 represent the spectrum of the flow in the case a = 1, l = 4, X 0 = 0, Yo = 2 
and }'0 = 2.5, respectively. 
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