Arch. Mech.,, 49, 1, pp. 129-142, Warszawa 1997

Boundary element method to the study of a Stokes flow
past an obstacle in a channel

M. KOHR (CLUJ-NAPOCA)

IN THIS PAPER the author gives an integral representation for the stream function and for the
vorticity, corresponding to the problem of the Stokes flow past an obstacle in a channel. Using the
Green’s functions of the biharmonic equation and of the Laplace equation for the infinite horizontal
strip, the above problem is reduced to a set of integral equations on the boundary of the obstacle.
The boundary element method is used to solve these integral equations. The numerical results are
given for the case of a circular obstacle.

1. Introduction

IN THIS PAPER We describe a semi-direct boundary integral method which is used to
the study of a two-dimensional Stokes flow in a wind tunnel past a rigid obstacle.
To derive the set of boundary integral equations for the stream function and the
flow vorticity, we construct the Green function of the biharmonic equation in
an arbitrary simply connected domain. As a consequence, we obtain the Green
function of the strip or of the half-plane.

The derived integral equations, which are valid in any point of the flow do-
main, are applied at the boundary of the domain resulting in a system of two
scalar Fredholm integral equations on the boundary obstacle only for the stream
function and vorticity. In fact, these equations represent the boundary integral
formulation of our problem.

It should be noted that G. BEzINE and D. BONNEAU [1] presented an alternative
boundary integral representation for the stream function in terms of boundary
distributions of the velocity, shear stress, and the normal derivative of the vorticity,
corresponding to a two-dimensional Stokes flow. Also, C.J. COLEMAN [3] has
developed a semi-direct boundary integral representation in complex variables,
using the stream function and the Airy stress function for the study of a plane
creeping viscous flow.

Let us remark that a direct boundary-integral method for the solution of Stokes
equations in an arbitrary two-dimensional domain was given by J.J.L. HIGDON
[7]. He used the fundamental solution of the Stokes equation and he obtained
a representation of the flow in terms of the velocity, the pressure and the stress
tensor, respectively.

A nice direct method of integral equations was recently proposed by L. DRAGOS
and A. DiNU [4] for the study of a subsonic flow with circulation past thin airfoils
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in a wind tunnel. A semi-direct boundary element method in the study of an in-
compressible flow in a channel was also applied by A. CARABINEANU and A. DiNu
[2]. They used the stream function.

2. Mathematical formulation

A fluid flow of velocity Uy, = (Uy(l-y),0), is placed between two walls being
parallel to the Oz-axis. It is perturbed by the presence of an obstacle {2;, with
the boundary /. We determine the perturbation produced and the hydrodynamic
forces acting on the obstacle. We suppose that the walls, denoted by L, and L,
have the equations:

Ly ={(z,y)| z€R, y=0},
Ly = {(z,y)| zeR, y=I},
where [ > 0, and Oy is a Cartesian system of coordinates.

Also, the Reynolds number of the flow, denoted by Re, is supposed to be very
small and hence the motion equations can be reduced to the creep equations and
continuity equations, respectively (i.e. the Stokes equations):

divv(z) = 0, T €D,

(2.1)
grad P(z) — pAv(z) = 0, zeD,

where v(u, v) is the global fluid velocity, P the global pressure and y the dynamic
viscosity of the fluid. By D) we denote the domain of the flow (Fig.1).
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Using the stream function 1>, the above equations are reduced to the bihar-
monic equation

(2.2) A% =0
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with the following boundary conditions:

(2.3) ""‘"Ll =0, ‘:/:]Lz =C, | =b

where (' and b are unknown constants.
We have the following asymptotic conditions at infinity:

. T Z ad’
hx Uy (=-Y ) = =
lim (l,(.l,y) Uy (2 3) 0, =0,

|2

(2.4) ]
gi/ = U ([ .
By =Uy(l-y), as |z|— oc.

After a simple analysis, we deduce that the rate of the flow in the channel,
denoted by (), is given by

(2.5) Q=C.
On the other hand, from the boundary condition (2.3),, we obtain

713
(2.6) C'=Q=%.

Let us now denote by ¢ the stream function of the perturbation flow. Using the

form of the stream function at infinity, we obtain that the global stream function
can be written as:

B [
2.7) b= U (5 - §) + o)
The perturbation will be evaluated from the biharmonic equation
(2.8) A2d(z,y) =0 in (2,
with the boundary conditions:

4|
£

I 1
, _ - ’,’2 __.Ji
(’b‘l'—b Uy (2 3)

and the asymptotic conditions at infinity

= (’f)‘Lg =0,
(2.9)

F

(2.10) E lkim' o(x,y) = | _llim’ grad ¢(z,y) = 0.
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3. The Green function of the biharmonic equation in an arbitrary simply
connected domain

Let D be a simply connected domain in the (<) plane, = = z + 1y, with the
boundary (', and let w = [(zg, z) be the conformal mapping of the domain D
onto the domain |w| < 1, in the w plane, such that the fixed point z5 € 1) is
mapped in w = 0.

We determine the function G/(Mg, M), where the points My and M corre-
spond to zy and z, with the following conditions:

a) A%, G(My, M) =0, for M # M,

b) in the neighbourhood of the point My, (7 has the representation

G(Mg, M) = %41\-[@1? [In|MoM| - 1] + g(Mo, M),

where the function ¢(Mg, M) is a biharmonic function with respect to the point
M, throughout the domain [); and

¢) G(My, M) = 0.

The following theorem determines the function .

THEOREM. The function (i is given by
; 1 .
(3.1) G(My, M) = 87]: — zo*In | f (20, 2)|-

Proof. Weprove that the function defined by (3.1) satisfies the conditions a),
b), ¢). Because the function w = f(z0, z) defines a conformal mapping between
D and the unit disc, then it is an analytic function, with f(z, z9) # 0 for z £ Zp.

Also the function log f(z0,2) = In|f(z0.2)| + iarg f(z0,z) is analytic in
the domain 1), with the exception of the point zy. The function In | f(z0,2)| =
Re log f(z0, z) is a harmonic function and hence (i given by (3.1), satisfy the
condition a). Since f'(z,2) # 0 in the domain [ including the point z = 2
and [(zg. z9) = 0, the point zq is a first order zero of the function f. Then, in a
neighbourhood of this point we have:

(32) f(z,20) = (z — 20)(z, 70,
where (=, o) is an analytic function in the respective neighbourhood of =y, and
;(i :U) 7"5 0. So

1 2 1 Bte
(! My= —|z-z z—zo| — —|z = zo|" Ine|@(z, 20)l,
G(My. M) = -z = zoflin|z = 2ol = 1]+ g-lz = 0l Inelp(z, o)
and the last function is denoted by g(Mg, M). The condition b) is also satisfied.
Since f(z. )|~ = 1, from (3.1) follows the condition c).
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Cororrary. The Green function of the biharmonic equation in the domain
2 ={(x,y)] xeR, 0<y<l}isgiven by

ch %(.1‘ — () — COS %(y—yo)

) 1
(3.3)  G(My, M) = — |[(z —20)* + (y — yo)*|In ,
167 [ ] Ch%(ar—;ro)—cos§(y+y0)
where My(z¢.y0) and M (z,y) belong to 2.

P r oo f. The conformal mapping of the domain {2 onto the interior of the
circle |w| < 1, has the form

P i V0

(7)o (7)

Performing elémentary computations and applying the above theorem, we obtain
Eq.(3.3).

4. The integral representation of solution

We remark that the biharmonic equation A%¢ = 0 is equivalent to the follow-
ing system:

Ap = w,

4.1
@ Aw = 0,

where w represents the vorticity of the perturbation flow.

In the preceding section we have determined the Green function (7 for the
biharmonic operator in the infinite strip 2 = {(z,y) [z € R, 0 <y <[}

This function satisfies the following equation:

(4.2) A2G(p,q) = 6(p—ql),  for 0<p<lI,

where 6 is the Dirac distribution, p(z,y) is a variable point in {2 where the
solution is sought, and ¢(£,7) is a general point located on the boundary or in
the domain {2. From (3.3) we have

ch”(z—€) - cos T(y =)
™

ch’(x—€) = cos Ty +7)

]
G(r,y;6,m) = T [(:1‘ —E + (- 77)2} In

(4.3) % L
sh® —(x =€) +sin“ —(y—n)
Gy = o= [ =€ + (g —n)]in |2 z

8w . T g in2 T o ’
sh 21(.1. &) +sin zl(y-!-n)
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The Green function F' of the Laplace operator in the strip {2 satisfies the
following equation:

(4.4) AF(p,q)=06(p—-4ql), for 0<p<l

and is given by (see [2}):

T T

1 ChT(I—f)—COST(y—W)

F(l7,y;§ﬂ7)——1ﬂ T T 3
4 chT(mnf) — cos T(y+n)

4.5

(43) 1 sh? 2 (2 — &) +sin? Z(y—n)

Fe,y:6m)=5-In | —2 .
y 271' 277' o9 ™

sh ﬁ(m—§)+sm ﬁ(y+n)

Using Green’s identity for the functions ¢ and A,G, w and G, and for the
functions w and /', we obtain the following integral representations:

o0 = [ 602200~ 8,66.0 520 s
aD
(4.6) + [ e@?522 g, fﬁ?q ds;, peD,
ap q q
F 9,
o= [ g - Fpe| s veD
D ! A

where [ is the domain of the flow, exterior to the obstacle {2; and enclosed by
the walls Lo, L.

By d/dn, we denote the differentiation with respect to the outward normal
of D, in a point ¢ of the boundary, denoted by 9D.

We have satisfied the following properties:

47 Febbn=Fobin=0,  Geo6n)=Cehon=0
oF r)G
68 go| @OEn = G lEn = 5iE 06
c
? (@M = 0
and

(4.9) AG(x,0,€,m) = AG(z, 1;6,m) =0
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Also, we have
9 = fi = =i,
(4.9 c?nq (q) or =0 or n=1

Using the above properties and the asymptotic conditions at infinity (2.10),
we derive the integral representation of solution, valid in any point of the flow
domain:

o) = [ [w(q)g%% G, )a“’(")] dsq

r Ny
r

(410) ¢ [zt peD,

LiuL,

o) = [ | [ QL 2 0 _ (p,%ﬂ ds,

T

8¢(<1)

00) (846 - 4,

+ [e@ga.  peD.

LiuL,
where
m . T
BF_(]), Q) _1 ShT(*r_é)”l —Sin T(?I‘H?)”Z
Ong 4| enT(z—-€)—cos T(y+n)
sh-(z —E)ny +sin %(y—v;)nz
chZ(z-§)—cosT(y-n) |
™ g
)G h™ (2~ €) — cos T-(y—1)
(}(r(p,([) 1 c l ]
4.11 — 2 = ——[(x = ny + (y — n)nz]In
e dny L Lt il ChE(;L‘—f)—COSE(’U+71)

sh(z—En1 -~ Sml(y'ﬂi)nz
ch (2~ €) - cos T-(y +1)

shl(w-é)mﬂmj(yn)nz}
ch(w-&)—cos T(y-n) |

2 [ €7 + - Y] {
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Now, we suppose that the rigid obstacle denoted by (2; with d¢2; = I, is
fixed. The physical implication of vanishing of the fluid velocity on the boundary
[" provides that there is no tangential velocity on /°, hence

|
(4.12) In = 0,
and so 96 p
Bn|,. = ~Ul-v)50

If we use the Green’s identity in the domain Q;, we obtain that the second
integral term in (4.10), is given by

' . [ 79\\ 0(AG) o
o R | y O .
[j [(l)— Un (2 3)> an, + UAG ()nq] ds,

aG ; J
= {7, / {(217 - [)Td—n—q(p’ q) — G(p, q)m(Zn —1)| ds,.

I

We remark that we must satisfy the boundary conditions (2.9). Using the
properties (4.7)—(4.9), it is easy to show that for p € D — py € L) or Ly,
we obtain the equality with zero on the two sides of (4.10);. Using the Plemelj’s
formula (see [6]) and the equation (4.10),, we deduce the equality: w(py) = w(pg),
for all pg € Ly or Ly. For p — py € I', from (4.10), we obtain a set of two
equations with four unknowns: w and (Jw/dn,) on I', and w on Ly U L,. Then
we impose the following arbitrary condition on the walls:

(4.13) w(x,0) = w(z,l) =0, VzeR

From (4.10)-(4.13), we obtain the following integral representation on the
boundary /" only:

G(p, q w(¢
o) = /[ 0 - 6.0 )7(0’)}

oG d .
- - : : —2n = 1)| ds, . pel,
(4.14) U / [(21/ l)anq G(p, q)anq(2r; /)] ds, pe
w(p) = / { (q )dl (1) (/) - F(p.q)w] ds, , pel.
Mg

T

The integrals which appear at the right-hand side of Eqs. (4.14) can be under-
stood as a principal value in Cauchy’ sense.



BOUNDARY ELEMENT METHOD TO THE STUDY 137

Because the fluid pressure /> must be 27-periodic around the obstacle (2, we

. [Op - . - ;

require / ()_]i ds = 0, where 0/0t represents the differentiation with respect to
;,«

the unit tangent vector of /. If we use the property that the functions w and p

are harmonically conjugate (see [6]), then we obtain the equation

(4.15) g—:ds = 0.

5. Discretization of the integral equations

If p € I', from Eqgs. (4.14) and (4.15) we obtain the following Fredholm integral
system:

b0 (5-8) = [ |0 522 - 6052 s

an,

A
-U /l(ZU—l)) (. q) — G(p, q)) (!(27/ )} ds,

(5.1) PP / ()()1«(1 ,q) o ())w(q) ds
2=\ / by P d an, |0
dwla)
/ dn, 8= U,

fa

where the symbol ' means the principal value in Cauchy’s sense of the integral.
For simplicity, this symbol will be omitted.

Our unknowns are the functions w, dw/dn on " and the constant b.

In order to reduce the integral system (5.1) to an algebraic system, we use the
collocation method. The contour /' is approximated by a polygonal line deter-
mined by the segments /), (j = 1,N), and it is supposed that the midpoints
M;(x%.y7) of these segments are representative. Assuming the discretization
equations (5.1) to be satisfied for (x,y) = («7,y7), ¢ = 1, N, we obtain the
following linear system:

L Y Jw
52)  b-Uy: (-— _) }:w74,,+§:(d”)
N

-U Z(zuj = [)A” + 2[;‘72 ilng,‘j .
7=1

i=1
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N
(5.2) (d_w) /dsq =1,
[cont.] : on j

_wz-zwaﬁz((h) 5, i=TN,
0 Ow . e s
where w; = w(x},y)), (d—:;) = a—j:(;r;“,y;‘), and mp(z},y7) = (nj.n5) is the
(]

normal unit vector to the segment /.
The coefficients of the above system are given by:

Cope o chT(@—O)—cos T -n)

Ay = o= [ [@i-Onf + @i -mmd]in—— Lo
i chT(Ie —£) —cos 7(3!5 +n)
Ll J
= [ [ - €7 + i - Y] T (;i‘ o B %(wn)nz
chT(;rj—f)—cosj(y;H;)

n

s,

sh »Tli (z] - E)ni —sin %(y? - 'r))né

d8y ;

ch 7 (af —€) ~ cos T(y7 1)
ch (27 ~€) —cos 7y =)

1
53) B = __/ (=) + (yr—n)?] In —L ! 50,
16"} [ ] ch—(;r’-‘~§)—cos T(y;+n)
1 7 sh?(;z )n ((/, +)7)1?2
(.'g,' = = / :
- 4/ ¥ _ - i
r, Ch[(-u §) —cos l(yz +1)
sh%(;z"{—{)n-{ —sin %(y;‘—n)né
ds, ,

Ch%(w? —{)—cos z}(i/? =)

ch (a7 —€) —cos T(y7 +7)
,DU:_—/]n ] L ds,, i.j=1N.
4y chr(af-€)-cos (i~ 1)

To evaluate the above integrals, we denote by (;1'{, y{ ) and (;1,‘-5, y-zi) the coor-
dinates of the ends of segment /7, in the order leaving the inside of the obstacle
to the right. Then /7; will be parametrized by taking (see for example, [5]):

e yl — o
ol | =+ 279 4 eo1,1],

(5.4) =2+ 5 T Y=y, 5
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where 1% = (] + 23)/2, y7 = (y] + y3)/2 are the coordinates of the midpoints
of the segment [, , j = 1, V.

From Egs.(5.4), it follows that ds = (L/2)dt, where L is the length of the
segment [, given by

(5.5) L= \F—z Jl).

The coordinates of the unit vector n/ will be calculated as follows:

; PO O T
(5.5 n ( I T :

For : = j we obtain:

Ay ] (27 =E)ni + (7 =m)nj)In [ch%(.rf—ﬁ)—cos %(y:+1])] ds

h (e " ot — Bt —dln T i
/ sh 3y (w7 =E)eh 577 = Ony — sin 55(y7 +n) cos 57 (y7 +1)n;
B L s
! sh22 (w7~ €) + sin? Z(y7+0)(y7 +1)
@r -0+ (- )] dsy
B = —1—] [(l"-‘—{)z + (y; —1 )2] In [Ch z(-L“-‘—f) — cOos ZTh—(y’-" +7])] ds
1 167“-1* 'y J / l =2 [ Ji q

1

1 2 Toeod  ive LI S
(5.6) - ”—W/t In [Chﬁ(-ﬁ xy)l — cos 21(\(/1 yz)t] dt,

-1

Cu = / ]115h2l(1 ﬁ)Ch%("E"(_f)711
4l /(1 ~ &) + sin? —(y1 +1)

7r *
712 sin ﬂ(yi +1) cos Z(yi +1)

” ds
2T, s BT L
— (a7 =€) + sin® —(y;
h?7 (a7 =€) + sin® 25 (7 +7)
1 7 T L9 T
= sh — (2% — —(y* + n)ds,
D;; 27‘_‘/ln\/sh 2/(1l £) + sin 21(‘%-“])(5’
I, L
Lln—=
e f
—Ll At 2
TR T =

The coefficients (5.6) may be computed numerically, using the same technique
as for the coefficients (5.2)-(5.3).



140 M. KoHr

6. Numerical results

From (4.10), we can obtain the discretization form of the total stream function
v in any point of the domain [):

6.1) U([))_UJ< ) Z f()(’(M)l

dn,

N

Z(an) /G ®, Q)déq_Uz(z j l)/d (p, q)ds,

i=1

+] Zn,z]- j G(p,q)ds,, peD.
= p

Numerical computations of the method were performed for a fixed circular
obstacle. It was considered that the circle had the center (Xy, ¥p), 0 < Yy < !
and the radius «. The maximum value chosen for N was 60. Also, we supposed
that the segments /; were of the same length.

The test of the method is given for the drag coefficient (', defined by:

(6.2) T / (T (q) 08 8(q) — T0n(q) sin 6(q)} ds, ,
%Uﬂz[ J214 1

where /(¢) is the angle between the unit normal vector n(¢) to the boundary [,
and the positive Ox-axis. Symbols
9% oy 9% . O
YR 3 Gy = g = e O'gt=—]' ——
dton an?  Ot2 dton
denote the components of the stress tensor referred to the (t, n) axes.

From (2.1); and using the following property (see [8]):
O 0% 10
o2~ 9s2  adn’

(6.3) Opn =—FP =2

(6.4)

we obtain the drag coefficient ' in the form:
, Ow 2Yp ,
(6.5) Cp = ”2( 1274 /U <d W)= W(Q’)) dsq — W[fw’((l) dsg .

If we assume o = 0.8, a = 1, / =40 =1, Xg =0, Yy = 2, then for
47 < N < 60, we obtain the same value for the drag coefficient: C'p = 7.8537.
Also, if we choose p = 08, a = 1, =4 U =2, Xy =0, ¥y = 2, and
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47 < N < 60, it follows that ('p = 3.92699. These remarks show the extremely
rapid convergence of the results when the number N of discretization elements
increases. In the first case the constant b is equal to 0.5, for all N > 47, and in
the last case b is equal to 0.3.

The Table 1 gives the values of the drag coefficients as the function of the
velocity (/, when a = 1, [ = 4, Xy = 6, Y = 2. We observe that if the Reynolds
number (Re = (oal’l*)/y1, o, jt are supposed to be fixed) increases, then the
drag coefficient (', decreases.

Table 1. Table 2.
U N | Drag coefficient C'p 0 N | Drag coefficient Cp
1 60 7.8537861 0.8 | 60 7.8537861
1.5 ] 60 5.2352625 0.6 | 60 10.4717147
2 | 60 3.9269824 0.5 | 60 12.5660577
4 | 60 0.4908738

Forl/ =1,a=1,1=4, Xy =0 and Yy = 2, respectively, the Table 2 gives
the values of the coefficient (', for some values of the density p. Finally, Figs. 2
and 3 represent the spectrum of the flow in thecase a = 1,/ =4, Xy =0, Yy = 2
and Yy = 2.5, respectively.

http://rcin.org.pl
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