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A boundary integral equations method for asymmetric Stokes
flow between two parallel planes

M. KOHR (CLUJ-NAPOCA)

IN THIS PAPER we apply a direct boundary integral equations method to Stokes
flow past a smooth obstacle, occurring between two parallel planes. The problem is
formulated exactly as a system of linear Fredholm integral equations of the second
kind, over the surface of the obstacle. It is shown that this system has a unique
continuous solution when the boundary of the particle is a Lyapunov surface and the
velocity distributions on the same boundary is continuous. The numerical results are
obtained by a standard boundary element method.

1. Introduction

THE MOTION OF A BODY of a simple shape in a viscous fluid between parallel pla-
nar boundaries, has been the subject of many studies. For example, P. GANATOS,
R. PFEFFER and S. WEINBAUM (see [7]) gave a numerical method of analysis
for the motion of an asymmetric Stokes flow between parallel planes induced
by the rotary or translatory motion of a sphere. Also, a special case of the flow
due to the rotation of a sphere, considered by the above mentioned authors,
was investigated by W.W. HACKBORN (see [8]). This author presented an ana-
lytical method for the asymmetric Stokes flow between parallel planes due to
a three-dimensional rotlet whose axis is supposed to be parallel to the planes.
Using the periodic Green functions, C. POZRIKIDIS (see [14]) investigated the
creeping flows in two-dimensional channels. L. DRAGOS and A. DINU (see [2, 3])
determined a direct boundary integral method for subsonic flows with circulation
in two-dimensional channels.

The aim of this paper is to give a boundary integral method for an asymmetric
Stokes flow between two parallel planes and in the presence of a rigid obstacle.
The corresponding Green's functions are found. By using these functions, the
velocity field is determined as a sum of a single-layer potential with a double-layer
potential. The properties of the double-layer and single-layer operators secure the
existence and uniqueness results of the solution.

2. Mathematical formulation

The configuration of an asymmetric Stokes flow of a viscous incompressible
fluid, induced by the slow motion with the velocity Up, of an arbitrary rigid
particle 2!, between two parallel, rigid planes Py and P, is illustrated in the
Fig. 1. We suppose that S, surface of the particle, is a Lyapunov surface (see [9]).
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Let Uy and po be the velocity and pressure fields of an undisturbed Stokes
flow in the domain with the boundaries Py and P;. These planes Py, P; have
the dimensionless equations

(21) Py ={(x1,z2,73) ER*| 23 = —d}, P1={(z1,22,73) € R*| 23 =d},

where d is a positive constant. Also, the velocity Uy, and the pressure p, satisfy
the following Stokes system of dimensionless equations

(22) AUx(z) - Vpw(z) =0, for z=(z1,25,23) €R’, |a3| <4,
(2.3) V-Us(z) =0, for z=(z1,23,z3) €R? |z3]<d,

with the nonslip boundary condition
(2.4) Ueslx) =0, for z€Py or P (ie. z3 = #d),

where A and V are three-dimensional Laplace and the gradient operators.

Let uy, p; be the velocity field and the pressure, respectively, of the total flow,
which results from the presence of the given obstacle. We denote by u = u; —Ug,
P = P1 — Poo, the velocity and pressure fields of the disturbed flow. If we suppose
that the Reynolds number of the flow (u;,p1) is very small, then the velocity u
and the pressure p satisfy, as a first approximation, the following Stokes equations
(2.5) Au(z) — Vp(z) = 0, for z € 2,

(2.6) V-u(z) =0, for z € f.
Here 2 is the domain exterior to the obstacle, with the boundaries S, Py and P;.

The velocity field satisfies the nonslip boundary conditions
(2.7) u(z) = Up(z) — U(2), for z €S,

(2.8) u(z) =0, for z€Py or Py (ie. x5 = %d),
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A BOUNDARY INTEGRAL EQUATIONS METHOD 1169

as well as the following conditions at infinity

(2.9) u(z) — 0, p(z) = 0, as |z| = o0,

where |z| = y/2% + 23 + 2% is the usual Euclidean distance in R?, between the
point z and the origin O of the fixed orthogonal system Ozzyx;.

3. Construction of Green’s functions

Let G(G;;) and q(g;) be the Green tensor and pressure vector of the Stokes
equations (2.5), (2.6), in the infinite domain, with Py and P; as boundaries.
Additionally, the Green function G becomes zero when its pole is located on any
of the walls. Thus, the next equations and conditions are satisfied

3 .
(31)  AGii(z,y) - 53—%(x,y) = —5,;0(2 — y),
3 8G;j s
(32) - Bee (z,y) =0, for y=(y1,42,93) ER®, |ys| <d,
i=1 '
(3.3) Gij(z,y) = 0, for ys=d,
{34) G;’j(T,y) = 0: Qi(xiy) e Or as lyI —+ 00,

where § is the Dirac distribution and d;; = 1, for i = j and 6;; = 0 for i # j.
The Green’s functions G and q are determined in the following form:

(35) G("ﬂ:! y) 7= E{$ Py y) + D(.'.'C, y)s q(‘r)y) = e(x - y) + d(:"‘:r y.):

where E(Ej;), e(e;) are the fundamental solutions of the Stokes equations in the
whole space and D(D;;), d(d;) represent complementary functions, such that the
null conditions (3.3) are satisfied.

In fact, E and e solve the following Stokes problem:

3 A
(3.6) AEij(z —y) — 5;( ~y) = —8;0(z — y),
3
9Ei =
(3.7) ; B—y,-(x —-y) =0,
(3.8) Eij(z —y) — 0, ei(z —y) = 0, as |y| —= oo.

The functions D and d are solutions of the Stokes equations and the conditions
given below:

(39) AyD‘ij(I,y) = %(I! y} =0, for yE R3| iy3| <d, tsj = rj:
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(310) Z ay (m‘!y) =0, for yEe R 3 |y3| < d)
i=1 ‘
(311) -Dij(ma y) = _Eij(x - y)) for yE Rs! yg.= :td: zl} = 113!

(3.12)  Dyj(z,y) — 0, di(z,y) =0, as |y| = oo.

The fundamental solutions E and e are given by (see [1])

1 1 (zi —yi)(z; — yj) . . _Tw
343 Ei(x — 2_[ + . J:|| i,j =1,3,
( ) i ) 87 Ljz -y |z — y[? J
1 zm—w A
(3.14) e(z—y) = 47r.|:c—yf3 . $=1 3

We seek the regular parts D and d of G and q in the following form

(3.15) D;j(z,y) / Ei(z—y)a (J)(:r, z)ds;+ / Ei(z—y) m(m z)ds; ,

z3=—d za=d
(3.16)  dijz,y) = f ex(z — y)a (z,2) ds. + / ex(z — y)BY (x, 2)ds. .
.?.‘3:—d Z;;—d

It is easy to see that the functions D and d satisfy the Stokes equations (3.9),

(3.1 ) and the asymptotic conditions (3.12). The unknown densities afj, ﬁ(_j),
k,j = 1,3 will be solutions of the following integral equations

(3.17) /E!L 21 —y1,22 — Y2, —d — y3)a m( 2)dz dzp
R?
+ / Ei(z1 — 1,22 — y2,d — ys)ﬁf}(z, z)dz dz; = —Ejj(z — y),
R2
for yeR3 y3==+d

In order to solve this integral system, we apply the Fourier transform F, with
respect to the variables y' = (y1,y2) (see [18])

(3.18) Fo() = @ [V dnd, €= (@& R
R2

319 FU) = G [ VWO, =) €R,
R?

F~! being the inverse Fourier transform.
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From (3.15) and (3.16), we obtain

(3.20)  FDi;(&2,y3) = FEx(&;0,—d — ys)}'a ) (& z)
+ FEy(&60,d— y3)FBY (6;2), 4, =T1,3,

(321)  Fdj(& z,ys) = Fer(£;0,—d — y3) Fa) (¢; )
+ Fer(£;0,d — y3) FBY) (¢;2),  j=1,3.
On the other hand, from (3.17) we obtain the following linear system with
the unknowns }'am(f z) and fﬁm(ﬁ;x), ki=1.3

(322)  FEu(£0,00Fal!) (¢;2) + FEx(&;0,2d)FBY (¢; z)
= —FE;;(§; ', x3 +d),

(323)  FEu(&0,—-2d)Fal) (&) + FEuw(£0,00F8Y (€; 2)
= —FEy(& o 23 —d),
6,5 =13, 2’ = (z1,22) € R

It is convenient to write E and e as follows (see [5]):

1
(3.24) E(z —y) = g-[1A8y¢(z —y) = VyVyo(z — y)l;
. 1
(3.25) ez —y) = —gVyAy¢(x - y),
where
(3.26) dz—-y)=le—yl= \/(3»‘1 y1)% + (22 — y2)? + (w3 — y3)?.
By using the following properties of the Fourier transform (see [18])
(3.27) V™ (Fo) = F((—iz)™),  F(V™o) = (i)™ Fv
2
withm = Y m;, 2™ = z["a5? and £™ = £"1£3"2, we obtain
i=1
(3.28) FB(§; 223 — ) = = ge ¢ Felwl. g,

where the matrix A has the form (see, also [5])
24

2 X >
Tl m + |z3 — yﬂh%if %‘%} + |z — yalgﬁg'f} —i(z3 — yS}ﬁﬂ
2
(329) A=| 4% tlny-ul -+ o -wlfh i@ -
__'i(x:i_yﬁ)% _1:(33_9'3)% —i—é—i—]xa_ysl
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In a similar manner, we obtain

Ve daa.am o - '
(3.30)  Fe(&a',zz —y3) = —58_"€ @ g~ lEl(@s—vs) (12 % sgn(zz — yg)).

We denote by B, C, D, H and Q the following matrices:

+ |§2 e 0
(3.31) B=—i %f;_ _%ﬂﬁ, o |

0 0 —1

(2 + S +oad S+l 2ify
(332) €= —418’2'“ S8 odls  -Z+ 2 -2 |
\  -2dif} —-2di % - —2d
(2 + S +oafth S8 +248  2dify
@3 P= —%e'zi‘f‘ G 1ol -+ S+l 2aify |

\ 2di £} 2di £ ~q—2d

(334) H= _%e—ie-:*e—mumn

“Htfhrrdf 4R (htmtd il rdf

Ez(ﬁ—f—Is-l-d) _T"'I+_T}'( +23+d) —i[$3+d)% )
—i(z3 + d) & —i(zs + d) & —i — (@3 + d)

(3.35) Q= _:}e—i&r’e—lfl(n—l)
—l%[+§| (]%I—m-l-d) “f’(]%[—m3+d) —é(xg-d)l%
1 Ez y . 2
8 (- o3 +d) —%+Ef,(lﬁ—m3+d) ~i(zs — d) &

-'%'(xs = d)% —i($3 — d)% —1%{ +x3—d

Using the above notations, the linear system of equations (3.22), (3.23), be-
comes

(3.36) B-aa+Cb'=H, D.a+B:b=Q, i=1,3,
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A BOUNDARY INTEGRAL EQUATIONS METHOD 1173

where
Fai (& z) 76 (& 2)

337) a'=|Fal)(gz)|, b =|FaP(E2)|, i=T13
Fof (€ ) FA (& 2)

From (3.20) and (3.21), we obtain
(338)  Dyla,y) = [ €€ V[FBa(Ei0,~d - yo)a]

R?
+ FEi(€0,d — y3)b} | dyadyz,

(3.39) ej(z,y) = / eV [-’Fé‘k(é;o. —d — y3)al, + Fex(;0,d — ya}bf;] dy1dys ,
R?

i =y

4. Integral representation of solution

The Green function G satisfies the condition (3.3). When the pole z ap-
proaches the point y of Py or Py, G becomes singular. On the other hand, this
function must vanish, due to (3.3). Thus, we obtain the following condition

(4.1) G(z,y) =0, for z€Py or P, (i.e. for 3= £d),
YyeR? |yl <d

As a consequence of (4.1) and from the Stokes equations (3.1), we deduce
(4.2) q(z,y)=0, for z€Py or P, VyeR® |yl <d

Using Green’s function G and the pressure vector q, we determine the stress
tensor T(Tj;x), given by

dGy;

0G;;
4.3 Tiie(z,y) = —qj(, ¥)0ix + —2(z,y) + z,Y).
(4.3) iik(7,y) = —qj(z, y)dix ™ (z,y) B, (z,y)
By using the properties (4.1) and (4.2), we obtain
(4.4) Tiik(z,y) =0, for z€Py or P1, i,5,k= 13

Hence, the Green function G, the associated pressure vector q and the stress
tensor T, vanish when the pole of the Green function is located on the planes Pp
and P;. Additionally, we have the following asymptotic properties

(4.5) Tije(z,y) =+ 0, as |z] - oo
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The pressure vector q = q(y,z) satisfies the following continuity equation
(see [10]):
3. By,
1
(46) ﬁ{ys‘r) =0, for - Y, |y3| <d,
i=1 9yi
and, hence, it can be considered as an acceptable solution for the equations of
the Stokes flow, due to a point source placed at z.
Let P = P(z,y) be the pressure associated with the velocity q(y,z). Then
we have the following equations:

aP [
(47)  Aygily,2) — —(z,9) =0, for z#y, |lysl<d, i=1,3,

Ayi
with the boundary and asymptotic conditions given below
(4.8) gily; @) = 0; for yePy or Py,
(4.9) qi(y,z) =0,  P(z,y) >0, as |y = oco.

The pressure tensor P(P;;), associated to the stress tensor T, is given by the
following equalities:
dq;i dq;

410) R L = _P 3 & 5£'+_“_';$ -+ ===\ T 3!:1:_3
( iy, ) (y, ©)di; 6%(9 ) c?yf(y ) )

Now, we can consider the Stokes flow (u,p) written in the form

(4.11)  ui(z) = ij;k(w,y)nk(y)soj(y)day +fG;-j(y.m)saj{y)doy,
S -1

(4.12) p(z) = ]ij(y,-’ank(y)%(y)day+/qj(y‘$)a0j(y)day.
S S

where n(ni, n2, n3) denotes the unit outward normal vector to 2!, and do, de-
notes differentiation of the surface element of S, with respect to the point y.

From (3.1) - (3.4), (4.1) - (4.10) we deduce that u and p, given by (4.11), (4.12)
satisfy the Stokes equations (2.5), (2.6) in 2 and 2!, respectively. Also, the null
conditions (4.9) and the asymptotic conditions (2.9) are fulfilled.

In order to determine the unknown density ¢ : § — R?, ¢ = (1, v2, ¢3), we
use a set of properties specified below. For this end, we consider the following
double-layer and single-layer potentials:

(4.13) Vie(z) = /Tjgk(m,y)nk(y)fpj(y) doy, =13 e U@,
s

414)  Vie(z) = fG,'j(y,:c)ipj(y)da‘y, i=T3, zenRuUa,
s

where the function ¢ belongs to the class of functions continuous on S.
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A BOUNDARY INTEGRAL EQUATIONS METHOD 1175

PROPERTY 1. The single-layer potential V;?g, i = 1,3, is a function continu-
ous across the surface S, i.e.

(4.15) lim V2e(z')= lim V?e(a'), Vze€S
";'E"E}S J:_étﬂels

PROPERTY 2. (see [10, 13]). The double-layer potential V'¢p, i = 1,3, has
two different values on the two sides of S, given by

1
(4.16) lin}es Vie(z') = :*15501‘(33) - f Tjik(z, y)nk(y)ei(y)doy, Yz €S,
=z
5

where the plus sign is applied for the external side of S (in the direction of the
unit normal vector n) and the minus sign is applied for the internal side of S.
Symbol PV means the principal value of the integral.

We remark that the kernels T (x, y)ni(y) and Gyj(z,y) of the double-layer
operators and single-layer operators, respectively, become singular when the
point y of S approaches the point z of S. If S is a Lyapunov surface, then
the kernels become weakly singular.

In fact, the kernel K;;(x,y) = Tjir(z,y)ni(y), can be written as

3 or ar dar

4.17 Gi(ey) = -3~ :
( ) Ix;._;(ﬂ“y) 4712 6(;1;1-—9‘1') 6( y_',') Bny

+ K' (z,y),
where Ii is a continuous function. Also,

or

< Ar%,
Bny

where A > 0, 0 < a < 1 is the Lyapunov constant (see [12]), and r = |z — y|.
Hence the first term of the right-hand side of the above equality, behaves as
r®~% for y — x, and the kernel K;; is weakly singular.

In an analogous way we can show that the kernel of the single layer operator
is weakly singular.

In this case the operators (4.13) and (4.14) are linear and compact on the
space of continuous functions on S ( see (11, 12]).

The stress tensor S8° of a flow (v?, p%) has the following components
0 - 81.?? 81)2 i
(4.18) Ty(w) = 2@ + o (@) + 5Le), =T

and the stress field T of the flow is given by T = S%n.
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PROPERTY 3. (see [5]). The stress field T'(7}, T3}, T4), corresponding to the
single-layer potentials (4.14) and the associated pressure, on the two sides of S,
has two different values. On the external side of S, we have

PV
; 1 T3
(419)  lim THe) = ~50i(2) + mu(e) [ Tin(w,2)oilu)dsy, i=T3

z!—z€8

z'en S
On the internal side of S, we have

PV
@2) lim TH@) = s0i(2) +m@) [ Tanw,2)ei0)ds, i=T3,

z! +xES
enl 5

PROPERTY 4. The stress field T?(TZ,T#,T#), corresponding to the double-
layer potentials (4.13) and the associated pressure, and having well-defined lim-
iting value at points of S, has the same value on both sides of S. Thus, we
have

(4.21) Jim T?(z') = Jim e, Nzes =173
I:.‘?E:fe? . '—é;ﬁ

Proof. Letw bethe Stokes velocity defined by the single-layer potentials
(4.14). Hence, we have

(4.22) /G (v, z)@(y) dsy, P’(z) /q y,z)-@(y)dsy, €U,

where p° denotes the corresponding pressure of w.

Let w!, w? be smooth and solenoidal functions in §2 (i.e. V-w'(z) =0,z € 2,
i € {1, 2} and p', p®, be two smooth, scalar functions in 2. By applying the
Green formula., we obtain

2 i £
(4.23) /{w?(y) [Aw?(‘y) 2 ¥ (y)J —wi(y) [Awi(y) - ng (y)l } dy

Ay;

Il

ow? Ow?
= / {wtl(y) (_pz(y)ai}' =15 a—%(y) = a—yf{y)) ﬂj(y)
an

ow! ow?

—wi(y) (—p‘(y)ﬁq + ay', (y) + ayf (y)) ﬂj(y)} doy ,
i i

where 9f2 denotes the boundary of the domain 2 and the unit normal vector n
is directed inwardly to the domain 2.
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A BOUNDARY INTEGRAL EQUATIONS METHOD 1177

If we consider in the above equality w! = w, p' = p°, and w?(y) = G(z,y)a,
p*(y) = q(z,y)a, o being an arbitrary constant vector, then we obtain the
following identity

@20)  wil@) =~ [ Gila, WTE W)w)ne(y) doy
b

+ /Tﬁ,,.(x,y)nk(y)w;(y) doy, NMze®, i=T3,
S

where TJ?: (w)(y)nk(y) = T}-”(w){y), j = 1,3, represent the component of the
stress field T?, associated with the velocity w. The superscript + denotes the
limit from §2, at the point y of S.

In an analogous manner, we obtain the following identity

(@25)  wil@) = [ Gile,y)TE (w)(w)de,
3
-ijik(x'y)nk(y)w;(y)doy, Vee @, i=13,
S

where the superscript — denotes the limit at the point y, approached from {55
By using the jump formulas (4.16), we deduce

Py
(@26) (@) = =2 [ Gila,)ff () doy +2 [ Ts(o,vmiwyuy () doy
g g
PV

@21) i (@) =2 [ Gi(e,0)f; W) doy 2 [ Tyun(e,ymi(w)w; () doy
S s

V€S, with f5(y) = Tig (w)(y)ne(y).
From (4.26) and (4.27), we obtain

(428)  wi(@)+ ) (@) = -2 [ Culay) (£ W)~ £} ) doy
5
PV

+2 f Tiin(z, y)n(y) (W] (v) —wj () doy, VzeS, i=L3
§

The jump properties (4.16) imply
PV
(4.29)  w(z)+w;(z)= 2ijik(x,y)nk(y)soj(y)doy, VeeS, i=1L3,
5

(430)  wf(z)-wj(z) =pi(y), VzeS j=13
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Therefore, the above properties (4.28) - (4.30) give

@3)  [Gun(f W) -f()doy =0, VzeS i=T3
i

In order to solve the above integral system, with the functions g;(z) = fj+ (z)—

f; (z),z € S, j = 1,3, as unknowns, we consider the velocity field v and pressure
p, given by

(432)  ©i(z) = /Gji(x,y)gj(y)doy, ge U, j=13
<

433) 5@ = [ s@de, ze2uRl
S

From (3.1) - (3.4) and (4.31), we deduce that (v,p) represent a Stokes flow in
2 and 21, respectively, with zero velocity on the planes Py and P, on the surface
S, and at infinity. Using the uniqueness result of solution for the Stokes problem
(2.5) - (2.9) in £ (see the Remark 1), we conclude that ¥(z) = 0, ¥ = € 2. Hence,
p is a constant in 2. But, p(z) — 0, as |z| — oo. Hence, p(z) =0, V = € £2.
Analogously, we obtain v(z) =0,V z € @' and plzy=ceR, Yz e Let T
be the stress field of the flow (v, ). From the above reasons it follows that

(4.34) lim Ti(z') — lim Ti(z') = —cni(z), VYzeS, i=1,3.
2! az€ 2 €
en z'en!

On the other hand, the jump properties (4.19), (4.20) give

(4.35) lim Ty(z') - lim Ti(a') =—gi(x), VzeS i=13.
‘;’(:!EJ'S I:"_;.:;fls

Thus, we have

(4.36) gile) =em(a), Vnes i=1,3.

These equalities show that the function g = f™ — f~ not depends by the
distribution ¢. If ¢ is the null function, then we must have g = 0. We conclude
that
(4.37) ft(z) = lim T}(w)(z') = lim T?*(w)(z') =f (z), Yzeb.

z!2+z€S z'—szES

eqn I"Eﬂl

By using the Properties 1-4, we prove the existence and the uniqueness of
solution of the Stokes problem (2.5)—(2.9).
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From the boundary condition (2.7), the jump property (4.16) and the continu-
ity property of the single-layer potentials (4.15) across S, we obtain the following
Fredholm integral system of the second kind:

@3 gela)+ [ Tl wmles ) doy + [ iy, 2)pi(w) doy
S s

= —Uxilz) + Ui(z), Yees =13

The above double-layer integrals are understood as principal values in Cauchy’s
sense. For convenience, we have ommitted the symbol PV.

From Fredholm'’s result (see [12]), we deduce that the nonhomogeneous system
(4.38) has a unique continuous solution if and only if the corresponding homo-
geneous system has only the null solution, in the space of continuous functions
on §

Let the following homogeneous integral system be satisfied:

1
(43 5A@)+ [Tl m@)edu)doy + [ Gy, 2)e}w) doy =0,
) S

vzeS i=T1,3.

With the density ¢°, supposed to be a continuous function on S, we define
the following flow (v%, po)

@40 o) = [ Ti(e, pu)ed W)y + [ G, )¢ w)doy, = € QU
S S

(4.41)  po(z) =/ij(y,$)nk{y)@?(y)d0y +/Qj(y,:€)sa?(y)dﬁy, z € QU
S S

By using the Stokes equations and conditions (3.1) - (3.4) and the properties
(4.2)-(4.5), (4.6) —(4.10), (4.39), we deduce that (v°,po) represent a Stokes flow
in {2 and 2!, respectively, with zero velocity on the planes Py and Py, on the
surface S and at infinity. By applying the uniqueness result of the Stokes flow in
2, we conclude that

(4.42) 0, Yaen

-
(=]
—
2
I
=
i~
=]
_—
3]
—
Il

As a consequence of the above equalities (4.42), we deduce

(4.43) fo%(z)= lim f%z')=0, V=ze€S§,

z'—+2€S
z'en

where £0 is the stress field of the flow (v?, pp), defined as in (4.18).
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Now, by applying the Properties 1 and 2, we obtain

(4.44) U?+($) - U?_(;l‘) = @Y (z), Yiwes 4=1,3,
where v)" (z) = iims vY(z') and v}~ (z) = lims v)(z), respectively. But (4.42)
' —sz€ z!wzE
='en z'enl

shows that the first term of the left-hand side of (4.44) is zero. Hence, we have
the following equalities

(4.45) ¥ (z)=-¢dz), VzeS i=T3

If we use the Properties 3 and 4, then we obtain

(4.46) ) - (@) =-i(z), V=zes i=T3

By combining the result (4.43) to the above relations (4.46), we obtain

(4.47) Y (z) = Q) (z), Vzes§ it=13.

Using simple computations and the Green’s formula, we obtain the following
identity:

(4.48) [ @1 @) dow =2 [ @)eh(z) da,
g m
where
0 _ 4 vy 3”? 0 a3
(4.49) e () = 5 (&rj (z) + B2; (z) |, §k =13,

define the rate of the deformation tensor.
From (4.45) and (4.47), we deduce

(4.50) - [ A@)et(a) dos =2 [ el(e)ele(a) de.
C L

Because the left-hand side of (4.50) is non-positive and the right-hand side
is non-negative, we conclude that both the sides of (4.50) are zero. By using
the continuity of @° on S, it follows that ¢©°%(z) = 0, ¥V = € S. This argument
and the Fredholm’s result (see [12]) imply that the nonhomogeneous integral
system (4.38) has a unique, continuous solution . With this function and by
the formulas (4.11), (4.12), we determine the unique solution (u, p) of the Stokes
problem (2.5) - (2.9). Hence, the existence and uniqueness of the solution of the
Stokes problem (2.5) - (2.9) is completely proved.
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REMARK 1. By using Green's formula in the domain {2, the Stokes equations
(2.5), (2.6), the boundary and asymptotic conditions (2.8), (2.9), we obtain the
following identity:

1 du; Ou;j s
(4.51) —59 (E(x) + 33:1 (I)) dz =!Ti($)ui(if)d%,

where T (T}, T, T3) is the surface force on S, of the flow (u,p).
If we suppose that the Stokes problem (2.5) - (2.9) has two solutions (u!, p!)
and (u?,p?), then the function u® = u' — u? satisfies null boundary conditions

on Py, P1,S, and at infinity. From (4.51) we deduce

B;rj

0
ol

(4.52) =

(T}+ ('T):O} Vzel, tt.?zhl_:-g

The above system has the linear independent solutions, given below

(4.53) U'(z) = (014, 02i, 03:), i=13,

(454) Ud('r) = (0,1’,‘3‘ _3:2)1 U5($) = (—I3,0,I1}, UB{‘T) = ('r2t'_-rl:0)'
Another solution of (4.52) has the following form (see [1])
(4.55) wW(z) =Ag+wo X (x—x¢), VzeR,

where Ay and wg are constant vectors, x is the position vector of the point
x = (z1, 29, z3) and xg is the position vector of a point zy of £21.

By using the null condition on the walls Py, P;, on the surface S, and at
infinity, satisfied by u’, we conclude that Ag = wy = 0. Hence u® = 0. This
proves the uniqueness of solution for the problem (2.5)-(2.9).

5. Numerical results

From the Green formula, applied in the domain 2', and the Stokes equations
(3.1), (3.2), we obtain the following property

—d;;, for z e N,

(51) /\ﬂjk{l‘sy)nk(y) do-y o 0: for: & = Q,
1
& —551:_;‘, for z€8.

In the last case the integral is evaluated in the sense of the principal value.
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With the above property, the system (4.38), can be written in the following
form

62 [T ymw)eiw) - ¢i@)ds, + [ Gy )esv) doy
s )

= —Uxi(z) + Ui(z), Y 2€8, i=173

Now, if we use the expression (4.17) of the kernel of the double-layer po-
tential, then we can easily deduce that the double-layer potentials of (5.2) are
proper integrals. Hence, the singularities of these integrals can be removed by
considering their integrands to be equal to zero for y = z (see [13]).

In order to reduce the system (5.2) to a linear system of algebraic equations,
we use a boundary element method. Thus, we divide the surface S into N ele-
ments A;, j = 1, N, and we suppose that the function ¢ is constant on each A;
and equal to its value at the center of this element. With these assumptions, the
system (5.2) can be written approximatelly as folows,

N

(53 (ol —¢M f Tiae(2™, y)ne(y) doy + 3 o / Galy, ™) do,
A; F=R

i=1
= —Usoile™) + Us(=™), wm=1N, i=13,

where 2™ is the center of A,,, ¢]" is the constant value of ¢; on A, and the

terms (wf — ™) [ Tiie(z™, y)ni(y)doy are equal to zero, when [ = m, due to
A.

J
the removal of singularities.

Also the integral [ Gj(y,z™)doy, becomes singular when j = m. Then we
A

J
consider the following equality:

[ Gutw,z™ doy = [ (Guly,z™ - Bule = ) doy ~ [ Eulz ~ y)doy.
&J’ 61 AJ

The first integral of the right-hand side of the above equality is proper, hence, it
can be computed by a Gauss quadrature formula. By using two variables (wy, w)
O 0%
8w1 8%‘2

The second integral of the right-hand side of the above equality can be com-
puted exactly in the (w;,ws) plane (see also [6]).

The algebraic system (5.3) can be numerically solved by using some integra-
tion and matrix inversion techniques.

By using the properties of the functions G, q and T, we obtain the total force
F' and torque M' on S, given by

(5.4) F=-[o@de,, M=-[yxe)ds,.
5 S

over the element A;, we have doy = hy, dwidws, where hy, =
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After solving the system (5.3), the total force on the surface S has the following
components

N -
(5.5) :F,-'z—Zgaf/day, =G5
j=1 A;

The numerical integrations presented in this paper have been given by using
the Gauss quadrature formulas, and the linear system (5.3) was solved by means
of the Gaussian elimination.

The numerical results are presented in the case of the Poiseuille flow Uy () =
(~U(d® — 22),0,0), U > 0, past a fixed sphere 2!, with the radius a < d.

Here we use the following notation

_d—12| _ 1 |Z

8 = 2 24 !
where (Xg, Yy, Zp) is the center of sphere. Hence, |Zy| € (0,d] and s € (0,1/2].

23
2.057 /)
1
L=
1814 — s
3
1571 J///T
et /i
3
1328 —t —t T
| 8
1.085 //)/
Al . s | L
— -
0.6

0.1 0.157 0.214 0.271 0.328 0.385 0.442 0.5
S

FIG. 2. —e— present method, O Ganatos Pfeffer Weinbaum method, 7 — d/a = 1.5,
2—dfa=2,8—dla=3,4—dfa=5.
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Figure 2 gives the dependence between the modulus of the drag force F =
F'/(6maU) and the parameter s, for various values of the ratio d/a. We de-
duce that the modulus of this force decreases when the ratio d/a increases. The
maximum value is obtained when the center of the sphere is located on the
plane Oz z5.

Also, from Fig. 2, we conclude that the drag force F = |F| increases if the
parameter s increases. Figure 2 shows that our results are in good agreement
with similar results, obtained by P. GANATOS, R. PFEFFER and S.WEINBAUM
in [7]. The partition of the sphere consists of 56 elements.

6. Conclusions

In this paper we have applied the direct boundary integral equations method
to the Stokes flow past a smooth obstacle, between two plane parallel walls.
Green’s functions for the equations of the Stokes flow are obtained. These func-
tions, together with the nonslip boundary condition on the surface obstacle,
determine a Fredholm system of integral equations of the second kind, over the
boundary of the obstacle. The integral formulation is simple and does not trun-
cate the flow domain. This fact has the advantage of improving the accuracy of
the numerical computations.

References

1. L. DRAGOS, Principles of continuous mechanics media [in Romanian], Ed. Tehnicd, Bu-
curegti 1983.

2. L. DrRAGOS and A. DiNu, Subsonic flow past thin airfoil in wind tunnel, Mech. Res. Comm.,
18, 129-134, 1991.

3. L. Dracog and A. DiNu, The application of the boundary integral equations method to
subsonic flow with circulation past thin airfoils in a wind tunnel, Acta Mech., 103, 17-30,
1994,

4. L. DrAGog and A. DiNu, A direct boundary integral method for the three-dimensional
lifting flow, Comput. Methods Appl. Mech. Engng., 127, 357-370, 1995.

5. T.M. FiscHER, Uber die langsame Bewegung eines starren Kdrpers in einer zihen, inkom-
pressiblen Flissigkeit langs einer ebenen Wand, Ph.D Thesis, Technische Hochschule
Darmstadt, 1983.

6. T.M. FiscHER and R. ROSENBERGER, A boundary integral method for the numerical com-

putation of the forces ezerted on a sphere in viscous incompressible flows near a plane wall,

ZAMP, 38, 339-365, 1987.

P. GanaTos, R. PFEFFER and S. WEINBAUM, A strong interaction theory for the creeping

motion of a sphere between plane parallel boundaries, Part 1. Perpendicular motion, J. Fluid

Mech., 99, 4, 739-753, 1980; Part 2. Parallel motion, J. Fluid Mech., 99, 4, 755-783, 1980.

8. W.W. HACKBORN, Asymmetric Stokes flow between parallel planes due to a rotlet, J. Fluid
Mech., 218, 531-546, 1990.

9. R. Hsu and P. GaNATOS, The motion of a rigid body in viscous fluid bounded by a plane
wall, J. Fluid Mech., 207, 29-72, 1989.

|

http://rcin.org.pl



BOUNDARY INTEGRAL EQUATIONS METHOD 1185

10.

11918
12.

13.

14.

15.

16.

17

18.

M. KoHR, The study of some viscous flows by boundary integral methods [in Romanian],
Cluj-Napoca University Press, 1997.

R. KrEess, Linear integral equations, Springer-Verlag, 1989.

S.G. MIKHLIN, Integral equations and their applications to certain problems in mechanics,
Mathematical Physics and Technology, Pergamon Press, New-York 1957.

H. PoweR and G. MIRANDA, Second-kind integral equation formulation of Stokes flows
past a particle of arbitrary shape, SIAM J. Appl. Math., 47, 689-698, 1987.

H. POWER and B.F. POWER, Second-kind integral equation formulation for the slow motion
of a particle of arbitrary shape near a plane wall in a viscous fluid, SIAM J. Appl. Math.,
54, 1, 60-70, 1993.

C. Pozrikipis, Creeping flow in two-dimensional channels, J. Fluid Mech., 180, 515-527,
1987.

C. Pozrikipis, The deformation of a liguid drop moving normal to a plane solid wall,
J. Fluid Mech., 215, 331-363, 1990.

N.P. THien, D. TuLLock and S. Kim, Completed double layer in half-space: a boundary
element method, Comput. Mech., 9, 121-135, 1992.

V.S. VLADIMIROV, Distributions en physique mathematique, Ed. Mir, Moscou 1980.

FACULTY OF MATHEMATICS
BABE§-BOLYAI UNIVERSITY, CLUJ-NAPOCA, ROMANIA.

e-mail: mkohr@math.ubbcluj.ro

Received January 28, 1997; new version August 22, 1997.

http://rcin.org.pl



