Arch. Mech., 49, 6, pp. 1135-1165, Warszawa 1907

2-D boundary value problems of thermoelasticity
in a multi-wedge — multi-layered region
Part 2. Systems of integral equations

G.S. MISHURIS (RZESZOW)

IN THE PAPER, arbitrary 2-D BVP of termoelasticity in a wedge-shaped — layered
region are reduced to special systems of singular integral equations with fixed point
singularities. For this purpose, the Fourier and Mellin integral transforms of the
solutions in the layered and wedge-shaped parts of the domain are “fitted” together
along the common interface. This interface is characterized by the conditions of given
discontinuities of displacements and tractions. The theory, developed by the author
elsewhere, is applied to investigate the systems obtained. The results, concerning
existence and properties of the solutions are presented depending on the exterior
boundary conditions. The numerical method applied to solve the systems of equations
1s justified.

1. Introduction

INTEGRAL TRANSFORMS are often applied to solve boundary value problems
in infinite domains. So the Fourier transform in layered regions and the Mellin
transform in wedge-shaped ones make it possible to find solutions of some prob-
lems in closed forms (see [19, 20, 21] and others). In the other cases, integral
transforms allow us to reduce problems to integral equations (singular integral
equations) which are very effective in solving numerous boundary value prob-
lems of the theory of elasticity (see [3, 9]). Thus, as it follows from [3, 9], if the
problems under consideration have piecewise smooth boundaries, then singular
integral equations with fixed point singularities appear, as a rule.

Previously the idea of using the Fourier and Mellin transforms simultaneously
in order to solve arbitrary two-dimensional boundary value problems for the
Poisson’s equation in combined domains was presented in [10, 12, 13]. All of the
problems were reduced to a class of singular equations (systems of the singular
equations) on the semi-axis with fixed point singularities in the neighbourhood
of zero and at infinity. To this end, it was essential that the composition of sine
or cosine Fourier and the Mellin transforms should be represented in the form of
a product of the Mellin transform with modified argument and a certain function
of the argument. Some integral equations with fixed and moving singularities are
considered in [3, 9], but they can not be applied to singular equations obtained
in [10, 12, 13].

In [11] the mentioned class of singular integral equations with fixed point sin-
gularities on a half-axis are investigated. Conditions of solvability of the integral
equations in some Banach spaces with a relevant weight were obtained, and the
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1136 G.S. MISHURIS

convergence of projective methods to find their numerical solutions was proved.
Corresponding theorems for the systems of integral equations were presented in
Appendix [10] without proofs. The results obtained were based on the theory
of the integral operators of the Wiener - Hopf type which had been constructed
in [4, 5, 7, 18]. As it was indicated in [10, 14], the process of the numerical
approximation of the solutions of such equations is very stable.

In [10, 12, 13] it was shown that symbols of the obtained systems of integral
equations depend essentially on the type of the interfacial and exterior boundary
conditions. In turn, this is a consequence of asymptotic behaviour of functions
(matrix-functions) appearing in the kernels of the integral operators.

This paper deals with the boundary value problems of thermoelasticity, and
is a continuation of the previous paper [15]. Corresponding formulation of the
problems is presented precisely in the second section of [15]. All definitions and
notations from [15] are still valid in this part of the paper. We show that the
“sweep method” [8] and the method of integral transforms similar to that used
in the paper [10] make it possible to reduce all linear boundary value problems
in combined domains to systems of singular integral equations with fixed point
singularities, for different types of the interior and exterior conditions along the
boundaries. Then the estimations made in the previous part of the paper [15]
allow us to calculate the symbols of the integral operators, and to regularize
those of the integral equations the indices of which are not equal to zero.

In the second section of this paper, fitting of the Fourier and Mellin transfor-
mations along common boundaries between the first layer and wedges is drawn.
As a result, systems of functional equations are obtained. In the next section,
necessary conditions for solvability of some boundary value problems under con-
sideration are discussed from the mechanical and mathematical points of view.

In the fourth section, the mentioned systems of functional equations are re-
duced to systems of singular integral equations. The process of reduction depends
essentially on the types of the exterior and interior boundary conditions. In the
fifth section, analysis of the corresponding systems of integral equations is pre-
sented, their symbols are calculated depending on the types of the boundary
conditions, and the parameters of functional spaces in which these equations are
investigated. These parameters determine the behaviour of the solutions of the
boundary value problems near singular points of the domain (at infinity and in
the neighbourhood of the wedge tip). In the Appendix, some necessary formulas
are presented which have complicated forms.

2. Fitting of the Fourier and Mellin transforms along the common
boundary [

First of all we mentally cut the solid under consideration into three (lay-
ered — 2;, and wedge-shaped — 2%) parts, and apply the Fourier and Mellin
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2-D BOUNDARY VALUE PROBLEMS OF THERMOELASTICITY ... PART 2 1137

transforms to Egs. (2.1) - (2.2) of the paper [15], and to the exterior and inte-
rior boundary conditions (2.3)-(2.12) in [15], in the respective domains. Using
the sweep method, the relations between the corresponding transformations of
unknown vectors of displacements and tractions along the common boundary
Iy =TI, UL, between the domains of different geometry have been obtained:

(2.1) T, (A) = My (\)T3(A) + mg(X)

(2.2) Vi ' (s) = Mp(s)Bg *(s) +my(s )

(2.3) Wy, (s) = My(s)@y(s) + my(s)

(see Eqs. (3.25), (4.18) and (4.19) in [15]). Here matrix-functions and vector-func-

tions M, (A), my(A) and M,(s), mp(s), Mg(s), my(s) calculated in [15] contain
all information about the layered part and the wedge-shaped parts of the do-
main, respectively. They can be effectively calculated and their asymptotics near
zero point depend in an essential way on the exterior boundary conditions (see
Lemma 1, Lemma 2 in [15]). Besides, a priori estimations (2.13) in [15] lead to
conditions (3.7) in [15] for unknown vector-functions @j(\), @} (), in particular.
On the other hand, the vector-functions @} (s), p; ' (s) should be analytic in the
strip —yp < Rs < 72 in view of the mentioned a priori assumptions, but ¥; * (s),
W} (s) are analytic in 0 < Rs < 7;, in general.

Returning to Eqs. (3.16) in [15], let us consider new unknown odd and even
vector-functions z_, z, defined by the relation:

(2.4) ob(21) = 24 (21) + 2_(21).

Then, using the second equations of the interfacial conditions (2.7) and (2.8)
from [15], relations (2.1) - (2.3) are rewritten in the form:

(25) () = [MF) + M7 (V)] [+ (V) + - (V)] +mF () +mz (),
(26) ™ (s) = My(s) [Ee (s + 1) + (s +1) = 304 (s + 1)] +my(s),
(27)  Wi(s) = My(s) [E-(s +1) =By (s + 1) + 30 (s + 1)] +my(s),

where M} (A\), m} (A), M7 (A), m; (A) are even and odd components of M, (A),
mg ().

Now, we have the situation when all equations and interior and exterior
boundary conditions of the problems are satisfied, except the first equations
of the interfacial conditions (see (2.7)—(2.8) in [15]) which can be rewritten in
the form:

(2.8) ub (@) = (" 4wy, (), m=n
nl+ my
(2.9) u®) (@) = (W) +du) _(r), 7 = -

0
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1138 G.S. MISHURIS

Let us represent vector-function uV) along boundary I in (2.8), (2.9) by the
inverse Fourier transform

u(l}(xl)]ru 7 F_I[ﬁfla](ml)s
or taking into account (2.5) and parity of vector-functions Mz (\), mZ (\):
(2.10) ul{;; =25 [M:m +M_zZ_ + m:] (z1)
- 2%F7 [MPE- + Mz, +my | (a),

where

FAOS Aol = [ 1) cosOhan)dn,
0

FUFO); Ao e = /f(/\)sin(/\a:l)d,\,
0

are the sine and cosine Fourier transforms [19].
Replacing in (2.8), (2.9) argument z; by r and —r, respectively, and applying
the Mellin transform to both sides of the equations, we obtain

AMFT My 2, +M7Z- +m] ] (s)
— 2AMF] MGz + My, +my | (s) = ¥ (s) + Fuy (s),

IMF Mz, + M- + mg | (s)
+ 2%MFY [MFT + M7, +my | (s) = W3 (s) + Fu(s).

(2.11)

Substituting v{'*, w; from (2.2), (2.3) in these equations, they can be rewritten
mn the form:
DMF Mz, +M7E +mf] (s) = My (s)3-(s + 1)
+ M_(s)z+(s + 1) +dy(s),
2MEF; [MFE- + M7y +m7 ] (s) = —M-(s)E-(s + 1)
—~M,y(s)z1(s+ 1) +d_(s).

(2.12)

Here we denote matrix-functions M. (s) and vector-functions d.(s) as follows:

2M. (s) = M,(s) = My(s),
2d. (5) = Mydo_(s + 1) F Mpdoy (s + 1) + my(s) + my(s) + du_(s) + du (s).

http://rcin.org.pl



2-1) BOUNDARY VALUE PROBLEMS OF THERMOELASTICITY ... PART 2 1139

As it was mentioned above, Eqgs. (2.12) hold in the strip 0 < Rs < 1, in general.
They constitute the system of two functional equations of vector-functions z.+ ().
We can conveniently consider the system in terms of vector-functions zi(A).
For this purpose, we proceed as in [12] and represent unknown vector-funtions
z4 (s + 1) from the right-hand sides of the equations in the form:

(2.13)  Z (s+1) =2MF i (s +1), F_(s+1)=—-20MF; z_](s+1).

In [12] it is shown that operators MF_ !, MF;! can be represented in the forms
of products of one integral operator — the Mellin transform with a modified
argument, and certain functions of the argument. Namely, for any 0 < o, f < 1
the identities hold

MFZYf)(s) = I(s)cos TM[f](1~5), 0<Rs<f,
(2.14) -
MFNf)(s) = D(s)sin " M[f_)(1-5), —a<Rs<}p,

where functions f; should be summable on R, and satisfy the estimates:

f+(A) = o(A~1HR), A=310,

N feX)y =o(X"%), A=rwo.

Besides, the first equation of (2.14) can be extended to a wider strip than that
mentioned above. Really, it can be seen that the right-hand side of (2.14), is an
analytic function in the strip —a < Rs < 3, except maybe one point 5 = 0.
At this point it can have a simple pole, connected with the behaviour of the
Gamma-function. From (2.15) and properties of the Fourier transform we can
obtain

F:[f+] = Const + O(z®), z — 0.

This fact makes it possible to extend analytically the left-hand side of equation
(2.14); to the whole strip —a < Rs < 3.

As it follows from Corollary 1 of [15], terms [MJ s + M7+ + m}] satisfy
exactly conditions (2.15) with @ = 49 and # = min{l,7,}. Consequently, the
left-hand sides of Eqgs. (2.12) can be reduced to the form:

2MF; [Mfz, + M;7_ +mf] (s)
= 2I'(s)cos ?M [M;’i.;. +M,Z_ + m:] (1-3s),
(2.16) ¢
2AMF;H [MFz- +M;Z, +mg | (s)

= 2iI'(s)sin %SM [Miz_ + M7z, + m; ] (1-s),
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1140 G.S. MISHURIS |

where identities hold in the strip —yp < ®s < min{1,v;} and it is possible that
a simple pole exists at point s = 0:

(2.17) oMF;! [M;i++M;E_ +mj] (&)= i—u&@(l), s — 0.

Identities (2.14) are not directly adapted to reduce operators MF_ !, MF!
which are in the right-hand sides of (2.12). The reason is that the arguments
of the operators are situated in another region, and the conditions as (2.15) are
not satisfied for vector-functions z4(A). However, as it is shown in [12], relations
similar to (2.12) hold in this case also. Namely:

o MFf4)(s +1) = —I(s+ )sin T-MIf5)(=8) + 5 £+ ()1 (s + 1),
' FIUf)s+1) = I'(s+1)cos —2—M[f_] -

in the strip —a < Rs < 3, when the following estimates are satisfied:

£, AgpfeN)=o(X), A= ox,

o), AfsN)=o(¥), A0,
F+(N) = £+(0) +0(¥P), A —0.

Here we choose function f}(A) in the form

(2.19) FEO) = £+(A) = £+(0)(1 + A%)
so that the following relations are true:
f+( ) (/\mm{,ﬁ‘ 2}) X =y D, f+( ) (’\ min{a, 2}) A3 B0

It remains now to verify whether the necessary conditions for equality (2.18)
are identical with the estimations presented in Corollary 1 [15] for vector-func-
tions z4 (A) with & = g, 8 = .. Hence the system of functional equations (2.12)
can be reduced to the following form:

Y(s) = ®(s)Z(s) + F(s), —70 <R < Yoo,

LAa0) Y(A) = L(A)Z(A) +1()), 0< A< oo,

where we have introduced the notations:

f(s) = f(=8) = M[fl(=s), Yoo = min{l,m,72},
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2-D BOUNDARY VALUE PROBLEMS OF THERMOELASTICITY ... PART 2 1141

and
™ (do(s) + M_d.(s)) sin —
7)) = (i*"(’“ ) i L g i
.zz_(,\) F(S) sm s (d_(s] - M+d.(3)) cos __2_
M;’ I —iM; DS
E(N)= i oM =) ( it “.“;_),
M- | MZ iMZz] (14 M%) +img
d.(s) =zfnl(s + 1), 2L\ =2\ —2F (1 + 257,
“M_(s)tgT | —Ma(s)
®(s) = p1s
Mi(s) | M-(s)etg

We normalize the relations by u so that the vector-functions Y(A), Z(A) con-
sisting of four components, and corresponding to Fourier transforms of the vec-
tors of displacements and tractions along the interfacial boundary Iy, have simi-
lar dimensions. Besides, 4 x 4-matrix-function ®(s) has no physical dimensions,
and consists of four blocks of 2 x 2-matrix-functions (as well as matrix-function
L(A)). Value of the unknown constant vector z} = z,(0) depends on the com-
bination of the boundary conditions, and will be defined later. Note that vector
z. (1) can be easily calculated, and 2z (z;) = 21 (21) + 2z} Texp(—|z1]).

The form of the first equation in (2.20) makes it possible to consider vector-
functions Y(A), Z()) along the half-axis R only. Then the value of these vector-
functions for negative magnitudes of A can be found due to parity (the first two
components are even functions, but the last ones are odd functions of A).

As one can conclude from the a priori estimations given in Corollary 1 in
(15], Y(s), Z(s) should be analytical in the strips —y < Rs < v, and —yp <
Rs < 79, respectively. From Lemma 1 in [15] and definition (2.20) it follows
that vector-function F(s) and matrix-function ®(s) are analytical in the strip
|Rs| < 1, at least, except maybe point s = 0, where a second degree pole can
appear.

So, once the vector-functions Z(\) (or Y(A)) will be obtained from systems
(2.20), then all vectors of displacements and tractions uld)(zy, z9), v (r,0),
wlk)(r, 0), gé’}()‘), PS.J}(S) and qgk}(s) can be calculated by formulas (3.22)-(3.24),
(4.13), (4.16) from [15] and the inverse Fourier and Mellin transforms.

3. Satisfaction of equilibrium conditions

The right-hand side of the first equation in (2.20) has, in general, a pole of the
second degree at the zero point, if the boundary conditions along the exterior
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1142 G.S. MISHURIS

wedge surfaces are not of the first type, ie. 7= # 1 (see Lemma 2 in [15]),
but the left-hand side should be always analytical at this point. Consequently,
the corresponding additional conditions (see (4.22), (4.24) from [15]) for the
unknown vector z,” should be satisfied. On the other hand, the right-hand side
of the second equation of (2.20) has a singularity near the zero point or does not
equal zero, depending on the exterior conditions along boundary I, of the last
layer (J = 2—5, see Lemma 1 [15]), but the left-hand side tends to zero at A — 0.
Then the respective additional conditions (3.27)s of [15] for vector z] should be
true. In the case, when the value of z] should satisfy both of the mentioned
conditions simultaneously, we have some relations connecting all exterior forces
and tractions. They are the usual equilibrium conditions.

We shall not write here all the equilibrium equations depending on the pos-
sible combinations of the exterior boundary conditions, and consider only some
of them as examples. Let us consider problem (2,2,1) where the displacements
are prescribed along the exterior boundary of the layers, but along the exte-
rior wedge surfaces the tractions are given. Then from (4.22) of [15] we have
z; = (2m) 'Ew, and no equilibrium conditions are obtained. But if 7 = 5,
J* = 2 (the problem where the last layer is a half-plane, and along the exterior
wedge surfaces the tractions are prescribed), then z; = (27) 'E, and z] = |
from (3.27); in [15]. Consequently, the following equilibrium conditions follow:

(3<1} QWEL—EW = 0.

Here —27Z, and Ew defined in Lemma 1 and Lemma 2 of [15] are the principal
vectors of all exterior forces and tractions acting on the layered and wedge-shaped
parts of the body, respectively. The same equilibrium equations occur in the case
of problem (2,2,2). If we consider problem (3,3,5) (or (3,3,2)), then 2z} =8y,
and these conditions do not appear in (4.22) of [15], in general. However, when

wedge-shaped parts 2% of the body contain the angles: 85 = 6, = —w/2
(it corresponds, in particular, to the situation when the crack is perpendicu-
lar to the bimaterial interface), the relation [0,1]{z] — (27) 'Ew} = 0 fol-

lows from Eq.(4.24) of [15]. Hence the following equll;brlum equation is ob-
tained [0, 1]{27E; — Ew} = 0. For the problem (4,4,2) or (4,4,5), in the case
s = 0 = —n/2, we obtain [1,0]{27E2; — Ew} = 0. As the last example,
we consider the problem (2,2,3). Then from (3.27) and (4.22) in [15] it fol-
lows that [0,1]{zf — 2.} and z] = (27) 'Ew. Hence the equilibrium equation
[0,1]{27EL — Ew } = 0 should be true.

Nevertheless, there are combinations of the boundary conditions when con-
stant vector z;" (or one of its components) can not be found (for example prob-
lems (1,1,1), (1,3,1) or problem (3,4,1) with the restriction 85 — 6,, # 7/2).
In such cases we shall use additional conditions (3.29) from [15] for the displace-
ments near the wedge tip to calculate the unknown value of vector z].

Besides, if the stresses tend to zero at infinity in such a manner that the torque
has a sense, (i.e. 2 > 1 in the a priori assumption (2.13) of [15] and (3.27); of
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2-D BOUNDARY VALUE PROBLEMS OF THERMOELASTICITY ... PART 2 1143

[15] for the cases J = 2,4), then the additional torque balance condition
(3.2) zﬁ{'r;, -, l]y,;E;,} = [1,0]{Ap,(1) = Aq.,(l)} L LT

follows for problems (7,7, 7); J,J* = 2,4 from (3.27), and (4.26) of [15].

4. Reducing the problems to systems of integral equations

Let us note that from Lemma 1 of [15] and definition (2.19) for component

*

z% (A), it follows:

(4.1) E(X) + T = O™2), A — 00,
(4.2) Y(A) + EZ()) = O ?),  A—o0.

Here a 4 x 4-matrix Lo, is the limit value of matrix-function —L(A) at infinity
(A — 00), and is constructed by the identity 2 x 2-matrix I and 2 x 2-matrix E;
defined in Eq. (3.9) of [15]:

(4.3) Lo = A(l —14,1/2 —24),

_ £l | —nE,; €Ey | -l
(44) A(é,?})z —_— | Bl = ———|
nE2 | €I nl | EE:

Let us note here that 4 x 4 block-matrices A(a,b) and B(c,d) construct a com-
mutative algebra for arbitrary values of parameters a, b, ¢, d:

A(a,b)A(c,d) = A(ac + bd, ad + be),
B(a,b)B(c,d) = A(—ac — bd, ad + bc),
A(a,b)B(c,d) = B(ac — bd,ad — be),

i a —b
A7 00 = A (o o )

d —-a b
B~ (a,b) ZB(aLbz’aLbﬂ)‘ a#b.

This fact as well as the matrix B itself will be used below.
Taking this fact into account, we rewrite Egs. (2.20) in the form:

[i‘r i Lmi] (s) = ®,(5)Z(s) + F(s),  ®.(s) = Loo + B(5),

(4.5)
Y()) = LVZ(A) +1(N).
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From (4.2) one can conclude that the left-hand side of the first equatioa of (4.5)
is an analytic vector-function in the strip —2 — 49 < Rs < 7., which is wider
than the analyticity strips of Y( X Z(s).

For further analysis we need the following estimations of matrix-functions @,
at infinity which are true for arbitrary problems (7%, 7, J) under considera-
tion:

(4.6)  ®.(s) = N? + N9 tg? +N(s), N¢=0(e %), |Si =

Here ¢ = min{¢;}, , ¢7 }, but values of matrices N{, N3 can be calculated basing
on the results of Lemma 2 from the previous paper [15]:

N} = Lo + %A(xi’ +X1,—X3 — X2 )
(4.7) N
N2 = =B(x3 —xz:x{ —X1)»

2

where the constants were defined as follows:

| 1= 1-2u} 1-2vy
+ hil o - 1 + iy = 1
A= 1 X == ¥ 1 7(2 = ) X2 — B, — =
P phy : Qi i

Using the fact that matrices NY, N} belong to the commutative algebra we can
obtain:

&71(s) = N® + N&° tg§ + N$(s),
(4.8)
NP(s) = O(e~IR¢l),  |Ss| = oo,

where
1

(49)  Np= [N+ (N9 TN, Np = [(N9)2 + (ND)?] T e

Besides, the inverse matrix in these relations exists in view of (4.7).

From the mentioned Lemma 2, we can also find the following asynptotics
near the zero point, depending on the external boundary conditions. Thus for
problems (1,1, 7), when J =1 — 5, we obtain

0 | —suM}

&,(s) = Loo + = +0(s%),
st g,V i)
| — M-

spy MY

(4.10)
F(s) = O(1), s—0,
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but for all remaining problems (7*,7°,J7), J*.J- =1-4, JtJ" > 1,
J =1-5, the corresponding asymptotic expansions have the form:

“#13 0 0
——M | —sp ML
3 5 | =81

®,(5) = Lo + 2 + O(s),
2
s,ulM?,_ [ mMU

(4.11)
F(s) = O(s?), s — 0.

Here matrices MY are calculated on the basis of the limiting behaviour of
matrix-functions M. (s) near the zero point.

We shall not present here the exact formulas for asymptotics of matrix-func-
tions @, '(s) and vector F(s) near the zero point (basing on Lemma 1 and Lemma
2 of [lo]. some results are presented in the Appendix). Let us only note that for
any problems under consideration the estimations hold true

&, 1(s)F(s) = O(1), s — 0,

in view of the additional conditions determining the value of constant vector z;
(see the third section). When 2z} cannot be found from the a prior: estimations,
&, !(s)F(s) is analytical near the zero point for any values of z; .

REMARK 1. By direct verification, it can be concluded that function det ®.(s)
is not equal to zero near point s = 0 and s — +ioc for problems under consider-
ations. Taking into account the fact that vector-functions Y(zt), Z(it) should be
analytical for any t € R, from the first equation of (2.20) it would be expected
that det ®,(s) has no zero point along the imaginary axis. For special cases of
the boundary conditions and for a small number of wedges, this fact can be di-
rectly verified. Unfortunately, the author has not succeeded in proving this fact
in a general case (under arbitrary geometry and the boundary conditions of the
problems). Nevertheless, we shall further assume that

(4.12) Ait, 71, T ) = det ®,(it) # 0, teR.

The reason to do this is the fact that A(s, 77,7 7) is in turn the transcendental
function which determines the eigenvalues of the solutions for the wedge-shaped
media [6]. It can be calculated by applying the Mellin transform only to the
similar problems under the additional assumption that the layered part of the
domain is a homogeneous half-plane. In conclusion let us note that the method
enabling effective calculation of zeros of this determinant is presented in [2], and
it is based on the “sweep method” exposed in [8].

By 9oo(J 7,7 7) € (0,1) let us denote the real part of this zero of the function
A(s, J*,J ") which is the nearest to the imaginary axis in half-plane s > 0.
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Using the results of Lemma 2 [15], it can be proved that ®,(—s) = ®.(s) .
Hence, matrix-function &, (s) is analytical in the strip [Rs| < 9oo(T+, T 7).

Now we can rewrite the first equation of system (4.5) in an equivalent form
inside the respective strip |Rs| < doo(J+, T ):

(4.13) ®7(s) [¥ + LooZ] (5) — @5 (5)F(s) = &(s).

Note that the nearest pole of the left-hand side of (4.13) in the half-plane Rs < 0
coincides with the first zero of the function A(s, 7, J~). This is because the
vector-function [{’+Lm2](s) is analytical in the strip —2—v < Rs < 74 in view
of the a priori estimations and (4.2), but F(s) is analytical in |Rs| < 1, at least,
except maybe the zero point (let us remind that vector-function @, '(s)F(s) has
no pole at this point). On the other hand, the vector-function Z(s) should be
analytical in the strips —v¢ < Rs < v,. Consequently, we can conclude that the
exponent determining the stress singularity is defined as follows:

(4.14) % = 9oo(T T 7),

in the a priori estimations (2.13) in [15]. When this zero is simple and real, the
principal asymptotic term of the solution of system (4.13) is of the form:

(4.15) Z(X) = A d 9% 4+ O(A7%), A— oo

Here 97, > ¥ is the real part of the next zero of function A(s, 7%, J~), but
vector Ay can be calculated as an integral measure of solution Z(\) from the
relation:

(4.16) Ao = lim (s + 9o0)®71(5) {[? + LooZ)(— o) — F(—Veo) } -

s—+—0ng

This fact is very important making it possible to calculate the constants in the
principal term of the stress asymptotics near the corner tip.

Further on, we rewrite the system (4.13) taking into account the behaviour
of matrix-function ®,'(s) at infinity (4.8):

N§°(s) [Y + LooZ] (s) + [NF°Y + (N§°Les - DZ] (s)
+ Ng"tg? [¥ + LaoZ] (s) = 87 (5)F(s)-

Applying to this equation the inverse Mellin transform, we obtain

(4.17)  [NPY + (N$Loo — DZ)(A) + f T(A, )Y + LooZ](€)de

&=

- —N°°f[Y+LmZ](E year i = /m ® ;" (s)F(s) ds
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where homogeneous matrix-function ¥(A,€) of degree —1 is defined from the

relation:
L, st
0= 50 | N0 (5) as

—100

(A,

4.1. Systems of integral equations for problems (7,7 ,1) and (7+,7,5)
{(F&=21 =)

To analyze these problems, we can directly use the second equation of (2.20)
to eliminate the vector-function Y()), because the matrix-function L(\) and the
vector-function 1(A) can be estimated in the following manner:

J=1: L(A) =0(), 1A)=0(), A=0,

(4.18)
J=5: L) =0(1), N=0(), AI—0.

Here in the case of J = 5, we take into account the fact that the value of the
unknown constant vector z*, appearing in 1(A) has been defined by (3.27) of [15].

Substituting Y = LZ + 1 in Eq. (4.17), we obtain a system of four integral
equations:

(4.19) Qz(J*, I J)E=0z  J=1,5

where

[Qzul(Y) = u() + [ K(N)FNE)[LE) + Leclu(E)dg
0

Ad.f
__62 4

=||l~J

Df K(A)NS[L(€) + LooJu(€)

but matrix-function K(\) and vector-function Gz(\) are calculated from the
relations:

= {NP[L(X) + Leo] =1} 2,

Gz = {m f N s)ds — N°1(\)

A
T\, EN(E)dE + = [N‘”l j?}'
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4.2. Systems of integral equations for problems (7", 7 ,2) and (7,7 ,5)
(J*=1-4)

Problems (7, 77,5) have been reduced to systems of integral equations
(4.19), nevertheless we can do it in a different way together with problems
(J*,J,2). Namely, let us rewrite the second equation of (2.20) in an equivalent
form:

(4.20) Z(A) =L Y (A)Y(A) —n(d), n(d) =L 1QA)N);
then the following estimations can be proved:

JT=2: L) = O(N), n(A) = O(A), A =0,

(4.21) g
J=5: L7 (\)=0(1), =nA)=01), A=0,

where the unknown constant vector z', is defined in Eq. (3.27) of [15].
Substituting (4.20) into Eq. (4.17), we obtain a system of four integral equa-
tions:

(422) QY(j+rJ_aj)Y:g}’r 522351

where

o0

[Qrul() = u(X) + [ LYK\ O + Lok () Ju(é)de

]

31

ST Ad
- 2 [LORONPI+ Lol i) 373
0

and the vector-function Gy (A) is calculated from the relations:

Gy = L(VNK()) x {—[N?“Lm —1n()) + -2-% / A&7 (s)F(s) ds
7 9 T Ad
- [Tt + = [ N?Lmn(s;*);\g—_—%}.
0

0

Unfortunately, systems (4.19) and (4.22) cannot be applied to solve prob-
lems (J*,J,3) and (J*,J,4). This is because the matrix-function L(A) and
vector-function 1{(\) are not bounded at zero point in these cases (see Lemma 1 of
[15] and definition (2.20)). Moreover, L()) is degenerate near that point so that
L~()\) is not bounded, as well as the vector-function L~*(A)I()). Consequently,
the corresponding integral operators will be not bounded.
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4.3. Systems of integral equations for arbitrary problems

To investigate arbitrary problems let us introduce new auxiliary vector-func-
tion as a linear combination of vector-functions Y(A) and Z(\):

(4.23) V() = NY() + [NPLe, — NZ(A):

Taking into account the fact that all coefficients in (4.23) are constant matrices,
all the a priori estimations (3.27) of [15] are true for matrix-function V(A) as
well. Then the vector-functions Z(\), Y(\) which should be found, are calculated
from the relations:

2() = KO{V() - NFIV },
(4.24) Y(\) = EAKN){ V(D) = [NFLe, — I3 },
Y(A) + L B(X) = K(,\){[L(,\) + Loo]V(A) — 1{,\)}.

where matrix-function K(A) has been defined above in (4.19). Here we use the
fact that matrices N5°, L(\) and L belong to a commutative algebra. This
is because they are symmetrical and have nonzero components along two main
diagonals only (they are of the block form as N{°, Lu, see (4.3) and (4.9)).

It can be proved that for any problems (J+,77,7) (J* =1-4,J =1-5):

(4.25)  K(O\)=0(1), LNKX) =0@1), KM\ =0(1), r-0.

Then substituting (4.23) in Eq.(4.17), we obtain a system of four integral
equations:

(4.26) QT I I =0y, J=1-5,
where
[Qvu](A) = u(A) + / W (A, €)K(€)[Loo + L(£)Ju(€)de
0
Sl Ad§
-2 0/ NEK()[Loo + L@ 37—

and the vector-function Gy () is calculated in the following manner:

Gv(A) = {K(,\)l()\) + E?l_r_r f N@(s)F(s)ds

—i0o

® e Adg
; Df B\ OK(ENE)dE - = u/ N3 K(s)l(e)m}-
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Let us note in conclusion that the integral operators @z, Qy and Qy from
systems (4.19), (4.22) and (4.26) include not only fixed point singularities at zero
and infinity points, but also the usual moving singularity with the kernel of the
same type as (A — &)L

5. Analysis of the systems of integral equations

In this section, we investigate systems of singular integral equations (4.19),
(4.22) and (4.26) obtained in the previous section. For this purpose, the results
from [10, 11] are used without details.

Let LP*A(R,.) and Wﬁ‘}a‘ﬁ(R+} (p > 1, a,8 € R) be the Banach spaces of

summable functions with the weight

Sy JA% DR E LY,
0ap(A) = M 1<i<o,

and norms of these spaces are defined as follows (see [11]):

=0

oo 1/p
d ALy )
H“”Lf’"'-i’ = (/fu(f}lpgﬂ,ﬁ(f)f) ’ "“Hw{;-}ﬂ-ﬁ = Z ||“(J]||L!'-"+J-ﬁ+!-
0 J

Here derivatives ul7)(£) are of the distributional sense.

1

By LPo8(R,) = [LP'“'ﬁ(R+)] (WEP(Ry) = WESP(R4)]*) we denote
Banach spaces of vector-functions with any standard matrix-norm [5].

Taking into account the results of Lemma 2 from [15], one can conclude that

the inclusions hold true:

(5.1) i+, 1) € Wiy "oteV=—5(R,),
for any ¢ > 0,1 < p < oo, m € N. Here ¥ is the matrix-function belonging to
the kernels of the integral operators of systems (4.19), (4.22) and (4.26).

Let us note that the a priori estimates (3.27) of the paper [15] for solutions
Z, Y of the systems of integral equations under consideration can be rewritten
in terms of the functional spaces in the following manner:

(5.2) ZY¥ Ve wfg"’m*‘”ﬂ*(nzg,

for an arbitrary & > 0. Here 79 = 9o( T, T ), but yoo = Yoo (I +, T ;T ) i8'the
unknown constant. The inclusion for the vector-function V follows immediately
from (4.23).

http://rcin.org.pl



2-D BOUNDARY VALUE PROBLEMS OF THERMOELASTICITY ... PART 2 1151

In [11] it is shown that L»®#(R) is a natural space in which solutions of
such systems can be sought. Taking this fact into account, we shall assume a
weaker condition in comparison with that in (5.2)

(5.3) Z,Y,V € IP—Yotedn—t(R )

REMARK 2. If systems of integral equations (4.19), (4.22) and (4.26) have
solutions from the spaces (5.3), then by investigating smoothness of all matrix-
functions from the kernels of the corresponding integral operators Qz, Qy and
Qy, and using similar line of reasoning as in Corollary 2 from [11], we can obtain
inclusion (5.2). Therefore conditions (5.2) and (5.3) are equivalent in our cases.

5.1. Symbols of operators Oz

As in the previous section, let us consider problems (J*, 77, 1) and (J+, J ", 5)
in the cases 7% = 1 — 4. Then basing on Lemma 1 from the paper [15] it can
be easily seen that the components of the matrix-functions K(\), L(A) + Lo
from the kernels of integral operators Qz belong to space C*°(IR.). Besides, the
following estimates can be verified:

K(A) =Kz +0(}), LA)+Le=Lz+0(}), A0,
K(\) = <1+8(\7%),. L) +Ee =002, A = 00.
Here the values of the matrices Kz = K(0), Lz = L(0) + Lo, depend on the type
of the boundary conditions along the exterior boundary of the layered part of
the domain (J = 1,5):
J=1: Lz=Lg, Kz = (NPLe - I) 7,

(5.4) i
J=5: Lz=Li+Ls, Kz=(NPLz-1)",

where we have introduced the notation

L
(5.5) Lo = ——2 A1 = 41, 1/2 — vnsa),
Hn+41

with the matrix A(£,7) defined in (4.4). Basing on these estimations and the
results from [10, 11], we can formulate the following

THEOREM 1.

Bet 1 < p < o0, B < AT, T ), =minfl, 9T, TN B~a20;
then operators Qz : LPA(R,) — LP®8(R ) are bounded and its presymbols are
calculated by the relations:

1+9+Il—9
2 2

(5.6) Symbyg, (,6) = {1 + Kz ¥, (e — it)Lz}
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where the matriz-functions ¥,(s) are of the form:
(5.7) ¥, (s) = ¥(s,1) + NPtgrs/2 = &, !(s) — N5°.

REMARK 3. Taking into account the form of (5.6), we can only investigate
the presymbols for the value of # = 1. The corresponding matrix-functions will
be denoted by

Qz(t) = Symbg, (¢t,1) =1+ Kz¥,(a —it)Ly.

They are not symbols of the operators because their limited values at the infinity
point do not coincide (Qz(ic0) # Qz(—icx)), in general.

REMARK 4. There exist cases when the presymbols represent the usual sym-
bols of the operators. Such situations appear only if the elasticity parameters of
two wedges £2,7 , 21 (which are in contact with the layered part of domain 2,
see [15]) are similar:

By =HBL> Ve =Y

Then the matrices NJ (and consequently N5°) from (4.7), (4.9) are equal to zero.
In these cases, all integral operators Qz, Qy and Qy are singular operators with
fixed point singularities only and do not contain the Cauchy-type singularities.
What is interesting to note is that if the relations p; = py, vy = v; are valid ad-
ditionally to those mentioned above in this Remark, then the following identities
can be easily verified N} = 2(1 — 1)1, (N3 =0, N® = [2(1 — 1y)] "I, N5° = 0)
in (4.7), (4.9).

REMARK 5. Let us note that the matrix Lz is equivalent to zero if the ad-
ditional conditions vy = V41, p1 = finsy for problems J = 5, J*f =1 -4
are satisfied (the last layer is a half-space having the same elasticity parameters
as the first layer). It means that in these cases the symbols of the correspond-
ing operators are equal to identical matrix. Consequently, these operators are
of Fredholm type (equal to the identical operator with an accuracy to com-
pact ones). Hence, the corresponding systems of equations (4.19) have unique
solutions in spaces LP*A(R,) for any p > 1, 3 < VT, T ), B=ai= 0,
—min{l,9(J",J )} < @ < 0, and they can be calculated by projectional
numerical methods, for example. Here we use the fact that the corresponding
boundary value problems which are equivalent to systems of Eqs. (4.19), have
unique solutions for such values of the parameters of spaces (see Remark 1 of
[15]). Moreover, these solutions belong to spaces W?l";"a(l}h). This fact follows
from the differential properties of vector-functions K()), L(A) + Ly and their
estimations near zero and infinity points (see Corollary 3 from [11]).

Let us note that the matrix Lz is degenerate if and only if the assumptions
of Remark 5 hold true. For the remaining cases, one can obtain:

(5.8) Qz(t) = Kz{®(a —it) - L;'}Lz,
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taking into account the fact that the matrix-functions N§°, L(A) and, conse-
quently, K(A) belong to the commutative algebra. Moreover, the matrix Kz is
nondegenerate for all the problems under consideration.

5.2. Symbols of operators Qy

Now we consider problems (J+,77,2) and (J*,77,5) in the cases J* =
1—4. Then the components of the matrix-functions L(A)K()), I+ Lo L1 () from
the kernels of integral operators Qy belong to space C*(R..), and the following
estimates can be verified:

LK) =Ky +0(0), I+L 10 =1y +00(), =0
LO)K(A) = Lo + O(A72), T+ Lol l()) = O(A2), A = o0.

Here the values of the matrices Ky, Ly depend on the type of the boundary
conditions along the exterior boundary of the layered part of the domain (7 =
2:5);

g =05 b=, Ky = (N§) 7,

(5.9)
T=5: Ly=Ag1Lz, Ky =TIKz,
where the matrices Lz, Kz and Ly have been defined in (5.4), (5.5).

As above, Theorem 1 holds true for operators Qy, and their presymbols are
of the form:

1-6
l+€+I—.

(5.10) Symba, (t,6) = {I+ Ky . (o — it)ly} — -

For the cases mentioned in Remark 5, operators Qy are equal to the identical
ones with an accuracy to compacts operators, and all conclusions of this Remark
are valid.

For the remaining cases (Ly is nondegenerate), we can obtain:

(5.11) Qv (t) = Ky {® (a - it) - L.}Ly,

using a similar line of the reasoning as that used in (5.8). Here and in the sequel,
matrix L, will assume the limiting value:

(5.12) L. = lim [L(}) + el

5.3. Symbols of operators Oy

Now we consider problems (J*+, 7, ) in the cases (J* =1-4,J =1-5).
Components of the matrix-function K(A)[Le + L(\)] from the kernels of integral
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operators Qy belong also to space C*(R, ), and the following estinates can be
verified:

K(\)[Leo +L(A\)] = Ky +0O()), A =0,
K(\) Lo +L(N)] = O(X72), A = 0.

Here the values of the matrix Ky depend on the type of the boundawy conditions
along the exterior boundary of the layered part of the domain (7 =1 —5) and
are calculated by the formula:

(5.13) Ky = (N?‘J-L.‘)rl,

except the cases mentioned in the Remark 5, when Ky = 0. Here tle matrix L,
has been defined by Eq. (5.12) and can be calculated from the relatons:

B, g =1,

0, J =2,

(5.14) L= T, J =3,
Ly, J =4,

Iz, T =5,

where the matrices Lg, Ly are calculated in the following manner:

100 0 000 ¢
S T R T
w0 0 0 [ = T=o | O 0404

0000 000

As above, Theorem 1 holds true for operators Qy, and their presynbols are of
the form:

(40 10
(5.15) Symbg, (t,6) = {I+ ¥, (a — it)KV}% 12,

or, for all cases except those mentioned in Remark 5, we have:
(5.16) Qu(t) = {®,;'(a —it) — L,}Ky .

Let us note that all symbols Qz, Qy, Qy contain the common matrix-function
of the form:

(5.17) Qs, 74, T ,T) =8 (s) = Ly,

where the first term of this sum ®;1(s) = ®,(s,J*,J ) depend: on the ex-
ternal boundary conditions along the wedge surfaces (defined by tie values of
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JT,J~ =1-4), but the second term L, = L,(J) depends on the external
boundary conditions along the last layer (7 = 1 — 5) and has been given by
Eq. (5.14). Asymptotics of the matrix-functions ®,'(s) are presented in (4.8)
(in the neighbourhood of the infinity point), and in the Appendix (near the zero
point). Besides, the following identities can be verified:

Qe I ) Cls)@

Q2.7 3.2 @“(s),

Qs Tt = "‘(s)[l &(s)L), JT=34,
Q(s, T+, T7,5) = &, (s)[L(0) — ®(s)]L..

They will be useful during the investigation of the symbols. Moreover, the addi-
tional relations hold true for problems (7,7, J) when J = 3,4:

2.2
detQ(s, T, T,k +2) = det 871 (o) 7 ympue(s)maue(s), K =1,2,

where mpkk(s), mgik(s) are the diagonal elements of the 2 x 2 matrix-functions
M, (s), My(s) defined in Lemma 2 [15].

Let us note that for the right-hand sides of systems (4.19), (4.22) and (4.26),
the following inclusions hold true:

(5.19) Gz,Gy,Gv € Wi '="(Ry)

forany £ > 0,1 <p<oo, a>—min{l,9,(J", T}

Taking into account the volume of the paper, we can not present here a
complete analysis of all the problems under consideration, because there exist
fifty different combinations of the external boundary conditions. Nevertheless,
the results presented above make it possible to investigate arbitrary boundary
conditions.

Thus, let us now outline only the main points of such analysis.

5.4. Investigation of the symbols of the operators

First of all let us remind that in the case J = 5, 1y = Vp41, g1 = fn+1 all
systems of integral equations (4.19), (4.22) and (4.26) are of the Fredholm type
with compact operators, and have unique solutions (see Remark 5). Below we
do not consider these situations.

All remaining problems can be divided into two groups, depending on whether
there exist zeros of the functions

(5.20) a(s, I+, T, T) =detQ(s, T, T, T)

on the imaginary axis or not. We note here that these functions do not degenerate
and are bounded at the infinity point (s — 4c0). Moreover, in spite of the fact
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mentioned above that the limiting values of matrix-functions Q(s) are different
for s — 400 and s — —ioco (Remark 3), it is easily proved that q(s) exhibits
similar behaviour at the infinity point. This fact is a consequence of the siructure
of matrices N{°, N5° and L, (see (4.9) and (5.14)).

im q(s, 9,9, J)=Comst(T", T . TVER

§—++ic0

Mareover, one can prove that this constant is not equal to zero. On the other
hand, basing on Remark 1 and the structures of the symbols presented sbove, it
can be proved that zeros of the symbols can appear at the point s = 0 culy.

Let us consider such problems (71, 7, .J) for which the correspondiag func-
tions q(s, J*, 7, J) have no zeros on the imaginary axis.

PROPOSITION 1. There exist such values 9o(J ", 7, J) > 0 that
indq(a_it||.7+aj_a\7)=os |0’1<60(\7+|J'—|J)'

It is evident that 9o(J ", T, ) are the real parts of zeros (or poles) »f func-
tions q(s,J*,J,J) which are the nearest to the imaginary axis. Then, in
order to prove this Proposition it is sufficient to note that the matrix-finctions
Q(s,J*,J,J) are Hermitian ones.

THEOREM 2.

Pt —minfl, (I, T i d) Sl T )} < & < u(J7, 555
1<p<o00, B<I(TT,T7), B—a >0, then

1. Operators Qz, Qy and Qy in the spaces LP*P(R, ) are normally solvable
with the indices and partial indices equal to zero (k =0, k; =0, j =1,..,4).

2. Systems of equations (4.19), (4.22) and (4.26) have unique solutioas from
W?lc)'ﬁ{R+ ) C LP@B(R,).

3. Galerkin method for the systems of the equations with respect to the set of
vector-functions @“'5 = 9,0, vd

2A4;(-2In A B < AL, F=10512000
0, 1"< A< 00,
QJ(A} = _Q—j—l(’\_l)l 7=0,1,2,...,

(5.21)

is valid in the Hilbert space L>*B(R.). Here A;(t), (4 =0,1,2,...) are rormed
Laguerre polynomials with vector-valued constants, [4].

4. The solutions of the systems have asymptotic expansion in the neighbour-
hood of zero in the form: U(X) = O(A'=), A = 0, Yoo = min{1,9(J ", T, T)},
and at infinity point the asymptotics are defined by the relations (4.15), (4.16).

The remaining parameters u., Yoo(J ", J ,J) in the definition of the class
LW(£2) (see the second section of the paper [15]) can be obtained from Theo-
rem 2. Solving numerically the corresponding systems of the equations, ve can
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find the approximate solutions of the corresponding boundary value problems
(JT,J,J) and the asymptotics of their solutions in the neighbourhood of zero
and infinity points. Note that the constants u, Ay, which play an important role
in applications, can be calculated as integral measure of the approximate solu-
tions of the systems (4.19), (4.22) and (4.26). Integral formulae for the constants
in the asymptotics 4 similar to those in (4.15) and (4.16) can be obtained from
functional equations (2.20) by passing to the limit s — ;.

Problems (7 +,7,5) for arbitrary 7* =1 —4, (1,1,2) and (2,2,1) belong
to this group of the problems under consideration. Let us note that the unknown
vectors z; are calculated by the relations (3.27); and (4.22) in [15], so that the
right-hand sides of the systems of the equations have been defined.

Now we consider situations when there exists a zero ¢ = 0 of 2] multiplic-
ity of the functions q(s, 7,7, J) and investigate the corresponding group of
problems (77, 7, .J). Parity of the multiplicity of this zero follows immediately
from the fact that the matrix-functions Q(s, 7+, 7, .J) are Hermitian ones.

PROPOSITION 2. There exist such values 9o(J ", 7, J) > 0 that

R it T T ) = -1, P9< a<,
FE SRR i 0< a<dy.
It is evident that ¥o(J ", J,J) are the real parts of the zeros (or poles) of
functions q(s, J ", J ,J) nearest to the imaginary axis. Moreover, partial in-
dices (kj, j = 1 —4) of the matrix-functions Q(a — it,J*, 7™, J) satisfy the
relations: —1 < k; < 0 when —9g < a < 0; and 0 < k; < 1 when 0 < a < 9.
For problems (1,1,1), (2,2,2), (2,3,2), (2,4,2), and for problems (3,4,1),
(3,3,1), (4,4,1) (3,4,2), (3,3,2), (4,4,2) it can be shown that | = 2, except the
last six problems when [ can be equal to one under special assumptions on the
geometry of the domain (see the corresponding formulas in the Appendix and
Eq. (4.24) in [15]). For all remaining cases we have | = 1.

THEOREM 3.

Let1<p<oo, —Ug<a<0, <y, 8—a>0, then:

1. Operators Qz, Qy, Qv in spaces LP*P(R,) are normally solvable with the
inder kK = —1.

2. There are unique solutions of systems of the equations (4.19), (4.22) and

(4.26) from WESP(R,).

3. Asymptotic behaviour of the solutions near the zero point 1s U(\) = O[22},
A — 0, but at the infinity point asymptotics has been defined by relation (4.15).

Let us note that certain additional conditions are necessary for the solvability
of the systems for some problems (7, 7, 7). Such conditions are presented in
(3.27)2, (3.29), (4.22), (4.24) of [15] depending on the problem under considera-
tion. For some cases they represent equilibrium conditions and are discussed in
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Sec. 3. For example, for problem (2,2, 2) the unknown vector z; defined in (2.20)
can be calculated from (3.27)y as well as from (4.22) in [15]. It leads us to the
equilibrium equations (3.1).

For the other cases, when 2z} can not be defined from the mentioned relations
(for example (1,1,1)), the additional conditions follow from (3.29) of [15]. Thus
the right-hand sides of the corresponding systems of equations can be represented
in the form: G(A) = Gi(A) + 2} Ga(\) +25 G3()), where z3; (1 = 1,2) are
the components of the vector z), but vector-functions G;, G and G3 have no
singularity in the neighbourhood of the zero point. Of course, this representation
is true for all the problems, but the respective vector-functions are not bounded
near point A = 0.

The systems of equations under the conditions of Theorem 3 can not be
directly solved as it is shown in point 3 of Theorem 2, and a regularization of
the systems is necessary (see [4]). For this purpose, a method of factorization of
matrix-functions of special forms proposed in [1] could be useful.

Thus, if the value of z; is known and the corresponding equilibrium condi-
tions are satisfied, then Theorem 2 holds true for the corresponding regularized
systems of the equations. In the opposite cases, when the value of z] (or one of
the components) can not be calculated from relations (3.27)2, (4.22), (4.24) in
[15], the unique solutions of regularized systems of integral equations with the
right-hand sides G;()), Ga(A) and G3(A) can be found. Then the value of the
vector z; is calculated from relations (3.29) in [15].

REMARK 6. As it has been shown in Sec. 3, the additional torque balance con-
dition (3.2) should be true for problems (7,7, 7) (J+,J = 2,4). However,
what is interesting to note is that this condition is not necessary for solvability of
the corresponding systems of integral equations. It only plays an important role
when the tractions and displacements along internal boundaries I'; (j = 1,2...,n)
and FJ-‘JC (j = 1,2...,m4) (between the layers and the wedges, respectively) are
calculated by the recurrent relations (3.23), (3.24) and (4.13), (4.16) shown in
the previous paper [15). Namely, if the mentioned condition is not satisfied then
the tangential component of the displacements is not bounded at infinity.

THEOREM 4.

Let1<p<oo, 0<a<dy B< ¥, B—a>0,meN; then

1. Operators Qz, Qy, Qv in spaces L-"""ﬁ(lih) are normally solvable with the
index k = L.

2. Homogeneous systems of equations Qz(y,y)U = 0 have ezactly I non-
trivial solutions U; € LP*A(Ry) (j = 1,..,1) belonging to all spaces U; €
NWEm  (Ry).

3. The asymptotic ezpansions of the solutions in the neighbourhood of zero
are:

U;(\) =A;lnA+B; +O(A%),  A=0,
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where Aj, B; (j = 1,...,1) are certain vectors, but the relations (4.15) are satisfied
at the infinity point.

Let us note that nontrivial solutions of the respective homogeneous boundary
problems play an important role in asymptotic methods [17]. However, in order to
obtain them by the nontrivial solutions of the homogeneous integral equations, it
is necessary to use generalized integral transforms and to justify all the obtained
relations as it has been done in [16].

5.5. Analysis of the systems in the case of symmetrical domain

Now we consider such situations when the domain under consideration is sym-
metrical with respect to the axis 0X,. Besides, we assume that all mechanical
parameters of the wedge parts of the domain have similar values to the symmet-
rical wedges. It is evident that in such cases the strain-stress state of the domain
can be represented by symmetrical and antisymmetrical ones (Mode I and Mode
I1, respectively).

From Corollary 3 in [15] it follows that matrix-functions ®;'(s) in the sym-
bols of the integral operators have structures similar to those for the matrix A
(see (4.3)) because of:

(~h(o)e O 0 ~fi(s)
0 —flsltey  Als) 0

®(s) = s s ;
0 his)  fals)etg— 0

\ —hls) 0 0 fils)eteTy )

but elements on the main diagonal are not identical. Moreover, in this case the
conclusions of Remark 4 are true, so that N3 = 0, N3° =0 (x;-h = xf in Eqgs. (4.6),
(4.8)), and consequently, the corresponding systems of integral equations contain
only fixed point singularities.

For any 4 x 4 matrix M and vector G appearing in systems of the integral
equations (4.19), (4.22) and (4.26), we introduce the following notations:

MDY . [ PAL T M) = [ ™22 M
¥, ¥ =) ?
M4y Maq mg3a Mm33

0= 91), G = (92),
94 g3

Then each of the systems of 4 x 4 integral equations corresponding to problems
(T, T I (Tt =1-4, J = 1-5) is divided into two systems of 2 x 2 integral

(5.22)
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equations of a similar form:

Ot raut =gl

(5.23)
Jt=1-4, F=1-5 =12

Symbols of the operators Q(ZJ{JYV) in spaces L?»*#(R,) of two-component
vector-functions are defined by the corresponding 2 x 2 matrix-functions
QUl(s, 7+, 7) = QU)(s, T+, T+, T) which are given by (5.17) and (5.22). Here
superscript j is equal to 1 and 2 for the Mode I and Mode II, respectively.

Thus, we have forty different problems (J*, 7", J), depending on the combi-
nations of the external boundary problems (the values of 7* =1-4, 7 =1-5)
as well as the strain-stress state (j = 1,2 for Mode I and Mode II). As be-

fore, let us denote by ﬂg,)(jﬂ > 0 the real part of zero of the determinant of
the 2 x 2 matrix-function &V ](3) which is the nearest to the imaginary axis.

But by 195:")(._7"*, J) > 0 we denote t}le real part of zero (pole) of the determi-
nant of the 2 x 2 matrix-function Q) (s) which is the nearest to the imaginary
axis. Let us note that 9o(J ", T, J) = n1in{19§,”(.37+1 T}, and 9a, (T @n) =
min{9Z) (7+)}.

All symmetrical problems under consideration are divided into two groups.
For the first one, the indices of the determinants of matrix-functions QU)(s) are
equal to zero:

k=—detQ)(a—it,7*,7) =0, |a] <9(T",T).
For the second group, the relations hold true:
: 1, OG<a< 9T+, T),
ﬁ:_detQ(J)(Q_it‘J+,J): (? o (JTJT)
-1, _'t9|:|:'I (..7+;J}<G<O.

The following problems are rated to the first group:
(T3 55)50 02, 2,2):, (1,1.2) JESli=d =12

(15 1, 3)21 (1: 1, 4)1 ) (21 2, 3)2: (21 21 4}1 ) {3: 3: 3)2: (31 3, 4)1 ’ (4: 4, 3)2: (41 41 4)1
The second group consists of the problems:

(l,l,l)j, (2,2,2}3-, =112 (1,1,3)1, (1,1,4)s, (2,2,3);, (2,2,4)2,
(3|331)2| (31312)21 (3)3v4)2» (411411)1: (41432)1: (4r4s3)1'

Finally, the following problems have symbols with nonzero indices (x| = 1), in
general, except the special case of a crack terminating normally to the interface,
when these problems are of zero indices (see (A.6) in the Appendix):

(31311)11 (31312)11 (313:3]1n (41431)'21 (414:2)21 (4;4:4)2-
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Theorems formulated before are true for the symmetrical problems under
consideration depending on the indices of the respective symbols. Moreover, for
some problems for which the indices are not equal to zero in a general case,
one of the two systems of integral equations can have a zero symbol! Hence,
the corresponding systems of the integral equations (for Mode I or Mode II
strain-stress state), should not be regularized.

6. Conclusions

We have considered all possible boundary value problems for different geome-
tries of the domain as well as arbitrary combinations of the external boundary
conditions. The corresponding problems have been reduced to systems of singular
integral equations. Symbols of the corresponding operators have been presented
and indices of the operators have been calculated.

Let us remember that in this paper we assume that the interfacial condi-
tions between the first layer and the two nearest wedges (see (2.7), (2.8) in [15])
are characterized by given discontinuities of the displacements and tractions.
Nevertheless, these conditions can be generalized, so that the tractions will be
proportional to the jump of the displacements. Such problems can also be solved
by the presented method. However, as it has been shown in [13] for the case of the
Poisson equation in a similar domain, such investigation is a little different from
that presented above, and the symbols of the corresponding integral operators
are degenerate, in general.

Appendix

Here we present some estimations for matrix-functions &, (s, 7+, 77) de-
pending on the values of 7+ =1 —4.

For problems (1,1,7), (J = 1 — 5) the following relations can be verified
basing on the results obtained from Lemma 2 in [15]:

EX| 0 _gé::u bool \ [E2| O
Sl =Tl f——— e
0 | X T o e 0| I

(A1) + 0(s), 50,

X — 1 [ s m(aZ, + b%) =
210

I+M°

H

+
b2, — a2, 241000

Bon = 1 =14, boo =1/2 — 1.
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For the remaining problems (7,7, J7) (J*J~ > 1, J = 1-5), under the
additional assumption det MY # 0, we can obtain:

y L]0 A | Ap
& e, T, T = + O(s)
0 | sl A21 | Azz

I1|] 0
X ; s— 0,
0| sl
-1
(A2 Au=[al - E2TM2 + AM0 (uid) M2 |

T = m™ o
Ap = §A11ME(M3~) : Ag = _E(Mg) 'M2A

A = 5 (M%)~ — 2Tl M0 A ().
2}11 2
In some cases these relations can be simplified. Namely, for problems (1,2,.7),

(J = 1—5) the identities M® = MY hold true, and the matrices are still
nondegenerate. Hence we obtain:

1 T
A= —1, A = -4y = —1,
ﬂ:m 2000
s i T
Ay = O - =11
22 201000 aoo(M+) 5

Besides, for problems (J+,7%,J) (J* = 3,4) when 6f # 6, , and for prob-
lems (3,4,7) when 6, — 6, # m/2, the following equation can be verified:
(M%)'M® = MO (M9)~h.

Finally, let us present the relations when matrices MY are degenerate. Such
situations appear for the problems:

a) (1,3,7), (1,4,7) (J =1-15), where M2 = MY = By;

b) (3,3,7), (4,4, 7) (J = 1-5) under the additional geometrical conditions
6 = 6,, , what leads to the relations: M% = yBy, M® = By;

¢) (3,4,7) (J = 1-5) under conditions 8 = 6,, +/2, when the identities
hold true: M? = yBjy, Mi = By.

Here certain constants y (|y| < 1) and the corresponding matrices Bg (Bg # 0,
det By = 0) are calculated basing on the results of Lemma 2, so that

B b3, bubiz )
o —_— »
bubiz b,
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Then for the mentioned three cases, asymptotic behaviour of matrix-functions
&, 1(s) is of the form:

1 (@&&[b‘ﬁ +bhall + (¢ — 40%€)C | 4acbootD )
&= (8) =id

400bootD " | (c+4a2,€)C
(A.3) + O(s), s =0,
b2, —by1b12 b b —b?
C— 12 111_)‘ D:(” 12 i1 )’
(—bnfnz b by  —bubw
where
¢ = aoopm(by + ) (0" — €%),  d=az) (b + bla) T [46(a3 — bR) +

In these relations the values of parameters £,  are defined depending on the
three situations mentioned above:

a) @+ E=n=1, b) & E=y, =01 c) & =1, n=y.
A.1. The cases when the domain is symmetrical with respect to the 0.X, axis

In this part of the Appendix the respective relations are presented for the
situations investigated in the last subsection of Sec. 5.

Thus for problems (1,1,7);, the matrix M% (and, consequently, the matrix
X) are diagonal matrices with elements my, ms; then we can calculate from (A.1)
and Lemma 2 of [15] that:

(A.4) sl Uoo (_I}Jambmw—-j yS—jago '

Yy =

m

: my, ma > 0.
w(aZ, + b)) + 2p1a00m;

For the remaining problems (7+, 7%, J); (7t =2,3,4,J=1-5,j=1,2)
for which Eqs. (A.2) are valid (except the two cases considered in (A.3)), it can
be shown that the matrices MY are of the form:

0 m ms 0
M(i:( 01)‘ ME:(O ), ma, m3 < 0.

—1my mg
Then
0 - ;EIlA 1. O
WA= ) ms )
[q‘* (S)} _(0 s) iida ') i+”1ﬂm¥A +.8(e) (0 8yt
|\ 2m3 ms 2m?
(A5) - Ty
1 1 0 £ D 2 1S
(Bl ™= o T
[@n (5)] = (0 S) _ﬁmlg i & ul*.'rm%B +0(3) (0 3) i
2m2 may Qm%
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R 17T - T
Al =g, — L(M2m3+m%), B! :aw—&(m2m3+m§).
ms my

Besides, for problems (3,3,7) and (4,4,.7) when 6 # 6, it can be proved
that moms + m? ={,

Finally, only one of the three last cases, when matrices MS: are degenerate, can

be realized. Namely, for problems (3,3,7) and (4,4,7) when 85 =6,, = —n/2,
it can be found that b1, = 0 and by; = 0, respectively, and then

(1) 1= T 4“30 —4asbocy
[80(s,3,3)] " = s}, (_4%bwy rasY) o), a0

c A ] - 2 [ i
8 (s,3,3) :db{l(4a°°+% 4beoy g)+0(s}, 45D

. = 2 = 2
sV 0.9] = a, (4% ey g) Ol s 0}

I

= & 2
8 (s,4,4) db2, ( da%  dacobeoy ) O, a0

daoobooy ¢+ 4aly

In conclusion let us note that values of the matrices Mf’k in asymptotics (4.10),
(4.11) as well as all other constants used in the Appendix are calculated basing
on the results of Lemma 2 in [15].
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