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2-D boundary value problems of thermoelasticity
in a multi-wedge — multi-layered region
Part 1. Sweep method

G.S. MISHURIS (RZESZOW)

A METHOD PROPOSED earlier to solve the BVP for Poisson’s equation in a domain
consisting of wedges and plane layers, is discussed and applied to 2D thermoelasticity
problems. Linear conditions of general form are prescribed along the exterior bound-
aries as well as at all the interfaces. The essence of the method consists in combining
the Fourier and Mellin transforms along the common interface. This allows to reduce
the boundary value problems to special systems of singular equations. The analysis
is significantly simplified by incorporating the fact that layers and wedges represent
chain-like systems. In the paper, relations between the Fourier (Mellin) transforma-
tions of solutions for the layered (wedge-shaped) part of the domain are found by
using the sweep method of Linkov and Fiuiprov (1991, Mecchanica, 26, 195-209).
All matrix-functions in the relations are slowly increasing ones. Their asymptotic
behaviour is analyzed depending on the types of the exterior boundary conditions.

1. Introduction

ELASTICITY PROBLEMS for inhomogeneous bodies of regular structures (for ex-
ample layered media) were intensively investigated in [2, 4, 5, 6, 7, 11, 12, 27, 32,
34, 39, 40]. We do not discuss here the problems and methods of their solution for
composite laminates or periodic composite plates (see for this purpose [13, 31]).
The important point of the mentioned bodies is the fact that they have chain-like
structures. Independently of the applied technique (FEM, BEM, Fourier trans-
form, etc.) in each layer, this made it possible to use the methods for chain-like
systems of rods and beams to solve the problems under consideration. One of the
most commonly encountered methods is the so-called “transfer-matrix” method
having various modifications (see for example [1, 9, 17, 19, 30, 33]).

However, in the process of adaptation of this method, an intrinsic defect often
occurs: the square matrices are ill-conditioned, and this defect is redoubled for
products of matrices. Shortages of the “transfer-matrix” method are discussed
in details in [16, 17, 19].

To eliminate such difficulties, many authors used special modifications of the
method (18, 19, 38]. The modifications were based on the explicit forms of the
boundary conditions between the layers.

As it was noted in [16], all the mentioned modifications were particular cases
of a “sweep method” in fact. “General sweep method” for layered medium with
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1104 G.S. MISHURIS

arbitrary boundary conditions along the interfaces was proposed and investi-
gated in [16]. It consists in reduction of the problems to three-points difference
equations. Corresponding results are then based on the theory of difference equa-
tions (see for example [10]). The stability of the proposed method is investigated,
and conclusions of its efficiency and interconnections with the other metaods are
presented in [16], depending on the number of the layers and some types of the
intermediate conditions.

For the case of multi-wedge bodies analogous results are obtained in [3]. Be-
sides, the last work allows us to build stable algorithm to calculate parameters
determining singularity of the gradient of solutions near the common cerner tip
for an arbitrary number of the wedges.

In (23, 24] classical two-dimensional boundary value problems for Poisson's
equation in multi-layered — multi-wedge regions are investigated. Then the Fourier
and Mellin transforms are applied to based domains (layer and wedge), respect-
ively. As the simplest example of such geometry we can note elasticity problems
for a crack normally terminating at the layered media, which were investigated
by different techniques in [14, 15, 21, 36] and others.

Previously the idea of using the Fourier and Mellin transforms simultaneously
to solve some plane and Mode III problems of linear elasticity for layered me-
dia with a notch or, in particular case, a crack was presented in [21, 22]. The
notch (crack) was symmetric with respect to the normal to the interfaces, but
intermediate boundary conditions were of the “ideal type” (defined by given dis-
continuities of displacements and tractions along the interfaces). At that time,
explicit form of the interconnection formulae for the arising matrices (which
takes into account “ideal” type of interfacial conditions) was very important.
This made it possible to reduce the problems to a special class of systems of sin-
gular integral equations with fixed point singularities, and to investigate symbols
of the corresponding systems in some Banach spaces with a relevant weight. The
justification of the method [22] in a relevant space of distributions is presented
from [25].

In the papers [23, 24] arbitrary numbers of the layers and wedges as well as the
types of intermediate and external boundary conditions are considered. At that
time, the “sweep method” proposed in [16] plays an important role. Moreover, in
Appendix [23] exact asymptotic formulas (which are absent from [16]) for arising
functions are obtained for all possible types of exterior and interior boundary
conditions. This allows us to reduce the problems by the method [22] to the
mentioned class of systems of integral equations and to investigate its symbols.
Besides, in Appendix [24] it is shown that general partial differential equations
of the divergent form (not only Poisson’s equation) in the mentioned regions can
be analogously solved.

In this paper, two-dimensional boundary value problems of thermoelastic-
ity (see [28, 29]) in the multi-layered — multi-wedge region are considered. In
the first part, necessary formulas derived in the process of solution of differ-
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ent two-dimensional boundary value problems of thermoelasticity in layered
(wedge-shaped) media by the “sweep method” are presented. They are general-
izations of the formulas obtained in [3, 16]. Besides, asymptotic expansions of
resultant matrix-functions near zero and infinity points, similar to those derived
in [23], are found and justified for all types of linear interior and exterior bound-
ary conditions. Then in the next part of the paper we shall make it possible to
reduce all problems under consideration to systems of integral equations by the
method of integral transforms.

General formulations of the problems are presented exactly in the second
section of the paper. In the next two sections, the “sweep method” proposed in
[16] is consequently applied in the layered and wedge-shaped parts of the domain.
The main results consist in the Lemma 1 and Lemma 2.

2. Problem formulation

Let us consider the infinite domain presented in Fig. 1 consisting of a layered
T my m-—
part 2, = |J 2 and two wedge parts 2 = | .Q;', == .
i=1 3=1 k=1
{11,12 : 1 €ER, ‘.':«:E(y;- jodkdd, =12
= : T€R+,€E( 1|8+)} j=112t"'tm+)
Q;h{ ) 1 reR+,9e(9;_1,8k)}, B L O

By I; (1= 1,2,...,n— 1) we denote an interior boundary between the regions f2;
and §2;+,. Similarly, FJ-+ (4 =12, —1)and Iy (k=1,2,..,m- —1) be
the interior boundaries between the corresponding wedges.

O=yw<...<yYi<@ir1 <...<yn < 0, hi =yi — yi-1,

e F E il
1r=85<...<9k<9k+]<...<€,n_=—§+¢“ ¢ =0, —6,_1»
m

—§+¢;*=9;;,” <OF <6, <. <00, =0, of =66,

Thus, by I, I';” and I, we denote the exterior boundaries of the layered region
(£21), or the wedge-shaped regions (£2%), respectively. Besides, let I'y = I} UTy
be the interior boundary between the different parts of domain 2.

We shall seek for the vector of displacements u(z;,z2) and the tensor of
stresses o(z1,z2) with components satisfying the equilibrium equations:

(2.1) Ofap + Xa =0, o,8=1,2,
and the Duhamel - Neumann relations (see [28]):

(2.2) Tap = W(Uaps + Upa) + (A6 — v0)das, E = Un,a)
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1106 G.S. MISHURIS

where X, are the defined internal forces, u, A — Lamé constants, v = (2u+ 3\ )ay
~ thermoelasticity constant (o is the coefficient of linear thermal expansion).
Besides, if v is the Poisson coefficient then A = 2uv* /(1 — 2v*), where v* = v
under plane stress conditions, »* = v/(1 — v) under plane strain conditions.
Further on we omit the upper index * in the symbol »*. All constants are different
inside the regions §2;, .l’?;* , £2;, in general. We assume here that the temperature
O(zy,x3) = T(x1,22) — T(0,0) is a known function. Corresponding boundary
value problems for Poisson’s equation for the function ©(z;,z3) in a similar
domain with different boundary and interfacial conditions have been solved in
[23, 24].
I
Ty FaaBleale B 1

T2 Yn| Yn-—1 yd

hn hv2

F1G. 1. The domain 2 under consideration.

Let us introduce the following symbols:

u®® g i
u = {VU) 3 o = B{J) B = ’u;—j
w(k) q(®) Iy
(2.3) £
)\1 ﬂi Ql
={)\}’, ﬁ={5;r. (xl.:m]E{Qj+
Ak B 2
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Besides, we shall use Cartesian coordinates in the layered part and polar coor-
dinates in the wedge parts of the domain.
Along the interior boundaries of layered domain {27, the conditions hold

(uli+l) — ul?) — T‘-a(‘})m = du;(z), =z €R, t=1,2....0n =1,

(0l —a®) . =dei(z1), z1€R,

where ul?) = (u&’f,u{x‘l’)T, but ol¥) is vector of stresses along boundary I7j; T,
1s a diagonal matrix with positive constant components, but do;, Ju; are some
known vector-functions. Analogous relations for the interior boundaries of wedge
domains 2% are given in the form:

(2.4)

(v+1) — y() — 1‘1‘+ p(j]) =dvj(r), r€Ry, j=12..m:—1,
(2.5
) (ptHH) - p‘”)[ =0pj(r), reRy;
h s
(w{k+l) —W(k)—'r"r_ q(kjhr_ _awk(r)l R R'I-} k = 1:21“‘}m'—_1|
2.6
e (@) - ¥ " =5qu(r), reRy,
Ic
where T, T, are diagonal matrices similar to T;.

Finally, the last of the interfacial conditions between different geometry re-
gions (along the boundaries I}, I';") are characterized by given discontinuities
of the displacements and tractions:

(um 5 v(m+))1r+ = duy(z),
(%9 (1) (m4) i
(ot — p'™+ )lr*' = do(z1), z1 > 0;
my.
(@ —wil)) = fu_(~a1),
(2.8) :

(0-(1) + qm)|r_ = do_(—-7), 21 < 0.
L]
The direction of normals to the boundaries is taken into account in (2.8).
Now we define the exterior boundary conditions for the domain 2. So, on the
wedge boundaries I';", I',. one from the following relations holds:

(@) v, = dvolr) reRy,
(b) pY| , = dpo(r), r € Ry,
B (g o =), oY, =), reRs,
@ o, = dualr), pé,}]; = dpa(r), TERy;
0 0
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1108 G.S. MISHURIS

(a) wim-) = —dwy(r), r € Ry,
(b) q(m_}h“_ = _Jqﬂ(r)s TE ]R-H
2.1 e =
G0 @ W) =-sw(), dF7) = -bm(), reRy,
(d) wl(rm"}|r';_ = —dwy(r), ‘339 )I _ = —bqu(r), reRy.

Let us note that in the limiting case of crack (8] = 6, ) there is no contact
between the crack surfaces. Some of such problems are c0n51dered in [20, 35] for
homogeneous unbounded media.

On the exterior boundary I, we shall consider conditions (a), (b), (c), (d)
analogous to (2.9), (2.10) and the relation (e):

(a) u™ = —dug(z1), z1 ER,
(b) U{n)ln, = —dog(z1), r; ER,
211) (0 uld . = —us(m), ok, = —dos(m), = ER
(d) uld|, = —dus(z1), olih, = —dou(z1), = ER,
(e) xli_rrnmJ ulrtl) =g, z; € R.

In the last case (e) we assume that the region (2,41 is a half-plane. Then the
condition (2.11). means that the solution of the problem decreases to zero in the
direction x9 — oo as well as in the other one #; —+ co. Consequently, we have
here ninety different combinations of the exterior conditions. The corresponding
problems (2.1) - (2.8) with the boundary conditions from (2.9)-(2.11) will be
denoted by (7+,J,J), where (Jt =1—-4,J =1-4, J = 1-5). Here
the value of 77 is equal to 1 (2, 3, 4) if the conditions (2.9), ((2.9)s, (2.9),,
(2.9)4) hold. In an analogous way one can define the values of 7, J from the
conditions (2.10) and (2.11), respectively.

We assume that all of the known functions which are presented in the equa-
tions and the boundary conditions are sufficiently smooth:

X, €C(G), ©eCNG), dueCiR),
do; € C3(R), i=0,1,..,n—=1,
Sug,0ug € C3(R),  dvj,0wy, dur € C3(Ry), j=0,1,...,my—1,
da3, a4 € C'(R), op;,6qx, 60+ € CH(R,), E=01,..m—1,
(2.12)  bvs, Sy, dws, dwy € CA(Ry),  &ps,dps, 0gs,8qs € C*(R,),
Su;, réoy, Jug, dug, 6v;, 6wy, duy, rdoy, 7oy, 70p;, Toqk, 70O 4, dv3,
—1-8) = o,

¥

dvg, dwg, dwy, Tdp3, rép,,,ré@,réqq,r@,rz)(a =o(r
Suy., d0vg, Owg, dus, dug, dws, dwy = o(r'™%), r =0,
501: 61:'0‘ 5‘-10- 5}’3- 5}74- 59‘31 5Q4= 81 TXCI = O(T.E)n =i
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Here G denotes any region §2;, !?;t from 2, but ¢ is some positive constant. The
suppositions concerning the defined functions are assumed in the forms (2.12)
in order to exhibit the singularities of solutions, connected with the internal
properties of the problems only.

REMARK 1. As it follows from [23, 24], the temperature © is a function of
the class C*(G), at least, in any region G, and the asymptotics is true:

B(r,0) = a+blnr+ fRO)r T + f&O)r % +o(r 2%), r— oo,
£8(6)r“s + O(r),

O(r,0) = { fU(O)r“Y + f2(B)r% +o(r), ©—0,
f(0)rInr + O(r?),

where w®, ws® — 1, w? € (0,1) are certain constants; functions f22, f? depend
on the geometry and exterior boundary conditions. Three different forms of the
asymptotics of the temperature @ near zero point depend on the type of in-
terfacial boundary conditions. The first one corresponds to “ideal” interfacial
conditions; the second — to “nonideal” contact through a thin heat conducting
wedge; and, finally, the third term corresponds to interaction between the ma-
terials through a thin heat conducting layer. Besides, the constant b = 0 when
there is a balance of the heat flow. When all known functions are equal to zero,
except @, we can easily find particular solutions of the problems (2.1)-(2.11) in
the neighbourhood of zero and infinity points using suitable asymptotics. Then
using the property of linearity of the problems, we obtain the solutions of the ini-
tial problems as a sum of the mentioned solution and the solution of the problems
(2.1) = (2.11) under assumptions (2.12).

We shall seek for the classical solutions of the problems (7,7 ,J) in a
class of vector-functions LW((2) such that u € LW({?) if the following relations
are true:

1. u|G &= C2(G)s
(2.13) 2. ur.0) = 0Or"1j,
3. u(r,0) = u, + O(r"),

(r,6) = O(r—"71), - o0,
(r,0) = O(r™-Y), =0,

la iQ

where, as before, by G we denote any region from {2, and 7, 71, 2 are certain
constants such that 0 < y5 < 1, 41, 72 > 0. Besides, in the cases when displace-
ments (or one of its components) are prescribed at least on one of the wedge
boundaries, the corresponding components of the vector u, are equal to zero due
to the assumptions (2.12) (the corresponding relations are presented in (3.29)).
Precise values of the parameters v = yo(J+, 7, J)y, 1 = (I, I, T),
Y2 = Y(J",J 7, J) and u, will be obtained by solving the problems. Let us
note that the value of 4y defines the order of stress singularity in the neighbour-
hood of zero and plays an important role in physical applications [8, 26].
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1110 G.S. MISHURIS

REMARK 2. It can be shown that the solution of the problem (7+,77,J)
from LW(£2) with the values of the parameters as given above belongs to an
energetic space of the corresponding linear boundary problem [26]. Therefore,
the problems in the class LW((2) have unique solutions.

REMARK 3. Instead of the interfacial conditions (2.7), (2.8) between the
domains of different geometry (layer and wedges), the other ones can be con-
sidered which are generalizations of the conditions (2.4), (2.5), (2.6). But, as it
has been shown in [24] just for Mode III problem, this significantly complicates
the problems, and such new conditions should be investigated separately.

3. Sweep method in the layered domain

Applying to Egs. (2.1), (2.2) the Fourier transform of the form:
_ 40 1w
(31 F2) = Flf e 21> N = o [ explire)u(es,a) day,

we obtain (see [37]) the following relations inside each of the layered domains
25, (1 =1,..,n):

(3.2) —ixgd) 4 aia(” + X9 = a=12
Iy

—on = 2 1 0{1:1)_,,10(.:)“5} ,

2#_;
a e 1 — ] — | 1 ]
9 _5) _ :y=lh) 1_ ) = % (7)
. 5 = — B9, J) J + o).
s AU ngm oy lepy

where 3; = 7;/(2p; + A;), but the constant v; is defined in (2.2). For the function
5512} the equation can be found:

2 L\ @ a6 2. 6)
: X ey L A2

where

) — _i_m (1), y2 218 =) Gy A [dX(J) )
9y asz IAXT A _VJ@ ) —l—vj B tAXT|.
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The corresponding solution is of the form:
(35) 7% = Ci(N)e M2 2,0f(N)e M2+ CY(A)eMe2 4 2,0 (NP2 10,

where

JEJ":-% (€ — )9 (A, €)ch[(€ — z2)A] dé

/ g (X, €)sh[(€ — z2)N]dE — < f g (A, €)sh[(€ — x2) ] de.

LF

Using relations (3.2) and (3.3), Fourier transforms of all the remaining compo-
nents of stress tensor and vector of displacements can be calculated in terms of
functions C, (k= 1,...,4).

Following [16], we denote new unknown vector-functions:

w(A\) =ad(\z y
Pl i

Further on we omit all overbars and upper brackets.

From a priori estimates (2.13) for vector-functions of class LW({2) and from
the properties of the Fourier transform it can be shown that the vector-functions
defined above should satisfy the relations:

3] g 0<m <1,

[w)y (V)4 = $ O(In()), n=1,
Const + O(AM 1), n>1 A=0

[uf(b)()\)]- = 0(MY), A0
o7y (M]4 = Const + O(A?),  [o},(N)]- = O(A™?), A= 0;

A'éj\'cr:(b}()‘) = @(,\'\'3]‘ A =0, = }.2..n
: - Doy e B
1 1 _ —92
Mgy Aty Gy 9t AgyTiy Agx®e = O ),

A—=reo, J=23.,n

g ol(A)=0(A), A—co.

A (A), @3(), Ags

Here by [f(A)]+ we understand the even (odd) part of a vector-function f. All
constants in (3.7) are different, in general.
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1112 G.S. MISHURIS

Substituting the relations (3.6) in (3.2), (3.3) and eliminating the functions
of Ci()\), we obtain the relations between vector-functions u/ (b) and cr’(b) in the
form:

(3.8) = Rjo! + Rj07 +ujy,
ul =Rliol 4+ R0y iy, F=1,2uum,

where coefficients are calculated in the following way:

j 1 L=y
RL(A) = E; - IR]E,,
u(}) 2ihg; - A L
- 1 1-vy; :
J . J J
Ris (M) 25/\ij2+ A2p; el
Ri(\) = L~ YRIE
w(A) = gy T2EL
; =¥ i 1 0
e (0 —1)'
hj + =sh2Ah  sh2\h 0 -1
/ ] Fr ] = 3 ]
(39) R =r;(0) | g i W , Ez:(l 0)’
-’—\-shzz\h_f hj — 5y sh2Ah;
: hjchAh; + lshAh —ihjshAh;
R; = r;(}) 1 ;
ihjshAh; hjchAh; — XshAhj
X - 1—vy
iA) = =———5—, IR e
ri(A) Azhf —sh?,\h_,‘ Ye(eyo A2p; ()

B 1 _ sh®Ah;
o) T 121 — v;) ?-J(A A2

; _ sh2Ah; 1 =

h;
:| X2t(b) e —/\“Sh/\h X?b(t)

where y) = yi—1, Yt = Ui, 72:(6) = '}-((Qj)(/\, Yi(v)), but the remaining functions are
defined by

hAR,;

Fiipy ) / [92 = 2g1](A, €) { Lsh[A(€ — ye))] + : Azjf*h[)\(f = yb(:})]} 3
Y-

Y5

= fgz(f\,f){smh (€ = Yuv) )h[A(E — b(e) ]+ (€ — yie Ch[f\(i—y:(a))]}dﬁ,

Yi—-1
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¥

h h/\h
fiwy = / (€ — yb(2))925h[A(E — yy(py))dE — : f 91ch[A(€ — ya(yy)]dE
yj—-l Yj-1
v;
hAh; h:
S5 [ €= v anshIN -yl + 2 f 916hIA(E — v
Yi-1 Yj—-1

Note that the matrix-functions Rt{b)z(b)()‘) and the vector-functions ugmo(,\)
can be estimated like O(A™*) when A — 0. But in view of (3.7), the unknown
vectors Ur(b}(/\) (b}( ) are bounded near this point. Hence, by investigating the
main terms of asymptotics (A — 0) of the right-hand side of relations (3.8) it can

be obtained that vector-functions O‘f{b)(/\] should satisfy the following additional
relations:

ol(0) - o3(0) + [ X(0,€)d¢ =0,
Yj-1

X/ (z1,22) = (X (21, 22), X ‘“(a:l,xz)]T

(3.10) d
[1,0]15 ol (A) —ol(X) + fx’,\g

|)=0
Y;

+10,1 8 yol(0) 100 + [ X 0,6)de b =o0.
¥i—-1
Let us note, that the mentioned equations are the usual equilibrium conditions
of the j-th layer.

Now we apply the Fourier transform to the interfacial contact conditions along
boundaries I'j, j =1,2,.. = 1. The corresponding equations can be written in

terms of vector- functlons “:(b}' {(b} defined above

uf’l - uj — Tj0] = Au;,

(3.11)
ot —el = Ae;, §=1,2,..,n-1

Here Au;(A) = F[ou;]()), Aoj(\) = F[do,](A) are the Fourier transforms of
known functions.

As it has been shown in [16], relations (3.8) and (3.11) make it possible to
eliminate the unknown functions, either uf(b] or t:!"7 (b)) and to obtain formulas for
the remaining ones. We present the relations for vector-functions o*’( )" Substi-
tute (3.8) in (3.11), then two systems of difference equations (3.12),, (3.12) for
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1114 G.S. MISHURIS

vector-functions o‘f(b} are obtained

(a) Alo)™'-Cloj +Bioi*™' +F, =0, j=2,3.,n—-1,

(3.12) i # A
(b) Alol-Clol*' +Bioit??+¥, =0, j=1,2.,n-2,

where
M= oR,  Clemem-RY, B =R
(3.13) ¥, =aif' - “m Au; + (R}, + 7;)A0; — R} ' Acjia,
F, = ult! —ujy — Auj + R} Ao; — R}, Ag;_1.

Equations (3.12) are identical in the case when all jumps of vector-functions o;
across the interfaces (Ao; =0, j = 1,2,...,n — 1) are equal to zero.

In order to solve any of these systems of difference equations, it is necessary
to have exterior boundary (“initial” in this sense) conditions for the first and the
last surface of the package of layers. At boundary I, one of the conditions from
(2.11) is defined. Applying the Fourier transform to the corresponding boundary
condition and taking into account (3.8), (3.11), we rewrite it in a form similar

o (3.12):

(3.14) Alo?! _€lo® + E% =0,

where the functions A%, C?, F?, are defined for each of the conditions (2.11), -
(2:11);:

J=1
=-R}, Cr=R
Fg = —Ou, —u — RjAony,
J =2
A"=0, C"=I n =—Aoy,
J=34: f d
e T3 n
e ( 0 55'4) =
b7s 0 674 0
n __ n
518) Gore ( 0 554) R”Jr( 0 473/’
0 0
Fr, = — ( 73 53-4) (ufy + RBAG,_1) — Ay,
E.:f(f\))
Ahgy = ( 5= :
= ( a7(N)
J =5
A} =-Rj, Cp=7,+RE-RY,
F?, = —Au, —u}y — RRAo,_; + RS A, + ikzi
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where 4 7; is the Kronecker symbol, but

&-r 1-2
R?..?Ll{/\} = lim R;‘b (’\:hn+1) =L Un+1I_H. V“HEQ,

hpny1—+00 Bnt1|A| 2Un 1 A
1—vp
n+1 - : n+1 "= n+1
u (M) = h.,}.lﬂmubo A = _2,un+1)\2
3— 2Un+1
[ 2000 en  + 1 [0 (6 —smlen i + S 2201T,
. o % n-+1 ‘
isign [2_[91(’\:5)371 d§ — |’\| /5'2(-*:6}(5 i yn]end£ = ZY%
Yn Yn

where e, = elMyn—E)

Let us note that relation (3.14) corresponding to (9e) is obtained by passing
to the limit hp4; — oo in (3.8) and taking into account boundary condition
(3.12) for 5 = n. This fact allows us to consider this condition in a common
scheme with the other ones.

In order to complete the difference equations (3.12) it is necessary to know
the second boundary condition along boundary I'y. Such a condition is absent
(the solution along I is not known and is connected with the solutions inside
the wedge-shaped regions 2}, , £27). To overcome the mentioned difficulty, let
us assume that this condition has the form:

(3.16) z2(zy) = oW(zy, 201,

with some unknown vector-function z(z;). Then the missing relation can be
written:

(3.17) —Clo} + BloZ + F2, =0,
where
cd=1 BY’=0, FY=2.(0)+3_()).

Here we present the vector-function z(z;) as a sum of even and odd vector-
functions z4(z), z_(2).

As one could expect, the boundary conditions (3.14) and (3.17) are prescribed
for different vector-functions o7, of. In order to solve any of the systems of
difference equations (3.12),, (3.12)p, these equations should be rewritten in terms
of the common type vector-functions. So (3.17) can be written in the form:

(3.18) —Cle? + Bla} + ¥, =0,

where C2, BY are defined above, FJ, = F, and the vector-function o} is defined
by the lelatlon similar to (3.11),:

(3.19) ol=0} (Agg=0).
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Now we can solve the difference equation (3.12), with boundary conditions
(3.14), (3.18) by the sweep method. Following [16], we define the auxiliary matrix-
functions o, and vector-functions 37:

(3.20) a = (C%)~1AR, pr=(CP)E.,,
and in the next steps

oty b= (6] Bl

B = (C} - Bjof*) (¥, +BIP), d=n-1,.51

Then the solutions of this problem are in the form:

(3.22) o7 =) = ?-+(/\)+3 (A),
(3.23) 0"7 = (!LJOJ +BL, 3=1,2, ..;0

If vector-functions z., (1), z_(A) are known, then the values ofcr’ will be found
from (3.22), (3.23). Moreover, the values of crg and ubm can be obtained from
(3.8), (3.11)2. Corresponding relations are of the form

u =Dl +d,, i=1,2,...,n
(3.24) t at J

lib — Da,boj'k'dab, J= 1,2,...‘?1_1,
where

D, = R} + R(al), dly = Um + RJ,(Aoj_1 — (a)1B2),
D), = R}, + R}y ()7, d':rb - “bo h Rbb(A"'j—l — (a)7'B2).

Further, we shall need the relation between the Fourier transforms of vector-
functions u, and tractions o} (= o}), along the exterior (with respect to the
layered part of the domain) boundary I:

(3.25) u} = Mo} + m, = Mg())(Z4()) +2-())) + mg,
where matrix-function M, and vector-function m, are of the form
(3.26) M, =Ry o) + Ry, m, = uy + RyB;.

Relations (3.25), (3.26) will be necessary to satisfy the contact conditions along
the boundary IF.

LEMMA 1. Matrix-function M, () has negative components on the main
diagonal (mgrx(\) < 0, k = 1,2), and is nondegenerate (det Ms(A) > 0) for
arbitrary A € R,. Both the matrix-function M, and vector-function m, belong
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to the corresponding class C*°(R, ), and the following estimates at infinity are

valid for any exterior boundary conditions under consideration (J = 1 — 5):

-~ 1— 141 e 1"1 = 2!/1
pfA| 2 A

m,(A) = o(|A|™%), Al = oo

M,()) = E; + O(Py(|A])e~2Nh),

but in the neighbourhood of zero point (A — 0), they depend on the exterior
boundary conditions in the following manner:

=1

M) = (gt o) e =0,

=95
L 200 ey ORY) )
M, () = e3A (—i/\ng +O03) A2, +O() )
2%, + 2Ty, — iXhnba + O(A2) )

SYE St
e e (—z’)xaz& + Mgy, + A2 (by — ynaz)€a + O(N3)

J=3:
. /4 0()?) idag + O()\?)
M,(A) = esA~2 (—iAbs FOO) 1400 )
s _a ((iAazéa + O(N?)
m,(\) = —c3) 2( £+ O(\) )
J =4

MG[A)=C4A"‘( 14+0(N\?)  idag + Of 3)),

A

—idag +O(A®)  Maf+ O(M)
B ¥ &1 + iYL + O(N?)

e (-i,\aiéi HE A +O(»\3))‘

: vz IN@HOAD))  ddas(1+ O(|A])

M, (A) = esA ™2 (—-i,\as(1+(9(|)«])) |,\|?1+O(ikl)) )

|Al€1 + idaséa + O(X?) )

my(\) = —esA ™2 (—iz\%{l + | M€z + O(N?)

Here constants ay = ag-), by = bgj, cq= cg.} (J = 2,3,4) are defined from

the recurrent relations:
=1
&) = (1 + ) [+ 2hga) + 20 Vel j)) |
o) = otV rohy, B = b 4y (o) 4 oY),

n n 3(1— n
ag ) = o, bg ) = th o = t)

il 2 #nh?x :
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aé’} L agﬁl) o J_“’si, bg’) {J+l) +hy,
j
: . : =3
) = GO 1 o)
3 —
of) = o) = hgie, e
n

" 5 i 9 -1
) = 01—y (1= — el [2a0 00 + 202 )

j j+1 3(1 — vn)
0 =af™M4hy, @l =ha & =T
s 1 —2un 4 M= _(I“Vn+1).
2(1 - vn41) Bnt1

Besides, vector £; and constant 7 from the right-hand sides of the relations
are:

Y;

EL=[&,6&] = 3 f X(0,z) dz — ZAaj(O),
j:]-y)_l i=1
a n n ¥
T, = if1, 005 EAUJ(,\ z; / %I\ 2)dz | o
j=1 it T

n

- [0,1] Z(yn y;)A0;(0 Z[ :r—yn)ij(ﬂ,x)d:c ;
j=1

I=ly;_

for all types of the exterior boundary conditions along the boundary I, (7 =
2,3,4). But in the case J = 5 (when the last layer is a half-plane), in these
relations it is necessary to replace number n by n + 1, and to assume that
Acopi1 =0, Yynt1 =00

To prove this Lemma 1 we need recurrent relations for the matrix-function
M, = M} and the vector-function m, = m} in the form:

M/ = R}, [7; + R} - M{,"'}_IR{b +RY,
M. = R}, oy + R}, § =, .2,
m} = uly — (MJ — R},)(R},) ' (mi™! + MIT Ag;j — u)y — Au;),
m) = Rj;B7 + ug, 1=n—1.,21
Here a”?, 7 are defined in (3.20). Then the results follow by induction on j. We

do not present all the details, taking into account the volume of the paper and
its technical character.
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In the process of proving Lemma 1 we also obtain all properties of the even
and odd components M, m} of matrix-function M, and vector-function m,.
Thus, matrix M} has only nonzero elements on the main diagonal and they are
real even functions of A\, but M, has nonzero elements on the second diagonal
and they are imaginary odd functions of A.

COROLLARY 1. From (3.7) and Lemma 1 we can rewrite a prior: estimates
for the unknown vector-functions z, z_:

a
—z = —70 .
,\al\zi(/\) O(A~), A = o0;
6

2,(\) =sF + O(\%), S
(3.27), £_()) = 5.2\ +O(\7 1), A—0;
AMF (NE+(A) + My (\)z-(A) +mF (X)) = o(aminllaihy ) 0

AMEN)Z-(A) + Mz (Nz4 () +mg (X)) = O(A™ ),  A—=0;
AMZF (N)z£(A) + Mg (Nzx(A) + mz(A) = O(A®), A= o0;

31 (X),

ZE.()=001), A0

here
IJ=1: 21 5=
J:2 {73-:21 ‘T‘Z_""l:
st =81, [1,0]z; =41 —i[0,1]y.EL,
= +
— 2 =M =1,
Bl T { 0,1](z+ — E1) =0,
T=4: {7;_:2: 72—11
. [110](51— -8 ) —: 0 [1,0]5: = 3TL b= 1‘[01 1]?!1:3[.;
+ - = -
i Y =M, Y2 =1, 1 21
= { 37 =8

Let us note that the even and odd components of the solution decrease at infinity
in a different way (the corresponding orders are 'rf:, 'yzi)‘ So by 11, 72 in (2.13)
we shall understand the largest of them. Besides, the values of constant vector
z] in the case J = 1, and the first (second) component of z} in the case J =3
(J = 4) are unknown as yet and will be obtained below. This is important to note
that the corresponding relations (3.27) present the usual equilibrium conditions
for the layered part of the domain and consequently, vector z} (or one of its
components) is defined from a priori estimations. They follow from (3.10) and
the interfacial conditions (3.11):

n n—1
o (0 +Z/ O:r:d:r—ZAo'J(O =10
j:l £ F=1
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n Y n—1
L0 (et -ad+Y [ BO2)de - T A0i0) | lhso

=1y, i=1

n Yi n—1
+ [0, 1] Z f xX’ (0, z)dz — Z yjAc;(0) +yaop(0) | =0.
j:lyJ__l =1

The second equation can also be rewritten in an equivalent form:

n v; n—1
= o D |
1,005 a,(,\)_a;,(,\)+zfXJ(,\,x)dm—ZAa;(,\) g
j=lb'j—l

j=1
n Y; n—1

+0,1 % f (@ — y)X?(0,2)dz + 3 (vn — ;) A0;(0) + yaoh (0) | = 0.
j=1y,'-1 §=1

Constant u, from (2.13) can be calculated from the equation:
o0
(3.28) =1 / A) + M2 (VE- () +mZ (A))dA.
0

Moreover, if any component of the displacement is prescribed along one of the
exterior wedge surfaces, then we have (see (2.13)) the additional relation for the
corresponding component of vector u,:

wlly T ) =0, malT T 1 T) o, JE=1-4, T=1-5
[1,0]8(65 Jue(3, T, T)=0; T =2-4, JT=1-§
(3.29) [0,1]8(85 )u, (4, T, T) =0, T =2-4, JT=1=H
[1,018(65  )uu (T .3, T) =0, I =2~4, T=1=5
[0,1]8(6; ) )u(T T4, T) =0, T*=2—-4 J=1-8
Here matrix-function S(¢) is defined in (4.9). Besides, for the next problems we
can conclude that for any 7 =1-5
w(3,4,7) =0, w(4,37)=0 6f#0, +m/2
u.(3,3,7) =0, u.(447)=0 6 #6,
Finally, if equalities arise instead of the inequalities in the last four problems,

only one of the respective conditions (3.29) which should be satisfied is linearly
independent.
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4. Sweep method in the wedge-shaped domain

Rewriting Eqs. (2.1), (2.2) in the polar coordinates and applying the Mellin
transform in the form:

u(r,8)r*dr,

0

&,0(s,0) = f a,O(r, 6)r'dr,
0
o0
fX{:r' 6)r*Hdr,
0

we obtain [37] the following relations in the respective regions:
—80rr + ==0rg — Ggg + )-{r =0,

(4.1) a0

a
—-( 1)0‘,-9 + %099 -+ Xg 0;

A e = =
—sty, = ﬁ[o,,—ua]-i-ﬁe.

L e . =
(4.2) Up + “a—ei.f.g = 2—.‘; [099 = VG'} + 6O,
9 (s+1)u lc'r o =0 + 0
—U, — (8 g = —0rp, = Opp ;
Y e ¢ u rf 66

where constants u, 8 = v/(2u + A), and v (defined in (2.2)) are different in
regions 2., 1'2;. For function &gy the equation can be found:

2
(4.3) (38—; + (s + 1)2) (% + (s — 1)2) g

82
(6‘92 +(s+1) )h1+3(s—1)h2,

where

hl(s,e) = —%Xﬁ - (S ‘—*1 R 3(3 . 1 2#5 ,

-V

ha(s,8) =

[(s+ i ~ %Xg]

-V
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The corresponding solution is of the form:

(4.4) arg':,*) 0,8) = C’* s)cos[B(s + 1)] + C (s)cos[f(s — 1)]
9

+ C3*(s)sin[6(s + 1)) + 4(33;11) f h§)(s, ¢) sin[(¢ — 0) (s + 1)]do
o
[}
+Cf ) sinlo(s — )] [ [4*) 4 o Zg5h sinio - ) ~ s

6
Using a line of reasoning similar to that applied in (3.8), we can obtain the rela-
tions between the Mellin transforms of the vectors of displacements and tractions
along the corresponding boundaries of the wedges.

(4 5) vf Pttpt ik ng,pf, =5 Vfg !
vb = Pbtpt + PPy, + Vig s 1=12,..my;
k
(4 6) WE ) Qtfqt 7 thqﬁ ar Ww ¥
Wi’ thQf =1 be% +W¢.u, = SO R

From the properties of the Mellin transform and from a prior: estimates (2 13)
of vector-functions of class LW(42) it follows that vector-functions p; t}( s), qu (s)

are analytical in the strip —yy < R s < 79, but “"b(c)( s), "b[t}( §) are analytical in
domain 0 < Rs < 7, in general. In point s = 0 they can have a common simple
pole. Besides, the relations hold:

; 1 . 1
(4?) V':(b}(S) =3 ;ll*, wf,k[bj('g) o ;u* = O(l): i 01

and the vector-functions from the left-hand side of (4.7) are analytical in the
whole strip —y9 < Rs < 4;. All of the discussed vector-functions decrease to
zero along imaginary axis inside the corresponding domains.

Here the coefficients in (4.5) are found from the formulae:

. 1 :
Pji(s) = @[Fb — P{Ey], Pj(s) = s u* — P,
i 1 : : :
-, j =3 j

Pi,\b(s) 3% 23 j_[EZ + E].P]]} Pit(s) =i S;J,;_ E1P2 1

pi _ §8in 2q5+ + sin 23¢+ 2sin? 3¢;f — 2ssin® rﬁ:_}"
=P 2 sin® 3(,5* + 2ssin ¢+ ssin2¢;" — sin 251:&}-+ 4
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)

4.8 i(8) = 3 ‘
Ll s e P

2spfvly = P{E\H, — PJE  H)

( o \
Xoo— (1= v}) [ hacos((~ 8 )(s + do
1 e;.'_
T s+1 6; :
~=uts / hasinl(6 — 6F)(s + 1)]de

s+X N, D
b (23 sin qb;' cos scil;-' +2sin sqb;' cos qb'f' —2(s—1)sin q&Jf sin 3¢+ )
N

2(s+1) sinqlﬁJ-r sin.s‘:,i);;r 2s sm¢+ COS 8 "' -2 smsqb"' cosq’)"’

/
. ! 1 Xeb
28;‘.1.;\!‘;0 = EIP%Ht E}PJHb— — ( ), Hb R (Xab)

where ¢>+ =6} - 9 " Xegh = Xg(S,G;—_l), Xo = XQ(S,S;-), the functions h;(s,8)
and the matrlces EI, E; are defined in (4.3) and (3.8), respectively, but the
remaining vector-function H; is:

L
t— 4 h£2} 3

o
=
pY = z+ ; f hy sin[(¢ — 6,7)(s + 1)]d¢
oF
o
4h
o f [hz + ?‘1] sinf(¢ — 61)(s — 1)ldg,
o,
of
4 =
h{? = o~ / hy cos((¢ — 6] )(s + 1)]d¢
oF
o
h
+ f [hz + 34_11] cos[(¢ — 6;)(s — 1)]d¢.
9+

1—-1

Note that matrix-functions Pf(b]c(b](s) and vector-functions vg(tw(s) can be esti-
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mated to be of O(s~2) when s — 0. But the unknown vectors vf{b)(s) can have in
this point a simple pole only. Hence, by investigating the main terms of asymp-
totics (s — 0) of the right-hand side of the relations (4.5) it can be obtained
that the bounded vector-functions p':(b)(s) should satisfy the following additional
relations:

p1(0) = S R}(0) — [ S8 ~ %0, 0)de,

(49) cos ¢ ~s1nj<;
S(¢) = | . ;

sing cos¢

where X/(r,0) = [Xg(r, 8), X3 (r, 6‘)]T. This relation is the usual equilibrium con-
dition of the j,-th wedge. Moreover, passing to the limit s — 1 in (4.5) we
obtain

gt
(4.10) 1,014 pl(1) - B}~ [ X1, ¢)dsy =0,

9+
3=1
what is the torque balance condition for the j,-th wedge. .
What concerns the formulae for coefficients thb}t(b)(s), wf(b)u(s) from (4.6),

“w »n

they are similar to those in (4. 8) if all upper indices “+” are replaced by
(for example ), 6, ¢ by uj, 67, ¢7).
Further on we rewrlt.e the internal boundary conditions as above:

vi“ v - "I'+Pf = Avj,
g.H_ t:Apja j=1.,my —1,
(4.11) k+1 AL
Wy Wi = T4 = Awg,
dH g = Ady, k=1..mo -1,
where
(4.12) A"a M[JVJ] v A M[apj e )

are the Mellin transforms of the respective vector-functions (see (2 5), (2:8]).
So the net result for wedge-shaped domain (2 is of the similar forrn as (3.22),
(3.23):
Q@ =q =7_(s+1) —Z:(s+ 1)+ Aqu(s),
(4.13) qf — ':;q:‘ ' +[3§, — I e

wi

ql'.qlf + dqt! Wb = quqf -+ d
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Let us now write the relations necessary to calculate the coefficients of (4.13):

of = (C7) AT 8] = (O R
of =(Q} —Blalt )" A%,

o} = (o} ~ Bl at™)  + BB}
Dy, = Qf + Qi(ag) Y, g, = wio + Qf,(Aqi—1 — (af)71B}),
(4.14) Df, = Q5 + Qf(ah) ™, dby = why + Q(Aqk—1 — of) ' By),
k k k - k : : k
Ay = -Qp, Co =7 +Qp - Q;;rlv Bé‘ & Qb:“s
Fk _wk-{-l_wk_Aw +(QL+ =YA ! k+lA
gb = Vb0 {0 k it + Tp)Aq — Qp " Agiy,
Ff;z = W:JI T “’f{} — Awg + Qf;lﬂcu- = beAQk—h
Aq,(s) = M[do_](s +1), k== te =101

The constants at the first step of the sweep method are defined by one of bound-
ary conditions (2.10)

J == 1 : m_ m-— m-— m—
Cq = Qu ) Aq = "'ng )
F:;;‘ = —Awpy_ — Wy~ — Qp Agm_-1,
\7 - 2 m
o=l AP-=0, R =B,
J =34
6.73 0 m_ 554 0 )
m— _
Cq _(0 554)% +(0 S bt
) i3 Sw 7(s)
AT = —( 8 ) , Ahy=|[~— ,
¥ 0 474 Q, e dgz(s+1)
T 6 0 T — m_.
- = _( 73 5,74) (W™ +Qf~ Agm__1) — Ahy.

Here d7; is the Kronecker symbol. The remaining initial conditions along the
boundary Iy follow from (2.5) and from assumption (3.16):
415) €0 =1, B)=0, Aq=0, F)=5_(s+1)-F;(s+1)+Aq..

In an analogous way we obtain the relations

mi+1 m4

Py =p; T =2_(s+1) +24(s +1) — Apu(s),
(4.16) o] =alpit 48l  F=mueal
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for wedge region 27, where the necessary coefficients are of the form:

al = (€))~'B) Pr= SEpd

alt! = (€I — Al od)7'B,
@t = (€] - A o) I(F ,,+Ai;3;)
D= Pl + Blol)yt o die vm PJ,(Ap; + o)1 B)),
(417) D}, = P}, +Pjof)7, de = vio =~ P, (8p; + (o) 7' B)),
=P, C=sriB-pil  Bl=pH
F;b = vig" —Vio— Av; + (B} + T, )Ap; - P} Apj,
Ff:t &= gl vio — Avj + Pi;dAPJ' _PrbAPJ'"h
Ap.(s) = M[do(](s + 1), i=12,..,1-1.

pb

Boundary conditions for the corresponding system of difference equations follow
from (2.9), (2.7)p and assumption (3.16):

Ji=1
B) = —P;,, c) =P},
F), = Avg — vi + P, Apy,
g="3
Bg = 0' Cg = I, ng = Apn,
J =34
gt — _ (%73 O )Pl
0 5J4 bt»
1) 0 ) 0
o_ (973 1 J4
< ( 0 67 )Pbb+( 0 5.73)
) 0
B = (%0 5;;4) (vl — PhAp1) + Ahy,
v
el (_,-v:m )
ps(s+1)
OO =il - ATHE0. || Bpwp=i;
Fit =24(s+1)+3_(s+1) — Ap..

Besides we can find relations similar to (3.25) connecting the Mellin trans-
forms of displacements and tractions along boundaries Iy, I}

(4.18) vt = Mpp; " +mp = Mp(z4(s+ 1) +2_(s+ 1) — Aps(s)) + myp,
(4.19) wi = Myq} +my = My(z— (s +1) — Z4(s + 1) + Aqu(s)) + my,
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where
Mp(s) = P o™ + Pyt my(s) = vig* + PRt B,
M,(s) = Q0 + Qg my(s) = wio + Qp By
LEMMA 2. Matrix-functions Mp(s), Mg(s) and vector-functions my,(s), my(s)
are analytical in the strip |Rs| < 1 except maybe one point s = 0. For matrix-
functions M, (s), My(s) and for their components muii(s), mgrr(s) (k = 1,2),
the following relations are true:
My (=8) =M, (s),  Myq(it) = M (it), t€R,
det M) (it) > 0, mprk(it) > 0, mgek(it) <0, teR,.

(4.20)

Besides, for any exterior boundary conditions (J* = 1 — 4) asymptotic expan-
sions near the infinity point hold true (|Ss| — o0):

1 . > _sigalod
Mp(.‘i‘) = —23#+ [(1 - 2ur:;+)Eg -2(1- u;+)tg(¢;n+3)]] i O(Pa{S)e 2|Ss|o +)}
m4

l -
T [(1 = 207)B2 + 21 — v )tg(gy o)) + O(Pa(s)e™210190),

but in the neighbourhood of the zero point (s — 0), they depend on the exterior
boundary conditions along the wedge surfaces:

M,y(s) = —

TE
M_:}(s)| Mq(s) = O(l)| mp(3)1 mq(s) = O(IJ!
JE=2:
Mp(s) ~ s3T5,  My(s) ~ s72T5,
my(s) ~ —s T (84 + 5(_9;)Apu(0)) :
my(s) ~ —s~*T; (8- - 8(-6,_)Agqm_(0)),
J* =3 S 3
My(s) ~ s T3(65),  Mg(s) ~ cfs™“T3(6;, ),
st
my(s) ~ —2c5s > ({f sinfg + & cosfy + Aqu)(ﬂ)) (2:;;3&)
0
-
my(s) ~ —2cs~2 ({l" sinf_, + & cosf, — Ag? (0 )) (::;;9'2‘ )‘
J* =4

| Mp(s) ~ s ITa(0F),  Mgls) ~ cfs~2Ta(6_),

9+
my(s) ~ ~2¢js™? (6F cos6 — & sind + Aa(©))  “5r% ).

8-
my(s) ~ -—2(:33‘2 (51_ cosf,, —§& sinf, — Aqg)_(O)) (_CO.S . )1

sinf,,
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where the next terms in these relations are estimated as being of O(s™!) as
s — 0. Besides, near point s = 1 the following equations hold true:

J* =1,8:
M, (s), My(s) = O(1), my(s), mg(s) = O(1), s —1,

JEt=2:
1 dﬁﬂ 0 p(q} dpz
MP(U}(S} e (dggq) G mp(ql(s} dp(e)
T*==4:

1 L AC I Toa) "9
Mp(q)(s) ~ 3_1( b 0)‘ mp(qj(s)”-s—_{( 0 )

Here P3(s), Py4(s) are some polynomials of the second degree, matrix-functions
T3(¢), T4(¢) are of the form:

_ (2sin’¢  sin2¢ ~ (2cos*¢ —sin2¢
Ts(¢) = ( sin 2¢ 2c032¢) i Talg) = (—sin2¢ 2sin’ ¢ ) :

but &pgj)( 0), Aq(J} (0) (j = 1,2) are the components of vectors Apg(0), Aqm_(0)
defined in (4.12). Vectors E., and constants 1, 7, are defined like this:

my—1

- 6617 = % 0%~ ))an,00 e [ (85, — #)X(0,¢)ds
i= 19+
m-_-—1 m_ 93'-
=) = X S6 - 6)AG0)+ Y, [ 8@ - %0, ¢)de,
=1 =1y
{ 6+
my—1 my 4
7, = [LO4 S Apy=Y f Xi(1,$)dé b,
\ i—=1
’m 8 my
T, =104y [ X(1,6)ds- 3 Ag()
0 j=1
\ ej-l
Constants ¢ = —a}*, & = a™*, ¢ = bL, ¢} = —bL are calculated by recurrent
relations:
2 J =
ol _ai{l-y-%ﬂ__f ¢,y £ singf,, cos (¢;“+1+2z¢f)]} :
Nt k=1
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Voo = 1+ ——— ¢,y £sing;_, cos | ¢ 1+2§ b ;
=3
1 1_‘1’;— m_ 1 —vp_
Gt = ——F : g by == = : =0
Ly [2¢7 £ sin 247 ] pm_ [2¢m_ + sin2¢m_]

but matrices T-,i are defined by the following recurrent matrix equations:

Th g B
T = 21— vm,) ”’“+)B;+D,+n+, g = XU )p-p-
Hm Hq
w1 = u*_lj -1 =
Bf =1-1{1 ——1--§(¢F)B}_,D} T “1egpt
=i T s mrngm o7) m )
py (1= vi,) ! %
BT =11y DIV e oy 8 ”
: { +»U‘J+1(1 Vj) (97 )Bj1 D5 By (D ) EIS((bJ)} ‘

e + +1 207 +sin2¢;  F2sin® ¢}
BirBe =1 Di=7rp i\ aenter 9 —enigt)
4[(¢;7)? — sin® ¢7] F2sin’ ¢; ¢; — sin2¢;

Taking into account the volume of the paper, we do not present here the corre-
sponding recurrent relations for the constants df}q} in the asymptotics near point

s = 1, because they are not directly used in the analysis of systems of integral
equations.

COROLLARY 2. In the process of proving Lemma 2 it can be also shown that
matrix-functions M,(s), My(s) can be represented in the following form:

M, (q)(8) = M, (8) + My (s),

where matrix-functions M:[ qr)(.9) satisfy the relations:

+ + + _ Mt il - — M-~ i
M {Q)( = iMp(q)( s), Mp(q}(s) o [Mp(q](s)] k Mp(q}(s) = [Mp(q}(s)] ‘
COROLLARY 3. Let us assume that if the following statements hold true:

1. Domain (2 is symmetric with respect to 0X; axis (my = m_, 9;' T ek
i 0);

2. The constants in Eqs. (2.2) and in interior boundary conditions (2.5), (2.6)
for the corresponding wedges are identical (“J Bony 413 uj+ = Vg —jt1s
T; 0 Tm+ —J)

3. The types of the boundary conditions on both of the exterior wedge surfaces
are identical (7t =7");

then it can be shown that:

Mp(s)+Mq(s)=(f1(0_s) f‘((}s)), Mp(s) — My(s) = (fg((}s) fs?s))’
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where f;(s) (j = 1 — 3) are such functions that f;(—it) = f;(it), ard sfi(s),
fa(s), f3(s) are even real functions.

REMARK 4. The following relations should be true if the traction: are pre-
scribed along the external wedge boundaries I, I, :

JF =73 p/"*(0) = 4 + S(—67)Apo(0),

I =2: pi(0) = E_ — S(—6;,_)Apm_(0),
Jt=3: [0,1]{Apo(0) + S(6])[E+ — p; T(0)]} =0,
J-=3: [0,1{Agqm_(0)-S(0;_)E- - qi 0)1} =0,
Jt=4: [1,0{Apo(0) +S(67)[E+ —p; T(0)]} =0,
J™=4: [1,0{Aqn_(0) - S(6_ )[E- - q;(0)]} = 0.

They follow from relations (4.18), (4.19), because their left-hand sidescan have
a simple pole only at point s = 0, but the right-hand sides have a secoird degree
pole, in general.

(4.21)

REMARK 5. Let us note that z* (1) = #z*(0). Then, using the first relations
from (4.13), (4.16) for g}, p;"* we obtain:
(2,2,7) : ozt —Ew = 0,
(2,3,7): [0,1]8(0,, ){272] — 8w} = 0,
(24.7): [1,08(0; ){2msf —Bw} =0, JT=1-3,
(@2 1s o 1]S(9+){2nj -Ew} =0,
4,2,7):  [1,008(6f){2nzt — Ew} = 0.
Here we have introduced the following notation:
(4.23) Ew =E;—E_+Ap.(0)+ Aq.(0) +S(—85)po(0) + S(—b7,_)dm_(0),

where Ey is the principal vector of all forces and tractions acting on tle wedge-
shaped part of body 2% U £2~. This Remark allows us to find the valwes of the
constant vector z;7 = z"(0) (or one of its components) for the corresponding
problems.

The proofs of the Remarks follow from the fact that functions ve T (), wé(s)
can have only a simple pole at point s = 0. Besides, for certain valus of the
exterior wedge angles 6, 6,, we can also conclude that for any 7 =1-5

(4.22)

(3,3,7): [1,0]8(67){27zf —Ew} =0, S

(4,4,7): [0,1]8(6¢){27zf —Ew} =0, e
(4'24) : 0V 2zt — B =0

(3,4,7): [0,1)S(6]){2nzt — Bw} =0, e R

(4,3,7): [1,0]8(6F){2nzt —Ew} =0,
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Let us note that for an arbitrary problem (7%, 7, J) there are exactly two
additional equations for constant vectors u, or z; (or their components) in (3.27),
(3.29), (4.22) and (4.24).

REMARK 6. The following additional relations should be true if the normal
component of tractions are prescribed along the external wedge boundaries I,
I', and y;,7v2 > 1 (see (4.7)):

(428) @ =2,4: Dol M=% T =24: [L0&gl)=T

They are the usual torque balance equations, and they follow from relations
(4.18), (4.19), because their right-hand sides can have a simple pole at point
s = 1, but the left-hand sides are analytic in this point.

Besides, in problems (2,2,.7), (2,4,7), (4,2,7), (4,4, J) we can additionally
obtain from (4.18) and (4.25) that:

(4.26) —2mi[1,0]z; = [1,0/{Ap.(1) — Aq,(1)} + T, + T,

where z_ is defined in (3.27). To this end, the identity

Fol2) = /r'z_(r)dr = —ir (22—; /z_(r)sinr'Adr) = —inz,
0 0

lx=o

is used.

5. Conclusions

So, we have investigated the solutions of the problems of both (layered and
wedge-shaped) parts of the domain. All interfacial conditions along the regions of
similar geometry (2.4) (“layer — layer”) and (2.5), (2.6) (“wedge — wedge”) have
been satisfied. Now, it is necessary to take into account interfacial conditions
(2.7), (2.8) along the “layer — wedges” interfaces.

Let us note here that each of the relations (3.25), (4.18) and (4.19) as well as
Lemma 1 and Lemma 2 are important. They are necessary to solve the boundary
value problems for layered and wedge regions, separately. Namely, if we have
arbitrary boundary conditions on the boundary Iy of the types 1 — 5 (2.11),
then we can find the respective integral transform of the corresponding solution
in a closed form. Moreover, if the boundary conditions are of a general form
(contact with the other body and so on), then the respective relation (3.25),
(4.18) and (4.19) makes it possible to investigate the corresponding problem
along boundary Iy only. Then the information on the behaviour of the auxiliary
matrix-functions and vector-functions (Lemma 1 and Lemma 2) will play an
important role (for example, to reduce the problem to integral equations).
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