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Treating a singular case for a motion of rigid body
in a Newtonian field of force

A1 ISMAIL (TANTA)

THIS PAPER presents a rotational motion of a rigid body about a fixed point in a
Newtonian force field for a singular value of the natural frequency w = 3. Such a
singularity appears in [3] and has been never studied in full generality. Poincaré's
small parameter method [4] is applied to investigate analytical periodic solutions,
with non-zero basic amplitudes, for equations of motion of the body. A geometric
interpretation of motion is given using Euler’s angles to describe the orientation of
the body at any instant of time.

1. Introduction

CONSIDER A RIGID BODY of mass (M), with one fixed point; its ellipsoid of
inertia is arbitrary, and its center of mass does not necessarily coincide with
the fixed point. Assume that Oz, Oy and 0z represent the principal axes of the
ellipsoid of inertia (fixed frame of the body), and 0X, 0Y and 0Z represent the
fixed frame in space. Assume A, B and C to be the principal moments of inertia,
zo, Yo and zg to be the coordinates of the center of mass in the moving coordinate
system, v, 7' and v” to be the direction cosines of the vertical Z-axis, directed
downwards and p, g and » to be the projections of the angular velocity vector of
the body on the principal axes of inertia. It is taken into consideration that at the
initial instant of time, the body rotates about z-axis with a high angular velocity
ro and that this axis makes an angle 8y # mm/2 (m = 0,1,2,...) with Z-axis.
The six nonlinear differential equations of motion and their three first integrals
are reduced to the following system of two degrees of freedom and one first
integral [3]

HZF(pEJ.)% 72!&‘2)#’]‘

Il

ps +9
(1.1) P2 TIp2

;};2 +72 = 1‘295(17211.32;’}’2:'?2:#);

3 .2 o n
(1.2) 792 —1=13 + 73+ 2p(vpav2 + vapy¥a + s21)
.2 2 B = ;[ k.
+ p? {Vgpz — 27, (6241 Yo + A7 'posar + 7281 = yoa ' Aj 1)

1
+ 2p2 + 53, + 2 (332 - 5311)] £ ),

http://rcin.org.pl



1092 Al IsMAIL

where
F=F+uF3+..., S =P+ pud3+ ...,
Fy = fy +8veips, Dy = ¢ — 8u(e + e172),
F3 = f3— e1¢2 + 8vei(e + e172), P3 = ¢3 — vfr — 8 e1ps,
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7 %Zﬁ(ﬂﬁl — A1b )yasn — zpa (e + exyz + pasa)
+ k [(1 — C1)(ypa™" — e2¥a)y2¥a — v(1 — C1)p2pays
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Here R is the distance from the fixed point to the attracting center; A is the
coefficient of attraction of such a center; pg, qo, 70, Y0, 7y and 7y are the initial
values of the corresponding variables. Since ry is very large, then u is considered
as a small parameter.
2. Proposed method

In this section, Poincaré’s small parameter method is applied to satisfy peri-

odic solutions, with non-zero basic amplitudes, of system (1.1). For such a con-
sidered system, the following generating system (u = 0) is obtained

(2.1) PP+ =0, PV +40=0
which gives periodic solutions in the forms
(2.2) pg{n = Mj cos 37 + M3 sin3r, *yéu] = Mjcos T,

with the period Tj = 27, and My, M; and M3 which are constants. Consider the
following initial condition

(2.3) Y2(0, 1) = 0,

which does not affect the generality of the required solutions [4].
The periodic solutions for system (1.1) are expressed by the following forms [5]

o0
p2(T, ) = Mj cos 37 + My sin37 + Z p*G(7),

k=2
(2.4) B =
ya(r, 1) = Mg cosT+ Y u*Hy(r),

k=2
where
(25) Mi=M+p8 (i=1,2,3),

ou u du
; =

(2.6) L ”+aM1‘gl+aM2ﬁ"+aM3ﬁ3

+l *u &4 U = Gy, Hy,

26M3™ T u=gy M [’

the quantities B, 302 and B3 representing the deviations of the initial values
of ps, p, and 7y, of system (1.1) from their initial values of system (2.1); these
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deviations are functions of x and satisfy the condition £;(0) = 0. These functions
gx(7) and hy(7) take the forms [1]

gr(T) = E/Ffu) (t1)sin3(r — t1) dty ,

(2.7)
hi(T) = ] o (t))sin(r —t1)dt;  (k=2,3).

The solutions (2.4) have the period T = Ty + () which reduces to Tp at p = 0,
that is «(0) = 0. The initial condition (2.3) can be rewritten using the following
relations:

pa(0, ) = My, P2(0, 1) = 3Ms,

(28) el
72(0, 1) = M, ¥4(0, ) = 0.

The solutions (2.2) are rewritten in the following forms
(2.9) pg"’ = Ecos(3r — ¢), 75‘” = MjcosT,

where E = /M? + M2 and ¢ = tan~' M,/M,. Making use of (2.9) and (1.4),
one gets

(2.10) Ef) = (0) (pgm,pé ),7;(;0},7%0)) (4, =1,2).

The functions F,Eo) and &fif) are obtained from (2.9), (2.10) and (1.3). Then
making use of (2.7) one obtains gy (27), hg(27), §;(27) and hy(27). The quantity
M3 is determined by means of (2.8) into the first integral (1.2), with 7 = 0, and
can be written in the form

(2.11) M; = \J1 =~ [~ — pwMy — 9u*v3 M3 [2Ms
- 3p3y5u2ﬁ2/aA1M3 o R

The independent periodicity conditions [2] of the solutions pa(7, 1), pa(7, 1),
Ya(7, ) and 7y,(7, i) take the following forms:

(2.12) Lyo+u(...) =0,  (La —9Ng) +p(...)=0;

(2.13) alp) = uzﬁgl [f:Ig(27r) + ,ul:fg(Z?r) + .. ] ;
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where

1 Ay B
Bafa= Zk[Sel(a —8) = 32(a”" = A1b™)(a — b) + ea(1 — C)
+e1 Ay + (Ag — 9)(0‘.&1 + bezAl_l]],
(2.14) Loy — 9Ny = ay (M} + M) — [ag + 9kb(2M3 83 + 63)),
a1 = (a—1)(a +b— 2)/2b,

az = z)(ab) " [3(a + b) — 2(2ab + 1)] + 18k [1 =g + bk %ng] .

Equations of the basic amplitudes of (2.12) give

]1,!‘2

(2.15) M=+ [azal—l - M? (6=1,2, j=21).

The functions 3y and (33 are assumed in the forms
3 3
(2.16) A= p+0Ww!),  Ba=3 utmp+O?).
k=1 k=1
Making use of (2.16), (2.12) and (2.5), one obtains
0, = —ay ' My Yay Mamy + 9bkv My Ms),
by = %al'lel[gbkusz — 18bk M3 (véy + 9v3 M3 /2Ms3)
(2.17) — ay(m} + £} + 2Mymy)),
%al_lMl_l[gbule(Zufl + 92 MIM; ') — 54kbra Mayga AT
—2a1 (mymg + Mams + €1£5)).

Il

3

Having Eqgs. (2.15) and (2.17), we get a family of arbitrary solutions for the con-
stants M, and Ms, and the quantities 5, and B5. Equations (2.6) and (2.7) give
the functions G (7) and Hy(7); then, the periodic solutions (2.4) are constructed
up to the third power of u. Making use of (1.5) and (1.6), the following periodic
solutions are obtained:

(2.18) p=eyT {Ml cos 37+ My sin 37+ u(e+£; cos 37+m; sin 37+e1 M3 cos7)

9 9

+ 12> (Qui cosiT + Qy; siniT) + 12> " (Qaj cos j7 + Qb; sinjr)}
=0 7=0

g T i #6,7,8, j#8,
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([2‘1t8]) = C\/’Y_{]’{A{l(i}Ml sin 37 — 3M3 cos 37) + pAfl(yaa_l +esMssinT
cont.]

9
+ 3¢y sin 37 — 3m; cos 37) + p? Z(me o8 iT + Qi SiniT)
i=0

9
+ 4 Z(QIU cos j7 + Q'”j sinj'r)} e 366,78, 7328
j=0

1 1 ; 1
r= ?-0{1 + 5;,;2{}32 [a cos® & — i 9bA;? (siuze -1 5)]

1
— 2M3[xg(1 — cosT) + ypsinT] — é-kClMg(l — cos 27)

1
+ -2-4!"32(93)4“-11_2 — a)(sin 2e sin 67 + cos 2¢ cos 67)}
6
+#3Z(Q5£cosz'f+Qg£sinir}+..., 7 £5,
i=0

v = 'yg{M;; cos 7 + pv [M)(cos 31 — cos 1) + Ma sin 37]

7 9

s Z(Q3.,- cos it + Qfy; sinir) + p® Z(Q‘U cos j7 + Qy; sinjr]}
i=0 j=0

A5 i#4,6, j#6,8,

o 7{]’{—1\43 sin7 + p [vMj sin T + 3va( My cos 37 — M, sin 37)]

7 9

+ p? Z(ng cosiT + Q; sinir) + Zﬂ(ng cos j7 + Qy; sinjr)}
i=0 j=

+ ..., i#46, j#6.8,

1 i ;
A = 76’{1 + pM3E [acoss + §{BbA;l —a)(cos & cos 27 + sine sin 27)

- %(36141"1 + a)(cos € cos 47 + sine sin 47‘}]

6 10
+ p? Z(Qﬁ§ cosit + Qg sinir) + p° Z(QTJ' cos 7T + Q"TJ sinjr)}

i=0 j=0
+ ..y i1#3,5, Jj#7.9,
and the correction of the period a(u) becomes
(2.19) a(p) = mp*Nay + p*m(N3y + Nap + NagMiMs) + ...,
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where the constants N, @ and @' are determined in terms of the rigid body
motion parameters and occupy about twenty pages. The symbols (...) mean
terms of order higher than O(u?).

3. Geometric interpretation of motion

Analyzing the obtained motion of the rigid body about a fixed point, using
the Eulerian angles 6, 1 and ¢, the following relations are obtained [6],

' |
7 P S e
(3.1) dt 1—7
' Yo de dy
tanr.i)g:q—a, E:r—-—acosﬂ.

Since the initial system (1.1) is autonomous then the periodic solutions remain
periodic if ¢ is replaced by t + to, where tg is an arbitrary constant. Taking into
consideration that the initial instant of time corresponds to the instant t = ty,
substituting the solutions (2.18) into Egs. (3.1), the following angles are deduced:

™
¢0=§‘+Tgt0+..., ngtan_lMa,

0 =6y — pcot Gg{gl{t + tg) — 61(t) + #[ﬂg(t - tc) — 92(13)]
=k pz[ﬂa(t +tg) — 93(!0)]} i

(3.2) ¥ = o + (MglaroC'ry cot? fo)t + %pcosecﬂg[wl(t +to) — ¥1(to)]
+ 2 cot Bg cosecBy[a(t + to) — Yalto)] + - -,
¢ = ¢o + Ajt — %# cot Bg[é1 (t + to) — @1(to)]
+ uPlpa(t +to) — d2(to)] +- - -,

where
0,(t) = %M3E[(35A;1 — a)(cos € cos 2rgt + sine sin 2rot)
— (3bA! + a)(cos e cos drgt + (sin e sin 4rgt)],
6
Bs(t) = Z(Qﬁi cosiret + Qf; sinirgt), 1#£3,5,
i=1
10
(3.3) 03(t) = Z(QTJ- cos jrot + Qf,j sin jrot), §E7,9;
j=1

Yi(t) = (1 — 3A7")(M; sin2rgt — M cos 2rot)
e %(1 + 3A; ) (M sindrot — M; cos drt),
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8
B3 ) = >

[cont.]

1
-;(al, sinirgt — af; cosirgt), 1253 5. T,

(1 —3A7 1) (M, sin2rgt — M, cos 2rot)
1
- 1(1 B 3A1“1)(M1 sindrgt — M, cos 4rot),

8
¢2(t) — Z(‘BIJ COS}."Ut 1= 613 SmJ?Ot] J 7& 3)5171

.
1]
-

the formulae for constants A}, a, o/, B and 3' occupying about three pages. We
note that the expressions for the Eulerian angles 6, ¢» and ¢ depend on four
arbitrary constants €y, ¥g, ¢p and rq (rg is large).

4. Discussion of the solutions

In this section, we give a qualitative analysis of the results obtained, and
several diagrams, explanations and examples.

The motion considered in this paper is investigated by introducing Euler’s
angles of nutation 6, precession v and pure rotation ¢, see expressions (3.2). We
note that 6 is the angle between 0Z and 0z; v is the angle between 0X and the
line 07 of intersection of the fixed plane 0XY and the moving one Ozy; and ¢ is
the angle between the line 0j and the moving axis Oz, see Fig. 1.

" attracting
center

F1G. 1. Representation of Euler’s angles.

The zero order approximation of the expressions (3.2) can be formulated as:

6 =6, Y =1+ At ¢ = ¢o + Alt,

(4.1) ! d
@ =0 1 =A=const, ¢ = A]=const, 1= —
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which represents regular precession with spin A} about 0z-axis and precession
A* about the fixed axis 0Z, see for example Fig. 2.

_Rigid
~ body

“ \ __-Ellipsoid
\ ol inertia

Fixed cone )
¥ = const 2

\
Zz

F1G. 2. Representation of zero-order approximation; regular precession.

The first approximation is formulated by

6 = 6o + pufi(t), Y=o+ A%t + puf3(t),

¢ = ¢o + Ait + pf3(t),

0 = ufi' (1), ¥ =4 +uf5 (@),

¢ = A +uf5 (2),

where f} and f}' are periodic functions with periods proportional to 1/rg which

means that they are of a fast character. The formulas (4.2) indicate, up to the first
approximation, a perturbed pseudo-regular precession, see for example Fig. 3.

(4.2)

w0

— r—

Fi1G. 3. A perturbed pseudo-regular precession for the first-order approximation.
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The second and the third approximations represent the perturbations of the
pseudo-regular precession and improves, qualitatively, the geometric interpreta-
tion of motion.

5. Conclusions

The periodic solutions with non-zero basic amplitudes for the system of the
equations of motion, of the singular case w = 3, are investigated using the small
parameter method of Poincaré. This problem deals with rigid bodies being clas-
sified according to the moments of inertia as follows:

1. C>A4>B, B<%C, A>%C,

o8 CsalisaAl A<%C, B>iC.

The obtained solutions are considered as a generalization of the corresponding
ones in the uniform gravity field (k¢ = 0). Such solutions contain the solutions for
the special cases of the basic amplitudes (M; = My = 0; M; # 0, My = 0 and
M, = 0, My # 0). The geometric interpretation of motion (using Euler’s angles)
is obtained to show the orientation of the body at any instant of time.
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