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Adiabatic shear band localization in single crystals
under dynamic loading processes

[M.K. DUSZEK-PERZYNA | (WARSzZAWA), K. KORBEL (KRAKOW)
and P. PERZYNA (WARSZAWA)

THE MAIN OBJECTIVE of the paper is the investigation of adiabatic shear band local-
ization phenomena in inelastic single crystals under dynamic loading processes. In
the first part, a rate-dependent plastic model of single crystals is developed within
the thermodynamic framework of the rate-type covariance constitutive structure.
This model takes account of the effects as follows: (i) influence of covariance terms,
lattice rotations and plastic spin; (ii) thermomechanical coupling; (iii) evolution of
the dislocation substructure. An adiabatic process is formulated and examined. The
relaxation time is used as a regularization parameter. The viscoplastic regulariza-
tion assures the stable integration algorithm by using the finite element method.
It has been shown that the evolution problem (the initial-boundary value problem)
for rate-dependent plastic model of single crystals is well posed. The second part is
devoted to the investigation of criteria of localization of plastic deformation in both
single slip and symmetric double slip processes. The adiabatic shear band formation
in elastic-plastic rate-independent single crystals during dynamic loading processes
is investigated. The critical value of the strain hardening rate and the misalignment
of the shear band from the active slip systems in the crystal’s matrix have been
determined. Particular attention is focused on the investigation of synergetic effects.
Calculations have been obtained for aluminum single crystals. The results obtained
are compared with available experimental observations.

1. Introduction

RECENT EXPERIMENTAL observations and theoretical investigations have shown
that the synergetic effects have great influence on the behaviour of inelastic single
crystals. Particularly the adiabatic shear band localization in single crystals is
affected very much by cooperative phenomena.

Experimental observations of the macroscopic adiabatic shear band localiza-
tion in single crystals performed by CHANG and ASARO [6, 7], SPITZIG [35] and
LISIECKI et al. [18] showed that the strain-hardening rate hey at the inception of
shear band localization is positive and the direction of the localized shear band
is misaligned by some small angle § from the active slip system.

On the other hand, the investigations presented by MECKING and KOCKS
(21], FoLLANSBEE [12] and FOLLANSBEE and KOCKs [13] showed the great in-
fluence of the strain rate sensitivity on the behaviour of inelastic metallic single
crystals in dynamic loading processes. To describe the strain rate sensitivity ef-
fects, FOLLANSBEE [12] suggested to take into consideration the evolution of the
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dislocation substructure.,

Experimental study of highly heterogeneous deformations in copper single
crystals performed by RASHID et al. [33] showed that the strain rate history
dependence of the substructure evolution plays an important role, particularly
in adiabatic shear band formation phenomena.

AsARO and RICE [3] have clearly shown that the classical theory of crystals
based on the Schmid constitutive law does not seem to be appropriate to explain
the shear band localization phenomenon in ductile metallic single crystals.

AsArO and RICE [3] have focused attention on the localization criteria for
“an assumed class of materials that essentially obey Schmid’s rule but display
modest departure from it”. They proved that the plastic hardening rate h
at the inception of localization may be positive when there are deviations from
the ~ hmid law, cf. also PEIRCE, ASARO and NEEDLEMAN [21, 22], QIN and
BASSANI [32, 33] and BASSANI [5].

To describe the main experimentally observed facts connected with the macro-
scopic shear band formation, DUSZEK-PERZYNA and PERZYNA [9] have consid-
ered the synergetic effects resulting from taking into account spatial covariance
effects and thermomechanical couplings. PERZYNA and KORBEL [29] have inves-
tigated the influence of the evolution of substructure on the shear band local-
ization phenomena in single crystals for single slip process. DUSZEK-PERZYNA
and PERZYNA [10] have examined the influence of thermal expansion, thermal
plastic softening and spatial covariance effects on shear band localization criteria
for a planar model of an f.c.c. crystal undergoing symmetric primary-conjugate
double slip process, cf. also PERZYNA and DUSZEK-PERZYNA [27]. In the paper
by PERZYNA and KoRBEL [30] the attention is focused on the discussion of the
cooperative influence of various effects on criteria for shear band localization in
both the symmetric double slip and single slip processes.

It has been proved by previously mentioned theoretical investigations that
the main cooperative phenomena which affect the behaviour of metallic single
crystals are generated by thermomechanical couplings and the evolution of the
dislocation substructure.

To describe the influence of main cooperative phenomena on the behaviour
of metallic single crystals, we intend to start from the development of the ther-
modynamic theory of single crystals with special emphasis on the investigations
of thermomechanical couplings and internal dissipative effects. Then this theory
is used for the investigations of the adiabatic shear band formation in single
crystals under dynamic loading processes.

In Sec.2 the constitutive rate-dependent model and the formulation of the
initial-boundary value problem (evolution problem) are presented. Section 3 is
devoted to the rate-independent model of inelastic single crystals. In Secs. 4 and
5 the investigation of the adiabatic shear band localization is given. Single slip
and symmetric double slip processes are considered. The identification procedure
for the material functions and constants is presented in Sec. 6.
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In Sec. 7 the numerical investigation for the localization criteria is given. Dis-
cussion of the results and final comments are presented in Sec. 8.

2. Formulation of the initial-boundary value problem
2.1. General postulates

To formulate the initial-boundary value problem which describes an adiabatic
plastic deformation process for an elastic-viscoplastic model of single crystals,
we take advantage of the results obtained previously in the following papers:
DuszEK-PERZYNA and PERZYNA [9, 10], PERZYNA (25, 28].

Let us assume that the regular motion of a body B is described by the mapping

(2]) JC:Qj(X,t),

where points in B are denoted by X and those in the actual configuration S of a
body B at time ¢t by x. Then the kinematic equation has the form

(2.2) v = ¢(X, 1) |x=g-1(x)>

where v denotes the spatial velocity and the dot — the material differentiation
with respect to time t.

Let o(x,t) be the mass density of the deformed body B at time t. Then the
conservation of mass states that the equation of continuity

(2.3) 0 = —pdivu

is satisfied.
Assume that conservation of mass (2.3) holds, then the balance of momentum
is equivalent to (provided there is no body force field)

(2.4) v= édiv (%1‘) .

where J is the Jacobian of a mapping ¢ and 7 is the Kirchhoff stress tensor.
It is postulated that the free energy function is given by

(2.5) ¥ = 9(e,F, 9;p),

where e denotes the Eulerian strain tensor, F is the deformation gradient, ¥
temperature and p is the matrix of the internal state variables.

The form of the free energy function ¢ = (e, F,9) is suggested for spatial
description in thermoelasticity. To extend the domain of description of the ma-
terial properties of a single crystal and particularly, to take into consideration
the plastic flow effects and the dislocation substructure, we have to introduce a
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set of the internal state variables. In our case the matrix p is postulated in the
form

(2.6) B = (Y0, 0p),
where
il aly’ ap’
(2.7) e Gl Oy = A Op = ! I
~(n) aﬂ:) agl)

~ defines the shearing, o), the density of mobile dislocations and o, the density
of obstacle dislocations in the slip system of a crystal.

Let us postulate evolution equations for the internal state variables ~y, oty
and o as follows

,}(1)
(2.8) = | =6
,;{(ﬂ)
(8)
.8 _ 1 T (8)
where I = P -1 >sgn1‘ ;
T(ﬁ) ( [ [ﬁ)(ﬂ‘!aﬂsﬁ) A “'('G) B :[

a 231"’.)‘4—&2“[5]4-&3'0'. -
(2.9) e : &

Qp = by "if -+ bg't? =t bg'ﬂ.M s
where T#) denotes the relaxation time, @ is the overstress empirical viscoplastic
function, 77 defines the Schmid resolved stress on the slip system 3 (8 =
A o) 'rc(ﬁ} is the critical Schmid resolved stress on the slip system 3, k(9
denotes the symmetric tensor of the non-Schmid effects, and the matrices a;, b;
(¢ =1,2,3) are the material functions of 4, ¥, o.p and ouy,.

Consistency condition for the evolution equations (2.9) needs the assertions

(2.10) det[1 —a3-b3] # 0 and det[1 — bz-a3] # 0.

We postulate that the balance of energy and the entropy production inequality
hold. Then we obtain two fundamental evolution equations for the Kirchhoff
stress tensor T and for temperature 9 in the form

Lu-r=,:e:d—£‘*‘{9 (r:f-N+b) y

(2.11) QCp"t? = —divqg + 19 5 (;;; d+ xﬁz T(ﬁ),y(ﬁ]
1
n n ,86) 18 n n {;36)
TP DI N | -1)( O I S (e ML
f=1 §=1 B=1 é=1
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where Lqy denotes the Lie derivative of T with respect to v, (a; )% and (b;*)(#9)

are components of aj’

2 B -
L =9Ref%'§2£= Lh = “QRef%,
‘N1
. o T N — % [stﬁ)m(ﬁ) > mw)s(m] ,
_N(nJ
W
w=| 7 | - wai=l [s@m® — @8]
_w(n) :
(2.12) (1)
b=| : |, b® = (N® + W8)).1 + +(NO —
b
b 3
.cp:—ag—ﬂ?g, XTtmz_g%’
X' = 92 (85) 31!;) ‘
C'M

(8 =

2.2. Adiabatic process

! and bl_l, and

(85) 0%
—@ Z by 9D

For an adiabatic process (q = 0) from (2.11); we obtain

(2.13)

where
7.'
K

(2.14) D
A,
B,

To guarantee the existence of F and K we have to assume D # pcp.

9=F:d+KG,

T
ORef 0Cp — D 99’

= *iN *, —1 *#p —1
= 0, — D (X+X a; -A; + x""by ‘B1)|
=P N (x’al"-Az +x“b1"1-Bg) ;

(a1 +a3-by) (1 —ag-bg) ™",

= (by +bs-a;) (1 — bs-a3) ™"

Il
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Taking into account (2.13) we can write the evolution equations (2.9) in the
form

Gy = (A1 +A2K)-G + AyF : d,

(2.15) :
Qp = (B] == BQK)'G + ByF : d,

and the rate-type constitutive relation for the Kirchhoff stress tensor T as follows,
(2.16) Lyt = (£* - L%F): d - (£°:N+b+ LK) -G.

2.3. An abstract form of the evolution problem

In an abstract form Egs. (2.2), (2.3), (2.4), (2.16), (2.8), (2.15) and (2.13) can
be written as follows:

(2.17) ¢ = Alt, ) +£(t,¢)
where
[ ¢ ] [ v |
v 0
e 0
e o (L¢:N+b+LPK)-G
"P_ ,1 ) i G 1
Oy (Al + AK)-G
ap (B; + B2K)-G
9 | KG
(218) “
0 0 0 0 0000
0 0 " grad —2-div0000
Qﬁ.ef ORef
0 odiv 0 0 0000
QL ~LEF) : s m[ﬁ] —2s m[-r-—a—] 0 0 0000
$SYI Bx ¥ ox
A=y 0 0 0 0000
0 AF'sm[—a—] 0 0 0000
2/ 1 8y Ox
d
By F : — 0 0 0000
0 oF : sym [ale
\_0 f:sym[%] 0 0 00{]0-
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To investigate the behaviour of rate-dependent elasto-plastic single crystal during
an adiabatic process and particularly, to examine the shear band formation, let us
formulate the initial-boundary value problem (the evolution problem) as follows.

Find ¢ as a function of t and x such that the following assertions are satisfied:

(i) the differential equations in an abstract form (2.17) are fulfilled;
(ii) boundary conditions:

(a) displacement ¢ is prescribed on a part 9, of d¢(B) and tractions (T-n)?
are prescribed on a part dr of d¢(B), where 93 N dr = 0 and 9y U Or = 9¢(B);

(b) heat flux (gq-n) = 0 is prescribed on d¢(B);
(ii1) the initial conditions: ¢ is given at X € B at t = 0.

3. Rate-independent response of single crystals
Assuming in (2.8) T = 0 we obtain

(3:1) 78) = ‘rc(m('}r,ao,t?} +k .1

Material differentiation with respect to time of (3.1) yields

32) 4= i&g; (F7 — @ 3) + 209 - Z 95e
=1 =1

where
;o o). B s
(3.3 hgs = ——, 7P = ——hgzs,  gss = hz,
) = am 6; 9 B8 A ?:18 @ v

For rate-independent process the evolution equation for shearing N has to be
replaced by

(34) A4=M1!IN:L°:N+b:N

(ﬁ“‘ N+%+ O Bg)—u:L‘E]:d,
where
ot
(3.5) M=h+(N—-k):£5:N+b: N+(£‘h N+6—;)K
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4. Analysis of acceleration waves
4.1. General consideration

To investigate the intrinsic mathematical structure of the set of the field
equations which determine the adiabatic inelastic flow processes, let us analyse
the problem of propagation of acceleration waves. We shall show that the theory
of acceleration waves in materials considered can be based on the notion of an
instantaneous adiabatic acoustic tensor.

Let 3 (t) denote a smooth surface with outward normal n which is moving
through the solid body with velocity w(t,x). Some field quantities or their deriva-
tives may be discontinuous across Y (t) which is then called a singular surface. If
the surface 3 () is composed of the same material points at all times, one then
refers to ) (¢) as a stationary discontinuity. Otherwise, the surface ) (t) is called
a propagating singular surface or wave, cf. HILL [15].

Let ¢ denote the normal speed of propagation of ) (t) with respect to the
material in its current configuration. It is related to the spatial velocity v(¢,x)
and to the normal wave speed w = w-n, by the following equation: ¢ = w —v-n.

It is said that Y (f) is an acceleration wave if the fields ¢, v, F, p and ¥

are continuous functions of ¢ and x while ¥, Vv, F, VF, i, Vp, ¥, V9 have
(at most) jump discontinuities across Y_(t) but are continuous in ¢ and x jointly
everywhere else (pu denotes a set of the internal state variables).

An acceleration wave in which ¥ and V¢ are continuous functions of ¢ and x

is called homothermal.
From the definition of an acceleration wave and the constitutive assumption

(41) Tl’ = zZ(e,F,ﬂ, p‘)
we have
(4.2) [¥1=[e]=0,

where [ -] denotes the jump of a quantity across Y (t) in the direction of its local
normal n(¢, x).

Hadamard’s compatibility conditions require that jumps in velocity and stress
derivatives be related as follows (cf. HADAMARD [14] and HiLL [15]):

[vel = [l
(4.3) :
[Vl = —-[61n,

where V denotes the spatial gradient, ¢ = (1/J)T is the Cauchy tensor, and
a=w
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Balance of momentum requires that

(4.4) dive = pa.
Finally we have

(4.5) n-f[o] = —ocla].

From the last result it becomes clear that the existence and propagation speed
of acceleration waves in solids is directly related to the assumed constitutive
structure of the material.

Since 9 is continuous across (), we have

(4.6) [9] = —c[V¥]-n.

For an acceleration wave in an adiabatic process we have (cf. PERZYNA [26])

(4.7) [d=0, [@l=0, [#1#0, [VI]#0,

where q denotes the heat flux vector field.

Hence an acceleration wave in inelastic solids for an adiabatic process is not
homothermal.

This conclusion will play an important role in an analysis of acceleration
waves in particular material models for adiabatic process of a crystal.

4.2. Rate-dependent adiabatic process

For rate-dependent adiabatic process we have

(4.8) [LyvT] = E : [d].
where
(4.9) E=[rt=YF

THEOREM 1. For an adiabatic rate-dependent plastic flow process of single
crystal described by Eq. (2.17), the acceleration discontinuity [a] is the solution
of the eigenvalue problem

(4.10) A-[a] = orerc*[a],
where
(4.11) A=n-(F-n+ T-ng)

denotes the instantaneous adiabatic acoustic tensor and g is the metric tensor.
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4.3. Rate-independent adiabatic process

For rate-independent adiabatic process we obtain
(4.12) [Lyr] =L : [d],
where

Ezﬁe—ﬁth}'—[ﬁe:N+b+CU‘K]-M_1-{N:L"’:N+b:N

aT, or,
4.13 = th . — = )— : e}.
(4.13) }'(L' N+ gt By ) i 7]
|-3'r.«_§1}
pas) _ 97 ( e )fﬁﬁl ol o | Y
— 9y8)’ doup 89 09 :
a'rc{n)
| 90 |

THEOREM 2. For an adiabatic rate-independent plastic flow process of single
crystal, the acceleration discontinuity [a] s the solution of the eigenvalue problem

(4.14) A-[a] = grerc?[a],
where
(4.15) Kzn-(ﬂ.’,—n+1'-ng) !

denotes the instantaneous adiabatic acoustic tensor.
4.4. Analysis of eigenvalues of acoustic tensors

In the case of a rate-dependent process, all eigenvalues of the instantaneous
adiabatic acoustic tensor A are positive. This of course is implied by hyperbolicity
of the initial-boundary value problem.

For simplicity let us introduce rectangular Cartesian coordinates {z'} in such
a way that n is in z?-direction. We can assume, without loss of generality, ag = 0,
and consider the reduced problem

(4.16) det[AF* —¢o*¥] =0 for jk=1,2,
where

(4.17) ¢ = gRetc’.

This leads to the result

(4.18) Cli= %(A“ + A®) + %\/(A“ — A22)2 L 4A1247
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Assuming the linear behaviour of the crystal and linear thermal expansion, i.e.

(Ce)ikt = 7ilgik 4 (5fk5j1 +5ﬂ5jk) + Mg gkt

4.19
( ) (f’e)—l :Etll - 91‘

where p and A are Lamé moduli and € denotes the thermal expansion coefficient,
we can find

1
(4.20) (2= 5(3;; + A+ 3772

o 39 o ) lle.aflz

29Ref9¢p“'D ad
22 12 1/2
ORef 0¢p — D |3 ORef 0¢p — D av av

22
L@+ 2 722)%}

pe

B2 =

69 ar2  ,ar2\]
A Clep 22t R o\ 4 722 _ 1l
g QRETQ%_D((Z#_I_ e )319 T

Neglecting thermal effects and the evolution of the dislocation substructure we
have

(4.21) G zop+,\+2r221 (o= p+ 122

In the case of a rate-independent process it may happen that some eigenvalues of
the instantaneous adiabatic acoustic tensor A are equal zero. Then the associated
discontinuity does not propagate (¢ = 0). This situation is referred to as the
strain localization condition, i.e.

(4.22) detA = 0.

5. Shear band formation
5.1. Single slip process (n = 1)

Mathematical analysis of the governing equations and the perturbation method
give the hardening modulus rate h and the direction of the shear band n at the
initiation of localization (cf. DUSZEK-PERZYNA and PERZYNA [9, 10], PERZYNA
and DUSZEK-PERZYNA [28] and PERZYNA and KORBEL (29, 30])

(!—1) =H+£—Q+3(6%+@+—1—)+1n,2E
crit i M

T 4v 4" ¢’

m+(@T+ i )s lnz

n= — + — |8 — =kK3,
2u  4pv 2

(5.1)
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where z is a unit vector perpendicular to s and m, so that s, m, z form a
right-handed triad

©=A6u, II=Arxh, TI'=h ‘37‘: :
dap
8 o o
0 = b Tci A:M‘ e ’\+‘”,
30!D 0Cp /\+2,u

p and A are Lamé moduli, and

0 =k
(5.2) k) =@ = . -
En‘i 0

It is assumed that x = 0.0017, a; = 6.5-10'6, b; = —6.85-10'® and b, = 0. All
other material parameters are given in Table 1.

Table 1. Material parameters.

Parameter Unit Aluminium
¢  density Kg m—3 2702
cp  specific heat JKg K 896
i shear modulus G Pa 26.0
E  Young’s modulus G Pa 71.0
K bulk modulus G Pa 73.2
#  coefficient of thermal expansion [ 23.8-10°°
x  irreversibility coefficient = 0.65 — 0.85

5.2. Symmetric double slip process (n = 2)

It is assumed that the crystal has two active slip systems, symmetrically
oriented with respect to the maximum principal stress 722 (the tensile axis is z?)
at the angle ¢.

The condition for localization is reduced to the equation

(5.3) A(ﬂ)4+3(”—1)3+c("—‘-)2+9(”—‘)+E=o,

ny ng n3
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where
= (E2222 4 TQZ)ULZII? 4l T22),
D= (E2222 o T?Q}(ﬂ}lll? + EZIII) 4 (E2112 5 T22)(E1222 + EJ2221)
_E2212(E1122 o ‘IL2121)1
C = (Ellll 4 TII)ULZZ'Z? <7 T22) i (E1222 4 E2221}(1L1112 L m?lll)
(54) L (Elnl - Tll)(ﬂ_’[?ll? - T22) L, (EIIQQ 4 E?l?l)(ﬂr’ml? & E;2211)

_‘f{11121_|!1£2212j
D= (Ellll +T11)(E1222 +E2221) i (El1221 _i_TIl}(LlllE _f_EElll)

_Ell,?l(ﬂ"l?l? uE IL'ZQII),
B = (Ellll +T11)(L1221 —!—Tll).

The ratio (nz/ny) = tan 3 gives us the direction of the macroscopic shear band.
Solving the fourth order algebraic equation (5.3) we have to choose the real and
positive solutions for (ng/n)), and next to take such value of the angle 3 that
maximizes the value of the hardening modulus rate h/7%2. Then the misalignment
angle § = 3 — p. We shell denote

: A M
(5.5) h_[hl h}

and assume hy /h = ¢ =1.2.

In such a way we obtain the critical value of the hardening modulus rate and
the misalignment angle between the shear band and the slip plane in point of
the inception of the shear band formation.

6. Physical identification of introduced coefficients

For better presentation of theoretical results we have performed numerical
estimations of the considered quantities for two particular cases of uniaxial tensile
test.

The paper of CHANG and ASARO [7] for Al-Cu single crystals tested at 298 K
was taken as the experimental base for calculations.

For simplicity we have made some additional assumptions about the process
and we have to write the specific evolution equations for density of dislocation
parameters. We used the evolution equations proposed by BALKE and ESTRIN
[4] in the form

(8)
; ; c] @ c3 5
b = Ay, APP = ﬁ” S : 3./a®), AP = _go®),

(6.1) ap= Biv, B{’Bm = a(ﬁ) e b2 (ﬁ) qagj}, B%@J} = Eaf,f}
B0 =1,2.
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Preserving proportional dependence of generated and annihilated dislocations
proposed by the authors we have been able to estimate coordinates of matrices
A1, B; in the point of inception of the shear band formation.

For the considered process we have obtained

APP) 42 % 10 m~2, AP L _16x 10" m2,
B « 245 x 104 m~2, BY) ~16x10" m2.

From the experimental data we have 03 /39 = —0.06 MPa/K, 7. = 195 MPa,
ve = 0.4 and ¢ = 0.01.

When we assume the linear elastic behaviour of the crystal and linear thermal
expansion cf. (4.19), we can estimate influence of various effects on the value of
the fundamental matrix IL.

For example the non-dissipative thermal effects are introduced by F, the
non-Schmid effects by the matrix k, and the substructure evolution effects by
coefficient K.

7. Numerical results

Analysing the localization conditions we can observe that these various ef-
fects cooperate and then some synergetic effects are generated (cf. Figs.4-7).
The synergetic effect is defined as the difference between the result obtained
for two cooperative phenomena and the sum of the results obtained when these
two phenomena are active separately. For the considered process in single slip
case we may say that most significant are the evolution of the dislocation sub-
structure and the non-Schmid synergetic effects, while in double slip case the
non-Schmid effects can be neglected. However, both cases indicate that the evol-
ution of the dislocation substructure effects should be taken into consideration
in entire analysis of simple crystal deformation process.

Besides the synergetic effects we obtain also the values of critical hardening
modulus and misalignment angle between the shear band and the slip planes for
processes in which different effects were considered (Figs. 1-3).

We can observe that in the processes, in which non-dissipative thermal effect
is included, the value of hardening modulus is only slightly higher than in the
process without this effect.

Next, the two processes in which one of them has the non-Schmid effect but
the other not, show more significant difference in value of hardening modulus,
but this difference is not so high as that introduced by thermal couplings and
the evolution of substructure.

Very important observation is that for both cases: single slip and double slip
processes, the value of misalignment angle does not depend on the fact whether
the various effects are considered or not. Of course, the value of this angle is
more reasonable for double slip process (Fig. 3).
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non-Schmid effects,

— — — isothermal process with substructure,

+ = «» = adiabatic process with non-dissipative thermal term,

————— adiabatic process,

------- - isothermal process.
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8. Final comments

The evolution of the dislocation substructure affects very much the results
for the critical modulus rate (h/7%?)cge. It has no influence on the misalignment
angle 4.

Two cooperative phenomena, namely the thermomechanical coupling and the
dislocation substructure give distinct synergetic effect (mostly on (h/7%%)eit ).

The change of the irreversibility coefficient y in the range of (0.65 — 0.85)
does not give important influence on the localization results.

Comparison of the theoretical results for (h/7%%).q with those obtained ex-
perimentally by CHANG and ASARO [7] and SPITZIG [35] shows good agreement.

Comparison of the theoretical results for the misalignment angle J with those
obtained experimentally by CHANG and ASARO (7], LisiECKI, NELSON and ASA-
RO [18] and SPITZIG [35] shows good agreement only for symmetric double slip
process when the geometry of the deformed specimen is taken into consideration.
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