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Fabric tensor and constitutive equations for a class of plastic
and locking orthotropic materials

S. JEMIOLO and J.J. TELEGA (WARSZAWA)

THE AIM of the paper is to provide a general and common mathematical structure
for a class of orthotropic materials undergoing plastic deformations or exhibiting
locking behaviour. The orthotropy is included by using a fabric tensor. The tenso-
rial constitutive relationships are studied from the point of view of tensor functions
representations. Specific cases are also discussed.

1. Introduction

IN THE PAPER [18] the tensorial structure of the constitutive relationships for
isotropic, perfectly locking materials was examined in detail. It was revealed
that the general structure of equations is similar to those of isotropic, perfect
plasticity, since they are time-independent.

The main aim of the present paper is to include orthotropy into such a gen-
eral framework. This has been achieved by using a fabric tensor H, which is a
particular case of structural tensors characterising anisotropic materials. It was
introduced by CowiN [8-10] as a symmetric, positive definite tensor, a square
root of the inverse of the mean intercept length tensor M. By using the classical
spectral theorem, the interrelations between those tensors have been examined
in Sec. 2.

In Sec. 3 the general structure of constitutive relationships involving two sym-
metric tensors and a scalar, common to plastic and locking materials, has been
introduced. A different interpretation of the tensor C appearing in such a general
relationships has been provided. For instance, C may be the tensor of plastic de-
formation or the locking stress tensor. In this manner, plastic hardening and/or
softening and non-perfectly locking behaviour may be taken into account. Per-
fectly plastic and perfectly locking orthotropic materials are characterized by
C=H.

In Sec. 4 the tensorial constitutive relationship introduced in Sec. 3 has been
discussed from the point of view of tensor functions representations. Both poly-
nomial and nonpolynomial representations have been investigated.

Our considerations of perfectly plastic and perfectly locking materials have
deliberately been restricted to the orthotropy since then the available representa-
tion theorems are well developed. The same cannot be said about the case where
anisotropy is described by a fourth-order tensor. Specific cases of constitutive
relationships, yield and locking conditions have been studied in Secs.5 and 6.
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1042 S. JEMIoLO AND J.J. TELEGA

Throughout this paper the summation convention applies to repeated indices,
unless otherwise stated.

2. The fabric tensor

Some materials such as wood, granular materials, bones and plastics exhibit
elastic, plastic and locking behaviour under compressive stresses. The stress-
deformation curves are then strongly influenced by the density of a material, cf.
Figs.10.3 and 11.5 in [12].

The aim of the present paper is not a study of such particular materials, which
should be performed within a framework of elastic-plastic-locking behaviour. In
the papers [18, 19] we have noticed a formal similarity between isotropic perfectly
plastic and perfectly locking materials. In the present contribution we shall pro-
vide a general framework for perfectly plastic and perfectly locking orthotropic
materials, provided that structural anisotropy is described by a second-order
tensor, called the fabric tensor, cf. [1, 8, 13, 14, 20, 25, 42].

a) b)

FIG. 1. The mean intercept length ellipse and its construction: a) test lines
superimposed on a cellular material specimen. The test lines are oriented
at angle @, which is varied to obtain the mean intercept length L(0),

b) the ellipse constructed according to Eq. (2.1).

Let us introduce this tensor. Firstly, however, following WHITEHOUSE [40]
we recall the notion of the mean intercept length L. This author measured L
in cancellous bone as a function of direction on polished plane sections. Then L
is the distance between two bone/marrow interfaces measured along a line. The
value of L is a function of the slope @ of the line along which the measurement
is made. WHITEHOUSE [40] showed that when L(©) is plotted in the polar coor-
dinates then the polar diagram produces ellipses, cf. Fig. 1. If the test lines are
rotated through several values of © and the corresponding values of L(©) are
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measured, the data is found to fit the following equation of an ellipse:

(2.1) ﬁ = My cos? © + Myysin? @ + 2M5sin© cos @,
where Mj;, My and M;y are constants, provided that the reference line from
which the angle @ is measured is constant.

HARRIGAN and MANN [14] extended Whitehouse’s approach to the three-
dimensional case and showed that L(n), as a function of a direction n, would be
represented by ellipsoids and would therefore be equivalent to a positive definite
second-order tensor M defined by

1
(22) m—) = M{jn;‘ﬂj "
where n is a unit vector in the direction of the test line.
CowiN [8-10] defined a fabric tensor of cancellous bone to be the inverse
square root of the mean intercept length tensor M:

(2.3) e

At
Obviously, H is well defined because M is a positive definite and symmetric
tensor, cf. MARSDEN and and HUGES [21], pp. 52-55. The components of M or
the mean intercept ellipsoid can be measured by using the techniques described
by HARRIGAN and MAN [14] for a cubic specimen.

A specific form of the fabric tensor H is not required for our subsequent
developments. The only assumption is that H should be a positive definite and
symmetric second order tensor.

An alternative approach to the fabric tensor has been discussed by ZYSSET
and CURNIER [42]. These authors decompose the fabric tensor H as follows:
H=gI4+G.

An elementary microstructural description is contained in a single scalar prop-
erty such as relative density, while material anisotropy requires fabric tensors of
higher even rank [20]. KANATANI'S [20] approach can be applied to a class of
materials with strictly positive morphological properties that are radially sym-
metric. In these situations we can use a scalar-valued orientation distribution
function A(N) > 0, where N = n ® n is the tensor product of the unit vector n
specifying the orientation. Assuming the function to be square integrable it can
be expanded in a convergent Fourier series:

(2.4) h(N) = g(N)1 + G-F(N) + G-F(N) +... ,

where 1, F(N) and F(N) are even rank tensorial basis functions and g, G and
G — the corresponding even rank fabric tensors [20]. In bone mechanics we can
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1044 S. JEMIOrLO0 AND J.J. TELEGA

use an approximation based on a scalar and a symmetric, traceless second rank

fabric tensor. Then the first tensorial basis function is: F— EI' while the tensorial
coefficients are calculated by

15
87

/h(N)F(N)dS,

(2.5) g % [h(N)dS, G
S 5

where S is the surface of the unit sphere. For the particular case of an ellipsoidal
distribution function we have

1
vN-M

GOULET et al. [13] applied the concept of the mean intercept length to inves-
tigate the relationships between the structural parameters for cancellous bone, to
determine their correlation to the mechanical properties, and to evaluate which
parameters are important for maintaining bone strength and integrity.

The fabric tensor H, as defined by (2.3), is an isotropic tensor function of M,

say H(M), cf. TING [36]. It means that

(2.6) h(N) =

(@7)  vQeo@®  QAMNQ’ =& (QMaT) - QQ”.

&1

Here O(3) stands for the full orthogonal group:
(2.8) 03)={Q: QQ"=Q7Qq=1},
where I is the identity tensor while Q7 is the transpose of Q.
Let us pass to the determination of the function
-~ 1
2.9 H=HM)=—.
(2.9) (M) Vi
Since M is a symmetric, positive definite tensor, therefore by applying the spec-
tral theorem we may write
(2.10) M = Mii; ® iy + Mbip ® s + M3iz ® i3,

where M; (j = 1,2,3) are eigenvalues of the tensor M, and i, its eigenvectors. It
is assumed that M; > M, > Mj, where

1 2 20 ;
(2.11) NI;=51M+§\H§,,—3IIM cos [gﬁ(z—l)—@], =103

and
21}[,[ — O g IIpg + 271110

(2.12) cos 3p =
V2013, — 311x)?
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The basic invariants of M are given by

Iy = teM, dly= (tr2M = ter) ]

B -

(2.13) ;
Iy = detM = (tr3M — 3trMtrM? + 2trM3) ,

where trM is the trace of M. In an orthonormal basis {e;} (i = 1,2, 3) we have:
M= ﬂ-f,‘jeg ® e;, trM = M;;, (Mz),‘j = {MM),?_-'.' = Mikfkfkj, etc.
Note that if

(2.14) d=dII}; — I3 113, + 413 I1Ipe — 18Iy IIpgIIpg + 27113, < 0,

then M; in (2.11) are different; for d = 0 two of the eigenvalues are equal; in
other words, the tensor M is then two-dimensional. Finally, for

(2.15) I3, =311y,

M is a spherical tensor.
In the case of three different eigenvalues, the eigentensors i; ® i; (no summa-
tion over j) can be determined in a unique fashion:

(2.16) i;Qi; = El— [M2 — (I — M;)M + HIMMJ-‘II] (no summation over j),
i)

where

(2.17) m; = 2M? — InyMj + ITTy M

Consequently the fabric tensor (2.3) satisfying (2.7) can be represented in the
following form

(2.18) H = Hiiy ® i + Haiy ® iy + Hiiz @13,
where

1
(2.19) H, = — 1=1,2,3

In the case of multiple eigenvalues of M, the eigentensors (2.16) are not deter-
mined uniquely, cf. JEMIOLO [17], MORMAN [23], TING [36]. As could be ex-
pected, for two (three) identical eigenvalues, (2.16) reduces to the representation
of plane (spherical) tensors.

REMARK 1. If d = 0 and, for instance My # M, = M3, then instead of (2.11)
one can calculate the eigenvalues similarly as for plane tensors M, i.e.:

(2.20) e i % (TM Al mM) _
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1046 S. JEMIOLO AND J.J. TELEGA

Consequently, (2.18) is to be replaced by the two-dimensional representation
given by

. 1 i § . A
(2.21) He —— |14+ 2= )I— L M|,
0 4 VT VITu
where
£ gl i) A A
(2.22) Ty =tM, TIy=detM=7 (tr M — trM )

Finally, if (2.15) is satisfied, then M; = My = M3 = M and

= 1

223 H=—I.

S Vil

3. Plastic or perfectly locking behaviour: common general structure
of constitutive relationships

Constitutive relationships describing perfectly plastic and perfectly locking
materials exhibit a common feature, as being rate-independent, cf. JEMIOLO and
TELEGA [18, 19]. Consequently, the general structure of constitutive relationships
for both classes of materials is similar. MURAKAMI and SAWCZUK [24] extended
the approach proposed in [29] to plastic materials with hardening, though soft-
ening is not precluded. It means that our subsequent developments can also be
generalised to non-perfectly locking materials.

The considerations which follow are restricted to a class of materials obeying
the constitutive relationship

(3.1) A =F(g,B,0),

subject to

(3.2) BB i @;Aﬁ.
OB OB

Physical interpretation of the tensors A, C and B will be given later on. It will
also be assumed that

(3.3) D= ¢(p,B,C) =A-B=trAB > 0.
Here A, B and C are second-order symmetric tensors while B is an objective time

derivative of B; g is a scalar parameter, for instance the density. More generally,
o may be an internal scalar parameter, which is an isotropic function of B. By 0
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and 0 we denote null tensors of the second and fourth order, respectively. In an
orthonormal basis the relationship (3.2); is obviously given by
(3.4) O B =1,

0By

From (3.2) and (3.3) we conclude that

(3.5) L 6.
oB

According to the principle of isotropy of the physical space [28], the tensor
function (3.1) has to be isotropic:

(3.6) ¥YQeO(3) QF(p,B,C)QT = F(o,QBQ”,QCQ"),

where the full orthogonal group O(3) is defined by (2.8). Note that the function
F is an anisotropic function with respect to B. An anisotropy group S is given by

(3.7) §={Qe0@3): QcQT=C}.

Consequently, the material anisotropy is determined by the structural (fabric)
tensor C = H. We have

(3.8) vQeS QF(o,B,H)Q" =F(o,QBQ7, H).

The tensor H, being a symmetric second-order tensor, enables one to determine
the following three cases of anisotropy:

(i) If Hy # Hs # Hy # H; then S stands for the orthotropy group; more
precisely, according to Schoenfliess’ notation we then write S = Dy, cf. [41]. In
this case one has
(3.9) S=8NS%nNS;s,
where

(3.10) S;={Qe0(3): Qi;® i)QT =1i; ®i;} (no summation over ).

(ii) If two eigenvalues coincide, say H; # Hs = Hj, then S denotes the
transverse isotropy group:

(3.11) S = S = Deoh.

(iii) If Hy = Hy = Hj3 then S = O(3) is the isotropy group.
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1048 S. JEMioro AND J.J. TELEGA

The scalar function ¢ defined by (3.3) is an orthotropic function of B provided
that C = H:

(3.12) VQeS  ¢(e,B,H) = ¢(o,QBQT H).

Let us investigate some important consequences implied by the homogeneity
condition (3.2). Firstly, following SAWCzZUK and STUTZ [28] we conclude that
there exists a scalar function

(3.13) f(o,A,C) =0,
satisfying the condition
(3.14) VQeS  f(e.A C)=f(e,QAQ7,C).
Secondly, one has
(3.15) det (8F) =0
OB

Thus the constitutive relationships (3.1) is not invertible. However, one can find
a semi-invertible relation, now given by

(3.16) B = AF(p,A,C), >0,
where
(3.17) A =17(e, B, C).

Note that the notion of semi-invertibility was introduced by TRUESDELL and
MooN [37], where a symmetric second-order tensor function of a symmetric,
second order tensor was analysed.

REMARK 2. One can consider the case when ¢ and C are isotropic functions
of B: o = 5(B) and C = C(B). The isotropy means that

(3.18) vQeo0() e=g(B)= ;é(QBQT)
(3.19) ¥QeO0(3) QC(B)Q"=C(QBQ").

To make such a theory complete, evolution laws ¢ = 6(B) and C = C(B) must
additionally be specified. <
In general, the function ¢ is not a potential for A. Below it will be shown that
under the following condition, cf. [18, 19],
(3.20) e 6—?-1’3,
B 0B
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one has

-9

(3.21) A=—t
9B

In general, the constitutive relationship (3.16) is also not associated with the
scalar condition (3.13). The associated rule has the form

5 = A—— 21
(3.22) B=)zh, 220

REMARK 3. Suppose that the set C(p, C) defined by
(3.23) C(e,C)={TeT*| f(e,T,C) <0},

is convex and closed. Here T stands for the space of symmetric, second-order
tensors. The indicator function of this set is given by, ¢f. ROCKAFELLAR [27]

0 if TeC(pC),

3.24 I I)=
( ) c(e.c)(T) {oo otherwise.

The subdifferential (associated) constitutive relationship has the following form:

(325) B = BIC(Q‘C}(A)-

In the case when f is differentiable with respect to the second argument, the last
law is equivalent to (3.22).

The support function of C(p, C) is a particular case of (3.3) and is calculated
as follows, cf. [27]:

(3.26)  ¢1(e,B,C) = sup {B-T - IC(QPCJ(T)} = sup {ﬁ-T| T € C(e,C)}.
TeT*

The function ¢y (g, -, C) is convex and subdifferentiable.
The constitutive relationship inverse to (3.25), and equivalent to it, is given by

(3.27) A € 8¢1(0,B,C),

where 0291 (p, E, C) stands for the subdifferential of the function ¢; (o, -,C) at a
point B. If the function ¢1(p, -, C) is differentiable then the law (3.21) is recovered
and ¢, coincides with ¢. «

Let us now specify two particular classes of materials described by the in-
troduced general relations within the theory of small deformations, cf. Fig. 2.
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N AT b a0
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F16. 2. Schematic representat:on of the constitutive relationships allowed by Egs. (3.1)
and (3.2):a) C=H, A =0, B= €, orthotropic perfect plasticity, b) C =¢, A =@,
B = €, plasticity with hardening, c) LGl e/ U B = a, orthotropic locking
materials, d) C = o, A =, B = a, non-perfectly locking behaviour.

For
(3.28) (A,B) = (0,€),

and C = H, perfect plasticity of at most orthotropic materials is recovered. Here
o denotes the stress tensor and € is the rate of plastic deformation. Assuming
additionally (3.18), one obtains plasticity with isotropic hardening/softening.
Incorporating (3.19), one describes an orthotropic hardening. For C = g, the
material behaviour is initially isotropic; € denotes the strain tensor.

The second case (perfectly locking behaviour) is for C = H and, cf. [18, 19]

(3.29) (A,B) = (g, 0).

For instance, if C = o then our approach describes non-perfectly locking be-
haviour; the orthotropy is then induced by the locking stress tensor o.
Summarizing, we conclude that (3.13) represents:
(a) The yield condition if A = o,
(b) the locking condition if A = €.
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Similarly, (3.16) is:

(i) the flow rule if (A, B) = (o,€),

(i) the locking rule if (A, B) = (g, ).

As we already know, in general both these rules are non-associated laws.

4. Representation of the tensor function (3.1)

To determine the general form of the tensor function (3.1) satisfying the
isotropy condition (3.6) one can apply either the results due to SPENCER [32] on
polynomial representation or those obtained by WANG [39] as well as BOEHLER
and RAcCLIN [5], concerning nonpolynomial representations. For both represen-
tations the so-called canonical form of (3.1) is expressed by

(4.1) A = apGyp,

where p = 1,...,9 for the polynomial representation, while p = 1,...,8 in the
case of the nonpolynomial representation. The summation convention still ap-
plies, unless otherwise stated. Here &, are scalar functions of ¢ and of isotropic

invariants of B and C:
(4.2) ap = aplo, 1), = a0,

The symmetric second-order tensors G, are the so-called generators.
We have

(4.3)  {I.} = {trB, trB? tr B trBC, trBC?, trB2C, trB2C? trC, trC?, trC?}
= {J,, trC'}, §=1..:.T t=123

(44) {6,}=1{I,B,B?*C,C? CB+BC,C’B + BC?,C*B? + B*C?}.
It can be easily shown that under the condition (3.20), the representation

(4.1) simplifies since it contains only seven generators while @, satisfy additional
relations, see below.

Since B is a symmetric tensor, therefore one has

T |
PR _ g soq903 B
(4.5) oB 2
o x . .
ORBUT o PERD e prE seiy
OB OB

and the representation (4.1) can be written in the following form:

(4.6) A =yI+27,B + 3y3B? + 74C + 75C? + 75(BC + CB)
+ 77(1.302 s C2]§) = v,G;,
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provided that (3.20) is satisfied; s = 1,..., 7. Here

39

4.7

and g = g(p Js, trC'), i = 1,2, 3. The condition (3.20) implies

s O
4_ = — — e ”
( 8) aJt aJs 1 3,t ll ] 7
Note that (4.6) yields
0A Oy, a6,
4.9 G ®G + s
4 oB 0% AP
and
& 2
(4.10) e Lo
JB 0B ® OB

Here the functions v, are interrelated by (4.8). Hence we conclude that (4.8) is
equivalent to (3.20).

Comparing (4.1) with (4.6) and taking into account (4.7) and (4.8) one obtains
additional conditions which have to be fulfilled by the scalar functions a,. To
satisfy (4.10) we conclude that the representation (4.6) has to be at least of class

C? with respect to B.

The invariants (4.3) appearing in (4.2) constitute both polynomial and non-
polynomial bases. A polynomial basis consisting of 10 invariants can be con-
structed from another set of independent invariants, provided, however, that
they are polynomials in I,. Obviously, we are discussing the general case of 3D
tensors. In the remaining cases the relevant representations are simplified. The
choice of a functional basis is also not unique. To satisfy the homogeneity condi-
tion (3.2) it is convenient to deal with the following functional basis consisting

of invariants being functions of order one with respect to B and including the
invariants trC' (i = 1,2,3):

(4.11) {K,}= {trfs,\/ trB2, VtrB3, trBC, trBC2, V trB2C, VirB2c2, trC’}
10,  i=123

=1

Note that \/ trB2 = ||Bl] is a norm of B.
In particular cases or in order to facilitate an experimental identification
of material functions, one can choose the functional basis consisting of nine
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nonpolynomial invariants, say C; and B; (i = 1,2,3) and, for instance, three
Euler angles, which determine a mutual position of the eigenvectors of the tensors
C and B; by C; and B; we have denoted the eigenvalues of C and B, respectively.

By using (2.11) and (2.16) one can construct a nine-element functional basis
in the following way: six nonpolynomial invariants are just C; and Bi. To this
end, M; and M in (2.11) - (2.13) should be replaced first by C; and C and next

by B,- and B. To determine the remaining three invariants we apply (2.16) once
again. For the tensor C we write

1
412) §®i;= C? — (Ic — C;)C+ IIIcC; '
A TR T [ =t oG]
1 (o2 _ W) ) i ;
= (C —a;’C + a; I) (no summation over j)

i)
and similarly for the tensor B:

LA v ST .
(4.13) ii®ji= E_)G._). (Bz 1 ng)B 5 bé’”[),
0

where

(7)) _ op2 . -1 (3D S (7)) _ h—1
(414) 8§ =2B3-1.B;+I111,B;", b’ =1I.-B;, b =IIB;"

We recall that B and C are symmetric, second-order tensors. The space T° of
symmetric second-order tensors is equipped with the scalar product defined by
T-Z = trTZ, for each T,Z € T¢. Consequently, the natural norm of T € T* is
given by

(4.15) ITII? = T-T = trT2.

The space (T%,+]|) can be identified with the six-dimensional Euclidean space.
Therefore one can calculate the scalar product of the eigenvectors (4.12) and
(4.13)

(4.16) (i ®i)-(J; ®j) = traatresi ®§ ®J; ®j; = (ii-j;)?

= cos? a;j >0 (no summation over 7 and j),

where a;; is the angle between the eigenvectors i; and j;. We assume that the

eigenvalues of C; are different: C) # C, # C3 # C; and similarly for B. The
remaining cases are simpler since then a smaller number of invariants is involved.
We may write [cos a;;] = [Qj;], obviously Q € O(3). Further we find

(4.17) Gi ® ji)- (i ® i;) = cos® B;; (no summation over 7 and j),
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and [cos ﬁij]T = [cos ajj]. Recalling that QixQ; = dij, where §;; stands for
Kronecker’s delta, we deduce that only three of the angles a;; are independent.
From (4.12), (4.13) and (4.16) one obtains

(4.18) cos® Qij = (I;r(321-32 - bgj}trC2]5'! “+ t‘:éﬂtrC2 - agi) tr CB?

1
&E;]bgj)
+ a?)bgﬂtrCﬁ - agi]bgj)trc + ag}t.rlé2 - a(;}bgﬂtrﬁ + 303)6?})
(no summation over 7 and 7).
All in all, we conclude that it is possible to construct the functional basis con-
sisting of nine invariants which in turn depend on ten polynomial invariants.
In the case of perfect plasticity or ideal locking, when C = H is a fabric
tensor, more convenient in applications seems to be a representation of the tensor

function (3.1) different from (4.1). Suppose that Hy # Hy, # Hsz # H, and
assume that i; (i = 1,2,3) are the principal axes of orthotropy. We set

(4.19) M;=i®ij; (no summation over ).

The representation (4.1) can then be written in the form

(4.20) A = BM; + M, + BsMs + B4(M;B + BM;)
+ B5(M3B + BMy) + f4(M3B + BM3) + 7(M; B> 4+ B2M;)
+ Bs(MyB? + B>M,) + o(M3B? + B2M3),

where
Bi = a1 + Hias + Hlag,
(4.21) Bi+s = a4 + Hiag + Hlor,
Bite = as + Hias + Hlag, s=1,2:3
Since

(4.22)  trB®HP = HPtrM;B® + HY trM,B® + HY trM3B*,
a=1,2 B 1.2

therefore
(4.23) By = Bple, trM;B®, trB®, H;).

The representation of the orthotropic symmetric tensor function has also been
considered in the papers [2-5]. In those papers the same number of generators as
in (4.20) describe such a representation. There is, however, a difference between
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our representation and the representation proposed in [2-5]. In the present paper
the scalar functions associated with the generators depend on the invariants
of the structural tensor H. In this manner we can take into account material
inhomogeneities, because H and ¢ depend on a position of the material point
considered. Allowance for the eigenvalues of H in the functions (4.23) delivers
a possibility of determination of the material orthotropy. This is not the case
with the structural tensors used in [2-5]. For instance, as a “measure” of the
material orthotropy one can take the quantities Ho/H; and Hj/H; provided
that Hy > Hy, > Hj.

Applying the approach proposed by BOEHLER [2, 3], it can be shown that an
alternative nonpolynomial representation of (4.20) contains only seven genera-
tors:

(4.24) A =8, M; + 6.My + 53M3 + 64(MyB + BM;) + 65(MyB + BM3)

+ 86(M3B + BM3) + 6;B2,
where
(4.25) o, = d(o, trM;B®, trB3 H;), p=1,...,T.

Another form includes two arbitrary tensors from the set {M;} (i = 1,2,3), say
M; and M,,

(4.26) A = kI + koM + £3Mo + k4B + k5(M;B + BM;)

+ KG(MQB + BMg) + h‘qéz.
Here
(4.27) kp = (g, trB’, *M,BA, H,), «a,8=12 p=1,...,T7

Obviously, the representations (4.24) and (4.26) are equivalent. Consequently,
for C = H the nonpolynomial representation of the tensor function (4.1) has
the form (4.6), with 7, being functions of J; and H; where p,s = 1,...,7 and
A

In the case of transverse isotropy, for instance when Hy = Hy = H and i3 is
a privileged direction, one obtains the following additional relations between the
invariants involved in (4.25):

trH' = 2H* + HY, i=1,2,3,

(4.28) - - :
trH*B? = HotrBP + (H — H®)trM3BP,  o,8=1,2,

as well as between the generators appearing in (4.24):

H® = H°l + (H§ — H*)M;3,

(4.29) , : " d 3
HB? + BPH® = 2H°BP + (H$ — H*)(B’M; + BPM3).
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Thus we arrive at the transversely isotropic representation of the tensor function
(3.1), cf. also BOEHLER (2, 3],

(4‘30} A =1+ p2M3 + 93]::1 4 Q4(M3]§ + BM;;) + 9532 -+ 95(M3ﬁ2 + BzMg),
where

(4.31) op = 8o, trB’, trM3B®, H, H3),
a=12. 1=1.2.3 p=15= 6.

The simplest is the case of isotropy: H; = Hy; = H3 = H. Then we easily
obtain

(4.32) A =nI+7,B +7B2
where
(4.33) 7 = (e, tr B, H).

REMARK 4. Assuming a priori that the tensor function (3.1) involves only
symmetric two-dimensional tensors, (4.1) simplifies to

(4.34) A =F(g,B,C) = &1 + &C + &sB,
where I denotes the two-dimensional unit tensor; moreover
(4.35) @ = a;(trB, trB2, trBC, trC, trC?).

The representation (4.34) with (4.35) is formally the same in the case of both

polynomial and nonpolynomial representation.
For C = H and Hy = H; = H, (4.34) reduces to

(4.36) A =P1+5,B,
where
(4.37) Ba = Ba(trB,trB% H), a=12 <«

5. Some specific cases

The aim of this section is to examine the tensor function (4.34) by imposing
suitable homogeneity requirements. Next, particular cases of plastic flow laws
and locking rules as well as yield and locking conditions will be investigated.
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5.1. Two-dimensional case

Deleting the bar over functions in (4.34) we write

(5.1) A = o1 + a,C + a3B = F(g, B, C),
where
(5.2) a; = &(p, trB, |B|, trBC, trC, ||C|)), i=1,2,3.

Here, for the sake of convenience, a nonpolynomial basis has been chosen.
Since

(5.3) QFT=I®?9#+C®@+&31+B®%‘
aB oB aB oB
(5.4) 8 Q. 0 B o0
9B  auwB 9|B| |B| 9trCB
therefore (5.1) is a potential law provided that
(5:5) 1 8& _ das da; _ am 1 0&% _ O&
' IB|| 8|B|| ouB  9ttCB 9B |B| 9|B| 0tzCB

In (5.3), 1 denotes the 2D unit tensor of the fourth order.
The homogeneity condition of degree zero now gives

68 g (63_1-1%) I+ (535‘3-1'3) C+ (Q‘:—".}--B +as) B =0
OB 9B 9B OB

Equation (5.6) implies that &; and &, are homogeneous functions of degree zero,

while &3 is a homogeneous function of degree (—1) with respect to B.
Substituting (5.4) into (5.6) one obtains

T R
OB IK;
i) abiva das
P Btyay = — K tay=0,
9B 0K
where
(5.8) {Ki} = {tB, trBC, [|B]|} .
Introducing new variables
: trB trCB
(59) Lo ln”Bnr =iy P2 = - )
Bl IBJ]
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from (5.7) one gets the equations

Jég da
e g e

Their solutions are

= ’ 1
(5.11) @ = aa(o, p1,p2, trC, ||C||), ag = m%(?;phpm trC, ||C|).

Taking into account (5.11) in (5.1) one obtains

(5.12) A=wmltalt—R
[IB]|

The last constitutive law is of a potential type provided that

G e o g, 0w - Ol 0B g
' e’ Op’  Opa® Opy’  Op2 Op’ Wi

These relations are obtained by substitution of (5.11) into (5.5).
From (5.12) one gets

trA
(5.14)  trAC
IAJ? = 23 + a3 + a2 (2a1trC + az|[C[[*) + 2a3(arpy + a2p2).

2ay1 + astrC + asp; ,
artrC + az|C||* + aspz

Il

In the case when A = o, the set (5.14) is called a parametric yield condition;
similarly if A = €, a parametric locking condition is obtained.

If the parameters p, can be eliminated from (5.14), theu the invariants of A
are interrelated by a scalar relation:

(5.15) f(o, trA,||A]], trAC, txC, [|C||) = 0.

From (5.12) one can easily derive the semi-inverse relation
& .
(516] —_— = —(A—ﬁll—'ﬂ.'zC),
Bl %3

which represents either a flow rule (A = o), or a locking law (A = ¢).

To derive specific forms of the constitutive relationships, one has to postu-
lnte concrete forms of the functions a; or b; (i = 1,2,3). For instance, simple
polynomial forms were used by the second author in the case of perfectly plastic
isotropic materials [34].
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As we already know, the spherical tensor C = H characterises an isotropic
material. The functions appearing in (4.36) are then given by

(5.17) B =B (E H). B2 = —%"—[32 (ﬂ H)-
Bl IB|| Bl

We pass now to providing simple examples.

ExAMPLE 1

Consider the two-dimensional case when the perfectly locking constraint af-
fects only the volumetric part of the strain tensor of an isotropic material, cf.
(11, 33]. We set

A= el B= %(trd’)l.

o=

Now we have
. 1 !
(5.18) [|B]| = ﬁ[tra[.

Taking into account (5.17), the constitutive relationship (4.36) reduces to

(5.19) (tre)l = L

[tre||
where ¢ is a material coefficient. Hence the locking condition is given by
(5.20) tre| = V2.
ExaMPLE 2 (Perfect plasticity, isotropic material)

For the case of plane stresses, we set A = o, B = ¢ while the functions
appearing in (5.17) are assumed in the form:

~ V2k = V2k tre
(521) ﬁlz—pz: 52-;._._.—-1 P= T

V1+p V1+p? el
Then (4.26) gives

V2k €
; = — I+ — 5
(eEE) et (" +||e||)

and the yield condition has the following form

k = const.

M trlo -
2k2 " 12k2

(5.23)
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1
where s = 0 — E(tro')l; k is the yield limit in shear. Obviously, (5.23) represents

the Huber - Mises yield condition. The flow rule (5.22) is associated with this
condition. The plastic dissipation density is given by

(5.24) D(€) = troé = V2k||é||y/1 + p2.

EXAMPLE 3

We shall now consider a perfectly plastic, incompressible and orthotropic
material in the case of plane deformations, C = H. In this case one obviously
has tré = 0 and (5.12) gives

(5.25) e =2, s=ciHy+ ﬁd,
d

where
1 . ‘ 1 . :
Hy= H—E(trH)I, d=e—§(trB)I=e,
~ trc-lH
&=t (9, —2, trH, ||Hdu).
||

Note that for ¢; = 0 the yield condition and flow rule do not depend upon tro.
The parametric yield condition resulting from (5.25) has then the form

(5.26)

(5.27) trsHy = co||[Hgl|* + c3q, Is|I? = c3||Hall + 2c2c3q + €3,
where
trdH
(5.28) g =it
[ld]]

For g = 0 the yield condition is given by

(5.29) (1 - cos® a)||s||* = c3,
where

trsHy ;
5.30 cosa = ———, if s#0.
15:30) TSl T

Obviously, for an isotropic material one has the well known flow rule

_ Vekg

5.31) S -
( dl

k = const,
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and the yield condition
(5.32) lIs||? = 2&2.

EXAMPLE 4

Consider now a plastic incompressible material, still in the case of plane de-
formation. Let now

Aq=8, Bag=d, ECz=d, d=e— '2‘(131‘8)1, tre = 0.
Equation (5.25)3 is written in the form

(5.33) eyl = ad
lld]|

Here we assume that
(5.34) ca =Callld]]), a=2,3.

The yield condition following from (5.33) is given by
* 2
(5.35) tr (s) =cl.

It takes into account the simple kinematic hardening and the isotropic hardening.
Under the influence of plastic deformations, initially isotropic material becomes
an orthotropic one. We note that specific cases studied in [30, 31] fall within our
general framework.

So far only simple cases of constitutive relationships have been discussed,
provided that deformations are plane. Here we shall not study more complex and
essentially new constitutive relationships, which naturally result from our rather
general approach. Note that there still remains the problem of identification of
material functions, particularly for locking materials.

6. Three-dimensional case

Proceeding similarly to the two-dimensional case, one obtains the following
constitutive relationships satisfying (3.2):

(61)  A=al+aC+a3C* + B+ B+ — (CB +BC)

Bl |IB|? IB]
P (Czﬁ + BCz) o0 L (0132 1 Bﬁc) e (021'32 e 3202) ,
B B2 B2
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where
(6.2) apzﬁp(g,pm,tr(}i), p=l 9 = Fonn0y =188

Here

= . . .
Pm = ——, r1 = trB, ro = trBC, ry = trBC?,

(6.3) B
ry = \ trB2C, rs = \ trB2C2, re = :’ trB3.

Note that the functions @, cannot be polynomials constructed from the elements
of the integrity basis (4.3). Moreover, a;, a4 and &s are homogeneous functions
of degree zero; aws, ag, ay are homogeneous of degree (—1) while az, ag, ag
are homogeneous of degree (—2). Obviously, the homogeneity holds with respect
to B.

Applying the generalized Cayley - Hamilton theorem due to RIVLIN [26], from
(6.1) one can construct 7 invariants K (s = 1,...,7) as follows,

(6.4) {K,} = {trA}, trA°CP}, i=1,2,3, a,8=12
Taking into account (6.2) we write
(6.5) Ks = g5(0,Pm, trCi).

For A = o the last relation represents the yield condition in a parametric form
while for A = € a parametric form of the locking condition is obtained.

Suppose that the parameters p,, (m = 1,...,6) can be eliminated from (6.5).
Then
(6.6) flo, Ks, txC') = 0,

1s the yield condition when A = o or locking condition for A = €.
To derive the semi-inverse form of (6.1) one has to find the following genera-
tors, cf. BOEHLER [2]:

(6.7) A', A°CP +CPA%, i=1,2,3, a,8=12.
After some algebraic manipulations we finally obtain
B

+ br(C2A £ AC?) + bg(CA? + A%C) + by (C?A? + A202)]. x>0,

(6.8) = [bll + 55C + bsC? + byA + bsA? + bg(CA + AC)

where A and by, (p=1,...,9) are functions of g, p, (m =1,...,6) and trC*.
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The general constitutive relationships just derived provide a rational basis for
more specific equations, which model orthotropic, perfectly plastic or perfectly
locking materials for C = H. For instance, associated laws follow by assuming

(6.6) as a yield or locking condition, which is equivalent to the condition, see
(6.11) below,

db, b,

(6.9) 9K, = K.’

grme=ill e S
If the function f is sufficiently regular, then (6.8) takes the form

(6.10) B = ,\[511 + 2byA + 3bstr A% + bytrH + bstr H? + bg(HA + AH)

+ br(H2A + AH? )], A>0,
where
=

i1, -
(6 ) § a}\-s 1

and {K,} = {trA, trA? trA® trHA, trH?A, trHA?, trH>A?}. Note that the
plastic or locking multiplier A can be calculated from (3.3) as follows:

where
D' = bytr A +2bytr A% + 3bgtr A% + by tr HA + bs tr H2A + 2bg tr HA® + 27 tr HZA2.

The last form of A is important for numerical computations.

REMARK 5. Suppose that (6.8) has been derived from a potential g(o, K, trC')
and C = H. One readily verifies that in such case bg and by vanish while the
remaining material functions satisfy (6.9) and (6.11), with f being replaced by g.

REMARK 6. Following BOEHLER [4] and BOEHLER and SAwczuk [6, 7], a
simpler version of (3.1) is obtained when

(6.13) A* =F'(¢,B),
where
(6.14) A* = C(H)-A.

Here C is a fourth order tensor function of H, satisfying C;ji = Cjit = Cpuij-
The representation of such tensor function was considered by the second author
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in [35]. The tensor function appearing on the r.h.s. of (6.13) and satisfying the
homogeneity condition

j i | g
9 —-B=0 if ¢ — #0,
JB JB
was discussed in detail in our previous papers [18, 19]. To use the results pre-
sented in those two papers, A has to be replaced with A*.

(6.15)

EXAMPLE 5. Of practical interest is the following specific case of (6.6) for
C = H, independent of trA3:

(6.16)  f(o, KstrH') = ¢ trA + cotr AH + catr AH? + dy tr2A + dytrA?
+ dstr?AH + dytrAtr AH + ds tr>AH? + dgtrAtr AH?
+ drtr AHtrAH® + dgtr A%H + dotr A’H? — 1,

where ¢; (i = 1,2,3) and d,, (p = 1,...,9) are scalar functions of ¢ and trH".
Note that for a given material with prescribed p, one has ¢; = const, d, = const;
obviously ¢; and d, may also depend on the position of a material point.

The condition (6.16) represents an orthotropic yield condition for A = o;
similarly, if A = € then it describes an orthotropic locking condition. The yield
condition of the form (6.16) is an invariant form of the condition proposed by
TsAl and Wu [37]. For more details including the description of experimental
tests for the determination of the constants ¢; and d,, we refer the reader to the
paper by CowIn [9].

The anisotropic yield conditions due to HOFFMAN [16] and Mises-Hill [15] are
particular cases of (6.16), cf. also [35].

The functions b, appearing in the associated law (6.10) are now given by

b, = 5%% = ¢, + 2di trA + dgtr AH + dgtr AH?,
by aifAz =t = 33&3 =4

(6.17) by = atfin = ¢y + 2d3tr AH + dgtrA + drtr AH?,
by = %-2- = c3 + 2dstr AH? + dgtr A + d7trAH,
56='5£L—H=d3, 5T=~atr%ﬁ§=d9,

where f is obviously specified by (6.16). It can easily be verified that (6.9) is
satisfied.

Let us set d, = 0 in (6.16). Then the resulting locking condition, i.e. for
A = ¢, represents a generalization of the isotropic condition (5.25) to orthotropic
materials.
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7. Final remarks

Real materials may exhibit elastic, plastic and locking behaviour. In the case
of small deformations the tensor of elastic deformations can easily be included
into our scheme. In a separate paper we shall be concerned with modelling the
elastic-plastic-locking behaviour. It seems that locking behaviour does not affect
all components of the strain tensor, i.e. the locking condition should probably
be imposed on particular modes of deformations. Unfortunately, in the relevant
literature one cannot find reliable experimental data. Our considerations clearly
reveal the role of nonpolynomial representations for modelling plastic and locking
behaviour of materials. For instance, such representations involve quotients of
polynomials, square roots, etc.
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