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Can the system of discrete vortices imitate a boundary layer? 

T. LIPNIACKJ (WARSZAWA) 

THE PROIJLEM of dissipative flow of superfluid due to the vortex interaction with the boundary is 
considered within the hydrodynamics approximation. The numerical simulations were applied to 
show that, when the boundary starts moving, the vortices pinned to microscopic surface irregular-
ities can stretch. The array of the growing vortices give rise to the specific boundary layer, which 
in some aspects is similar to the boundary layer in viscous fluids. 

SuPERFLUTD 4He behaves as an ideal fluid with rotation restricted to quantized 
vortex fi laments. The experiments of AwscHALOM and SCHWARZ [1] suggest that 
some remnant vortices are always expected to occur. The essentiall y hydrodynam-
ics description of its dynamics is valid down to a scale comparable to the core . 
radius of the vortex a0 which is of order l A. In the zero temperature limit , when 
the interaction between the vortex and the thermal excitation gas (the normal 
fluid) may be neglected, the motion of an individual quantized vortex ｓ Ｈ ｾＬ＠ t) (in 
local induction approximation - LIA) is accurately described by [2] 

(1) S = f]S' X S" + Vs, 

where Vs is the local average superfluid velocity, and f3 = (K/ 4rr) * ln(cJ/ S"a0), 
with c1 constant of o rder 1 and "' = h/mHe quantum of circulation. The primes 
denote d ifferentiation with respect to arc length. The equation must be supple-
mented by a non local interaction term when the vortex approaches another vortex 
o r a boundary. 

The aim of present paper is to consider the dynamics of vortices termjnating 
o n the fl at infinite boundary. The problem of vortex dissipative line dynamics 
in relatively narrow channels has been already studied by SCHWARZ [3, 4] who 
pointed earli er [4] that the moving vortex may be pinned to the microscopic sur-
face irregulariti es. We recall [5] that a vortex fi lament terminating on a perfectl y 
smooth surface will move wi thout hindrance. When the end of the vortex encoun-
ter a bump, however, it wil l remain pinned there until it bows over up to some 
criti cal angle with the surface. Next it jumps off and resumes its motion. Quan-
tized vorti ces may pin on bumps of only a few Angstroms, so that in practice 
this process is a lways expected to occur. Moreover Schwarz, while considering 
the static case, concluded that the depinnig angle (angle between the vortex end 
and the normal to the surface) depends logarithmically on the size of the pinning 
site. It means that the leading ro le may be played by small protrusions which 
are more abundant. SCHWARZ [3, 4] fo und that the pinning and release process 
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makes the vortex line elongate across the channel. In such a process the energy is 
dissipated by being fed into the growing vortex lines which then annihilate a t the 
opposite wall. The vortices also transfer the momentum between the boundary 
and the superfluid ; the vortex exerts the stream-wise force on the boundary via 
its interaction with the pinning site. Respectively, the boundary must be exert ing 
a retarding fo rce on the superfluid via its interaction with the vortex. 

In some important aspects, the vortex dynamics in the vicini ty of a single 
surface is different from the dynamics described by Schwarz in narrow channels. 
F irst of all , vortices can not be spanned between perpendicular o r opposite wall s, 
and second, there is no opposite wall to annihil ate the growing vortices. 

Consider at the beginning the simple example of a vortex pinned to z = 0 
plane and subjected to the applied velocity v5 in the i direction. Assume that 
initiall y the vortex fi lament having the shape of a half circle of radius R li es in 
plane :r = 0 (i.e. p lane perpendicular to the applied velocity and the boundary 
p lane). If the driving velocity is equal in the value but opposite in direction to 
the self-induced velocity 

(2) 
(3 

V i = R := Vcr , 

the configuration is stationary. T he higher appli ed velocity bends the vor tex 
stream-wise and stretches it out. At some cri tical angle of declination (i.e. depin-
ning angle dependent on the size of pinning site) the ends of the vortex depin. 
If the driving velocity is small e r than the cri tical one, the vortex bows against 
the fl ow and decreases. The vortex oriented in another direction, so that the 
dri ving velocity adds to the self-i nduced one, will bow with the fl ow, bu t then 
the self -induced velocity directs it to the boundary, where it annihi lates. T he 
numeri cal simulatio ns do ne by the author confi rm the above considerations. 

Statisti call y, when the driving velocity is appli ed (or the bo undary starts mov-
ing), roughly a ha lf of the pinned vortices has a chance to grow, other will anni-
hil ate. It means that the moti on of the boundary introduces some order, and it 
is easy to check that the ori entation of the remaining vorti ces is such, that close 
to the boundary the superOuid is moving in the same direction as the wall. 

As it was stated above, the end of vortex depins a t some critical angle, depen-
dent on the size of the pinning site, and then moves freely till the next bump. 
The two end points of a fil ament may encounter various irregularities and conse-
quently must dep in simultaneously. Hence, one can conclude, from the preceding 
analysis that a "well oriented" big enough vortex loop will grow any time, when 
pinned, whil e other loops will decrease. The situation simplifi es when the small 
pro trusions occur so densely, that the pinning and release events are so frequent, 
that the intermi ttent mo tion of vortex end points may be approximated by a con-
tinuous motion with fr ictio n. W hen the friction is present, the moving end of 
vortex is bowed to the boundary at such angle that tangent component of tensio n 
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force equals the fr iction force f s· Namely 

(3) . e f s 
Sill- = -

f t' 

where 8 is the angle between the vortex at its end points and the normal to 
the boundary, and It is the value of tension force. The angle e, corresponding 
to the average angle of declinatio n, may be considered as the material constant 
depending on the density and the size of boundary irregularities. It means that 
fo r normall y "smooth" surface sin 0 is small when compared to unity. 

Consider then the fo ll owing example: 

L et the boundary plane:: = 0 be moving with constant velocity \Id = (Vd, 0, 0) 
with respect to the fluid. Consider the dynamics of a vortex which at the initi al 
time has the shape of a half circle symmetrically placed with respect to plane 
!J = 0, and the driving velocity. Assume that the self-induced velocity ｜ ｾ＠ is smaller 
than the driving velocity VJ, and that the vortex loop is moving so that the angle 
between the vortex at its end points and the normal to the boundary is e. The 
self-induced velocity (in LIA) , at the given point of the vortex, is binormal to 
the vortex line at that point. Hence, at the ends of the vortex, the angle between 
the self- induced velocity and the wall is 0, but for one (positi ve) orientation of 
the vortex the self- induced velocity is directed out from the wall , and for another 
(negative) ori entatio n it is di rected to the bounda1y . For the positive orientation 
the vortex loop will be growing. The rate of growth may be calculated as fo ll ows: 
let a be a point moving with the vortex and p be a vortex end point (Fig. 1). 
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FIG. J. Fragment of the vortex close to the boundaty. The vortex moves so that point a goes 

to a' while end point p goes top'. Vector a]J is paralle l to the vector a' p' . 

In a sho rt time !J.L the point a moves to a' = a + !J.L v;. In the same time the 
- -

end poin t moves to such a point z7' that a'p' is parall el to ap. If so, the initi al 
fragment of vortex lin e grows up by !J.t\li sin 8 . Because there are two ends, the 
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vortex growing rate az 1 fJt satisfies the condition 

(4) 
fJL+ 
fJt ::;:: 2'-'i (t) sine' 

where + means the growing vortex. The oppositely oriented vortex is decreasing 
at the rate 

(5) 
f)l -
fJt ::;:: -2Vi (t) sine' 

where sign - means a shrinking vortex. 

P IG. 2. Moti on of a vortex when fri ction is present. The figure shows the projection of vortex 
fi lament on the plane perpendicular to the boundary and the driving velocity. 

It may look curio us that the driving velocity does not appear in Eqs. (4), 
(5). However it plays an important role: only these vortex loops for which the 
self- induced velocity is small er than the imposed one, can grow. So for bigger 
driving velocity another smaller loops can grow, and as one can see from the last 
equation, small er loops grow faster. It should be said also, that Eqs. ( 4), (5) are 
no t valid fo r the drivi ng velociti es only slightly bigger than the criti cal one. When 
there is no friction (i.e. for e ::;:: 0), the vortex maintains its shape of a half circle. 
Also for small declinatio n angles (sin G < 0.3), numerical simulations (Fig. 2) 
show that the vortex grows maintaining approximately the shape of a half circle. 
For bigger declination angles, however, the vortex becomes elongated. The in-
stant radius of uniformly growing loop is R = l j 1r, while its self-induced velocity 
is vi = (Jj R. Those relations put into Eqs.(4), (5) give the equation for R(t): 

(6) 
fJ R± 2{3 sin G 
Tt = ± 1rR 

leading to 

(7) 
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Consider now the array of vortices with end points on the boundary. If at 
time t = 0 the boundary wall starts moving with some constant velocity V, , some 
vortices will grow and some will decrease. As a result, a layer of superfluid close 
to the boundary starts moving in the same direction as the wall. 

To consider this mechanism in more detail, assume that, at the time t = 0: 

• all vortices have the shape of the half circle of the same radius R0; 

• the vortex loops form a regular pattern where half of the loops have posi-
tive orientation (positive vortices) and another half has the negative orientation 
(negative vortices); 

• the driving velocity vb is bigger than the initial critical one so the positive 
vortices can grow (i .e. vb > f3 I Ro); 

• the declination 8 is small, so as was stated above, the vortex loops maintain 
their shape of a half circle; 

• there are n growing vortices and n decreasing. 

Then Eq. (7) allows to calculate the average velocity at a given distance from 
the wall z . The velocities V+ and v- generated by positive and negative vortices, 
respectively, will be calculated separately. The resultant velocity is V = v+ - v-. 

The average velocity v+ (at a given distance z) may be calculated from the 
Ampere principle. Let F be the surface z = zo. For zo < R+ cos 8 that surface 
is pierced twice by every vortex loop. The distance between the piercing points, 
(or the diameter of " the cut-off'' loop segment) is: 

(8) for z < R+ cos 8 . 

Above the large square lying on the surface F there are Ns = nA 2 positive 
loops (where A is the side of the square). It means that in average, above a line 
with length A lying on F along the x axis, there areNa = s+ An vortex segments. 
Then from the Ampere principle, which states that the circulation of the velocity 
field around a closed path is equal to the flux of the vorticity linked through this 
path, the average induced velocity is 

(9) 

The v- velocity may be calculated similarly. In the explicit form both velocities 
read: 

(10) r; ± ( " ) = ｾ＠ 4 tsmo R2 _ _ z_ 
( 

f3 . C\ 2 ) 1/ 2 

I -, t Kn ± + 0 2 D 
7f cos 0 

At the time Tc = 1r R0/ ( 4/3 sin 8) the decreasing loops vanish, and so, the 
velocity V- becomes zero everywhere. 
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For times t < ｔ ｾ＠ the induced velocity V is: 

(11) 
{

0 
v = v+ 

v+- v-
For times t > ｔ ｾ Ｌ＠ V is: 

(12) V = {0 v+ 
since v- = 0. 

for z > R+ cos(), 

for z E (R- cos G, R+ cos()), 

for z E (0, R- cos G). 

for z > R+ cos(), 

for z E (0, R+ cos()), 

T. L IP ' IAC I\1 

One can see from Eq. (12) that the thickness of the boundary layer (i .e. that 
layer where the velocity V > 0) grows as R+ cos() proportio nall y to J j3t sin G . 
The induced velocity has the same direction as the velocity of the boundary, so 
it reduces the relative velocity between the superfluid and the boundary. 

Recall that velocity of a viscous fluid in the boundary layer appearing when 
the wall starts moving with some constant velocity vb, is described by the diffusion 
equation: 

(13) 
av 82v 
-- 1/ - = 0 Dt az2 · 

The usua l assumption that there is no slip , leads to the boundary condition 
u(O, t ) = V&. Then with the ini tial conditi on v(O, t) = Vb the equation lead to 

(14) v(z , t) = vbiP Ｈ Ｒ ｾＩＬ＠
where 

X 

iP(l -) = ｾ＠ J 
0 

(1 5) 
2 

-a cla . 

One can see that in a viscous fluid , the characteristic thickness of the boundary 
layer is 11/[ . 

In the considered "vortex boundary layer", if there are few vortices at the 
beginning, the re is a slip i.e. the fluid velocity at the boundary is different from 
the velocity of the wall. The role of the viscosity is played here by the parameter 
j3 sin 8 - proportional to the quantum of circulation and surface roughness. The 
fact that the "nonsmooth" velocity profi les were obtained is due to the assump-
tion, that at the beginning all vortex loops were identical. 

In conclusio n, a consideration of vortex friction on microscopic boundary 
ro ughness leads to the mechanisms of the origin of specific vortex boundary 
layer in some aspects simil ar to the boundary layer in viscous fluids. It is still 
interesting, however, to consider that problem under more general assumptions, 
namely when there are different vortices and they interact with each other. 
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