Arch. Mech,, 48, 6, pp. 985-1010, Warszawa 1996

Thermoelastic materials with heat flux evolution equation

GH.GR. CIOBANU (1ASD)

THE RESULTS obtained in this paper refer to the class of materials for which specific free energy 1, the
specific entropy 1, and the first Piola-Kirchhoff stress tensor S are, respectively, determined through
the constitutive functionals +, 7, and S which are defined in their common domain consisting of
quadruples (F, 0, G, Q), called states of the material, and where F is the deformation gradient, 6 is
the absolute temperaiure, G is the material gradient of the temperature, and Q is the referential heat
flux. The heat flux Q behaves as a “hidden variable” or an “internal variable” [1] and its evolution in

time is described by a differential equation Q = H(F, 6, G; Q), where H is a constitutive functional
of the material. Such materials will be called thermoelastic materialy with heat flux evolution equation.
To a certain extent, this class of materials may be considered as a limit case of thermomechanical
materials with internal state variables examined by CoLEMAN and GURTIN [1]. It is for this reason
that this fundamental work of modern continuum thermodynamics inspired much of the results in
this paper. On the other hand, the above heat flux evolution equation is generalizing Cattaneo’s
heat conduction equation [2] for isotropic materials. So this theory is convenient for predicting
thermal waves propagating at finite speed.

Introduction

THE BASIC FUNCTIONAL and conceptual underpinnings of the classical continuum
thermodynamics are briefly presented in Sec. 1.

The axiomatic definition of thermoelastic materials with heat flux evolution
equation and their constitutive equations are given in Sec. 2.

The general form of constitutive functionals ¥, 7, and S in the assumption
that the heat evolution functional H is linear in G and Q, i.e. in the Cattaneo’s
case, is presented in Sec. 3.

The notions of equilibrium state (E.S.), isothermal E.S. and its domain of at-
traction for a given material point are introduced in Sec. 4. We point out that our
definition of E.S. includes the usual one as a special case, but it is not confined
to it. A state ()\g, Gy QQ), XQ = (F(). 19()) is an E.S. if

GQ J Qn = (), H()\O- Go; Qo) = 0.
The strictly E.S., i.e. a state (X\g, 0; Qg) which satisfies the condition
H(X0.0; Qo) =0,

coincides with what is usually understood by an E.S. It is showed that the free
energy function has a local minimum at an asymptotically stable isothermal E.S.
and that if a strictly isothermal E.S. is a strict local minimum for the free energy
function then this E.S. is Lyapunov stable. Results regarding asymptotic and Lya-
punov stability of a strict isothermal E.S. for strictly dissipative materials are also
obtained.
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986 GH. Gr. CIOBANU

A theorem of consistency with thermostatics [3] on the set of asymptotically
isothermal E.S. is proved in Sec. 5.

The specific entropy is taken as an independent variable in Sec.6. In this
case the implications of the Cattaneo’s equation on constitutive functionals are
derived and conditions of asymptotic and Lyapunov stability of an isentropic E.S.
at constant strain for a material point are obtained.

In Sec.7 the specific internal energy is taken as an independent variable and
results regarding the asymptotic and Lyapunov stability of an isoenergetic E.S.,
similar to the results in Sec.4 and Sec. 6, are established. Some links between
asymptotic and Lyapunov stability of isothermal, isentropic, and isoenergetic E.S.
are rendered evident, and the restrictions the Cattaneo heat flux evolution equa-
tion imposes upon constitutive functionals are pointed out.

Finally, we mention that some of the problems here discussed have been
approached by the author in [10].

1. General formulae
1.1. The basic functional framework

Let E be the three-dimensional Euclidean point space, V the translation space
of E, and Lin the space of linear transformations of V. We denote by V the set
of triplets

(1.1) A=(Aaa)eLinxRxWV.

V is a 13-dimensional Euclidean space with respect to the linear operation
(1.2) a(A,a,a) + (B, b,b) = (0¢A + B, aa + 3b, aa + j3b)

for every (A, a.a), (B,b.b) € V, o, € R, and the inner product

(1.3) (A,a,a)+(B,b,b)=A-B+ab+a-b,

where A+ B = tr (AB7) and a - b are the inner product in Lin and V, respectively.
The corresponding Euclidean norm in V is given by

(14) (A,a,a)— |[(A,a,a)| = (A-A+a’+a-a)/2>0, (Aa,acV).
Also, the notation X = (A, «) € Lin x R will be used, so that

(1.5) A = (A a.a) = (N, a).
We denote by V* the subset of V defined by
(1.6) y* =Lin* xR xV,

where Lin® = {A € Lin/detA > 0} and R* = (0, 00).
Of course, V is a Banach space with respect to the Euclidean norm (1.4) and
V* is an open set in V.
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THERMOELASTIC MATERIALS WITH HEAT FLUX EVOLUTION EQUATION 987

1.2. Classical continuum thermodynamics

A body [3], or a continuous medium, B is identified with the region [S] B C E
it occupies in a fixed reference configuration «, and the material element, or
particle X € B is identified with its position X € B. It is assumed that a referential
mass density p, : B — (0,00) of B in the reference configuration is given such
that the mass of the subpart P of B is

m(P) = ]QN dm.

P

Along with B and its referential mass distribution, the process class P(B) ([4,
5]) is given characterizing the material comprising 5. The elements = € [P(3) are
called processes and they are ordered 8-tuples of mappings on B x R.

(1.7) T =(%.0,5,7,8.Q.b,r),

where, during the process w, at particle X, and time ¢, x = x(X,?) € E is the
motion, § = 6(X, 1) € R" is the absolute temperature, ¢ = (X, t) € R is the specific
internal energy per unit mass, 1 = (X, 1) € R is the specific entropy per unit mass,
S = S(X,t) € Lin is the first Piola— Kirchhoff stress tensor, Q = Q(X.,t) € V is
the referential heat flux, b = b(X.t) € V is the specific body force per unit mass,
and r = r(X,t) € R is the radiant heating per unit mass.

DEerFINITION 1.1. A process = € P(B) is said to be admissible if its components
mappings are satisfying sufficiently smooth conditions and the laws of balance of lin-
ear momentum, balance of moment of momentum, balance of energy, and imbalance

of entropy [3].
The deformation gradient

(1.8) F = F(X,1) = Grad x(X., 1),
where Grad denotes the gradient with respect to X, is assumed to be in Lin™,

i.e. J = det I > 0. The velocity v of particle X at time ¢ is determined by the
material time derivate of motion

(1.9) v=wX,t) = (X, 1)
The mass conservation law requires
(1.10) o= Jos,

where p = o(X, ) is the mass density at particle X at time .
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For any admissible process = € P(B) the laws of balance of linear momentum,
balance of moment of momentum, balance of energy, and imbalance of entropy
are equivalent to the local referential equations [3]:

(1.11) 0. = DivS + o.b,

(1.12) FST = S¥7,

(1.13) 0. =S F -DivQ + g.r,
(1.14) 0xM > 0x(r/0) — Div(Q/#),

where Div denotes the divergence operator with respect to X.
By using the specific free energy v = (X, t) per unit mass defined by

(1.15) p=c—0y

and taking into account the energy balance equation (1.13), it results that the
Clausius — Duhem inequality (1.14) takes the form

(1.16) o (¥ +n0) -8+ F +Q-(G/0) <0,

where G = G(X,t) = Grad (X, t) is the temperature gradient with respect to the
reference configuration «. The inequality (1.16) is called the Reduced Dissipation
Inequality [3]. If v = v(X.t) denotes the specific rate of entropy production [1] of
particle X at time t

(1.17) 057 = 0x7) — [0x(r/8) - Div(Q/6)],
then the Clausius-Duhem inequality (1.14) asserts that
(1.18) v > 0.

From the energy balance equation (1.13) it follows that for any admissible
process m € [P(5) we may write (1.17) in the form

(1.19) y= i = /0+(1/0.0)8 F - (1/0.67)Q-G
and, since = £ — 07 — (;h;, from where we get
(1.20) by = -1 —nb +(1/0,)S+ F — (1/0.6)Q - G.

The following implications hold:

(1.21) § =0, F=0 and Q-G=0 = 1 <0,
(1.22) =0, F=0 and Q-G=0 = ¢ <0,
(1.23) £=0, F=0 and Q-G=0 = # <0
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2. Thermoelastic materials with heat flux evolution

The theory studied in this paper assumes that the material comprising the body
undergoes only admissible processes, in the sense of Definition 1.1, and that the
specific free energy »(X., ), the specific entropy 1(X, t), the first Piola - Kirchhoff

stress tensor S(X, t), and the specific time rate of the heat flux Q of a particle X
and at time ¢ are determined by the state functions corresponding to the admissible
processes © € P(B)

(2.1) (A;Q) =(F.0,G;Q) : BxR—Lin* xR" xVxV=VtxV

through the constitutive functionals of the material

(22) v(t) = A1) Q1))
(2.3) n(t) = 7(A(1); Q(1)),
(2.4) S(1) = S(A(1);Q(1)),
(2.5) Q(1) = H(A(1); Q(1)).

The variable X € B is understood to enter both sides of (2.2)-(2.5), but it is
not written there because all the subsequent considerations refer to one particular
material point X € B.

We now make the following constitutive assumptions defining the material un-
der consideration. These assumptions refer to the common domain of the con-
stitutive functionals ¢, 7, S, H and their smoothness properties.

A 1. The constitutive functionals ¢, 7, S, and H have for their domain of
definition the set D x V, where D C V7 is an open and connected set satisfying
the condition

(2.6) (A,a,a) € D = (A, a,0) € D.

A 2. The free energy functional ¢ is continuous differentiable on D x V, i.e.
for every A = (X\,G) € D, X = (F,#), and Q € V we have

(2.7) P(A +T5Q +u) = 0(A;Q) + dpv(A;Q) - T + 9gvA; Q) - u
+o(|I'] + [ul),

for any I' = (A,a,a) € V,and u € V, with (A + I;Q +u) € D x V.
Moreover, the partial derivative of > with respect to A

(2.8) A = (W, 0cY) : DxV =V, K= (I, 1),
and the partial derivative of i with respect to Q
(2.9) ot : DxV =V,

are continuous applications on 1 x V.
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A 3. The mappings 7, S and H are continuous on D x V.

A 4. The heat evolution function H is locally Lipschitzian, with respect to Q, on
D x V for any fixed mapping

A:BxR-—-D.

REMARK 2.1. From the assumption A1 it results that if (A, a,a) € D, then for
every a € V\{0} there exists § > 0 such that (A, a,ca) € D as soon as |a| < é.
REMARK 2.2. Suppose we are giving an initial time {o, an initial heat flux

distribution on B,
X Qp=QuX) eV, X € B,
a smooth motion x = x(X,t), and a smooth temperature field # = 6(X. ) such
that
A(t) = (F(X, 1), 0(X,1), GX,0) €D, (€L,

where I C R is an interval containing ty. Assumption A 4 guarantees the existence
and the uniqueness [6, 7] of the solution

(2.10) Q = H(A(1); Q).

With (A(1);Q(1)) € D x V, t € (tg — é,1p + 8), determined in this manner, from
(1.15), (2.2)-(2.4), we obtain ¥(t) = (X, 1), n(t) = n(X,1), (1) = ¢(X,t) =
P(t) + 0()n(t), S(t) = S(X.t) and, from (1.11), (1.13), we get the specific body
force b(X, t) and the radiant heating (X, ).

Thus to each sufficiently smooth choice of Qg, \, and # there corresponds a
unique process

(2.11) 7= (0.6.1.8.Q.b.r) € B(B), on (lo— 6.1y + &).

REMARK 2.3. For every state (X\g; Qo) = (Fo. 6y, Go.Qp) € D x V, given at
the material point X' € B occupying the place X € B, for every {3 € R, and for
arbitrarily chosen I" = (A, «.a) € V there exists an admissible process = € P(B)
such that the states

(AX, 1) QX 1) = (F(X, 1), 0(X, 1), G(X, 1); Q(X, 1))

corresponding to the process 7 satisfy the conditions

(2.12) (AX.10); QX 1) = (A; Qo). A(X.tg) = I

The proof of the statements in this Remark may be found in [1, 4, 5].

DEFINITION 2.1. The constitutive equations (2.2)—(2.5) are said to be compatible
with the Second Law of Thermodynamics if for every choice of sufficiently smooth
initial heat flux distribution Qg motion X, and temperature field 8, the process
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™ € P(B) is an admissible process i.e. the constitutive functionals 1, 7, S, and H
satisfy the dissipation inequality (1.16) at each time t and for all material points
X e B.

The content of this definition is referred to as the Principle of Thermomechan-
ically Compatible Determinism [3].

Using the line of arguments in [1, 4, 5] and the results of the Remark 2.3 the
following theorem can be proved (cf. [8]).

THEOREM 2.1. If the functions v, 7, S, and H obey the assumptions A1 — A 4
then the constitutive equations (2.2) — (2.4) are compatible with the second law of
thermodynamics if and only if for any smooth motion, temperature field, and initial
heat flux distribution, the following conditions hold:

1) the free energy function < is independent of G, i.e.

(2.13) B(1) = O Q). N = (F(1),6(1));
2) the functions 7 and S are independent of G, i.e.
(2.14) n(t) =AM Q). S(1) = SO Q)

and the functionals ij and S are determined by the function 0 through the relations
(2.15) =gt S = p. Ol
3) the Dissipation Inequality is satisfied
(2.16) 2-0(0IQUNL); Q1)) + H(A(1);Q(1) + Q(1) - G(1) < 0.
REmMARK 2.4. Following [1], the quantity
(2.17) o =5(A;Q) = —(1/6)dgt(X; Q) - H(A; Q)

is referred to as the internal dissipation.
If we denote by o the restriction of & to the set

(2.18) A={(A;Q)=(F.0.G;Q) €D xV/Q:G =0},
then from (2.16) we get the inequality
(2.19) a0 = 7o(X. G;Q) = 0,

which is called internal dissipation inequality. In virtue of (2.6) we remark that
¢ # 0 and that

(2.20) 5o(N, 0;Q) = —(1/8)dg(X\; Q) - H(A,0;Q) > 0.
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Because of (2.15) we have

221) & = (N Q)+ F + dgt (N Q)8 + doir(\: Q) - H(A; Q)
=S.F— 30 — 6o

so that
(2.22) X =(F.0)=0=0=—(1/6)1.
Since, as it results from (1.15) and (2.21),,
(2.23) ¢ =8.F -0 - fo,
we obtain the following implications

(2.24) F =0, 5=

0 = —(£/9),
(2.25) F=0 #=0 ;

a=1.

¢ 4
Q

In the present theory o plays the part it did in [1].

REMARK 2.5. The Dissipation Inequality (2.16) imposes a severe limitation
on the free energy functional ¢ and on the heat evolution functional H. The
restriction of this limitation to the set A (see (2.18)) takes the form

(2.26) do(N; Q) -H(A;Q) <0,  (N.G;Q)eDxV.
In particular, we have

(2.27) dot(N;Q) +H(A.0;Q) <0,  (N.0;Q)eDxV.

3. Materials with Cattaneo heat flux equation

In this section we suppose that the heat flux evolution functional is linear in
Q and G, i.e.

3.1) H(A; Q) = M(XN)Q + N(N)G,
(A;Q) = (N.G;Q)eDxV, X = (F.0),
where the second order tensor functions

(3.2) A — M(XN), N(X\) € Lin, A.GQ)eDxV

are nonsingular, and we derive the implication of this assumption on the consti-
tutive functionals ¢, 7, S, and

(3.3) E= 14+ 0.
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Inserting (3.1) into (2.16) we conclude that the tensor functions (3.2) must
satisfy the inequality

B4 ex MTNGEN Q)] - Q + [N (N)i(X; Q) + (1/0)Q] -G <0

for every (X\,G;Q) € D x V.
THEOREM 3.1. The inequality (3.4) holds on D x V if and only if the relations

(3.5) (M7 (N)dgi(Z; Q)] +Q <0,
(3.6) 2 N"(N)dgv(X\; Q) = —(1/6)Q
are satisfied on D x V.

Proof If QG € V are arbitrary, as they are supposed to be in [8], the
theorem is rather evident. But this is not the case because (X\,G;Q) € D x V,
and the domain D is a priori given. It is obvious that (3.5) and (3.6) are sufficient
for (3.4). On the other hand, (3.4) and (3.6) imply (3.5). So it remains to prove
that (3.4) implies (3.6). To prove this implication we will prove its contrapositive
assertion. The relation (3.6) does not hold on D x V if there exists Ag = (Fp, fy) €
Lin* x R and G € V with (\g.G) € D such that p.N7(Xo)do1:(Xo; 0) = u # 0.

From the assumption A1 and from Remark 2.1 it results that there exists
ag > 0 such that (Ng, Gg) € D where Gy = aqu. For the point (Ao, Gg;0) € D xV
the left-hand side of (3.4) becomes agu-u > 0 and this contradicts (3.4). The
theorem is proved.

REMARK 3.1. For any (A, () = (F.4,G) € D the mapping
(3.7) INT (N)dgi(A;+) : V=V

is an invertible linear transformation on V, namely a similarity transformation of
coefficient k = 1/p,.

REMARK 3.2. Let us introduce the notations
(3.8) T=-M1, =-_N1, K=TZ.
With these notations, from (3.1) and (2.5), we obtain
(3.9) TAQ +Q=-KMX)G. (N\.GQ)eDxV,

where the tensor functions A — T()\), K(\) € Lin are nonsingular.

Equation (3.9) is the Cattaneo heat flux evolution equation.

Supposing that b is twice continuously differentiable on D x V it results that
Z, and therefore N, is symmetric and it is given by

(3.10) Z = -N7" = p. 00 (X; Q).
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On the other hand, in view of (3.8) and (3.6), from (3.5) it follows
(3.11) Q-K'(MQ =0,

which shows that K is positive definite because Q € V is arbitrary and K is
invertible.
The internal dissipation (2.17) is now given by

(3.12) o =5(A;Q) = (1/0.6%) [Q-K'Q+ Q-G

and (3.11) is a consequence of the internal dissipation inequality which now
becomes

(3.13) o0 = a0(A; Q) = (1/2:69)Q - K1 (A)Q > 0.

Taking into account that N = N = -Z~!, from (3.6) we obtain (see [9]
and [8])
(3.14) 2:0 (N5 Q) = 2.To(N) + (1/200Q - ZNQ.

From this relation, (2.15), and (1.15) we get
(3.15) 0:5(X;Q) = 0:50(N) + Q-AN)Q,
(3.16) 2<71(X;Q) = ox7(X) + Q- B(N)Q,
(3.17) S(A;Q) = So(N\) + Q- P(N)Q.
where
(3.18) o = —(')(;-J'O, £ = ‘L:n — 08, Lf‘o = g + o So = prc')ru:n
and

A = —(1/26%0, [(1/6%)Z)] | = —(1/20)d4 [(1/8)Z],

(3.19)

P = (1/20)%FZ.

REMARK 3.3. When the heat flux evolution functional H is of the form (3.1),
the observations in Remark 2.5 are more specific. From (3.10) it results that for
every (X, G) € D the mapping

(3.20) o(X;+) : V=R

is a nonsingular quadratic form having the matrix —(1/0.60)N"'(N\) = (1/0.0)Z.
So the nonsingular tensor N(X) in (3.10) is completely determined by the free

energy functional ¥>. The invertible tensor M(X) in (3.10) depends on " through
the relation M(X) = N(X)K~'(X\) where K(X\) is a arbitrary positive definite

second order tensor.
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4. Stability of isothermal equilibrium states (E.S.)

Throughout this and the following section we suppose that the heat flux evol-
ution functional H is continuously differentiable on D x V and that the second
order tensors dgH(X, G; Q) and doH(X, G; Q) are nonsingular on D x V.

With these conditions, the equation

4.1) H(X.G;Q)=0

defines the implicit functions

(4.2) Q=Q.G), HA.GQX.G)=0;  Q=0Q(NGp)
and

(4.3) G=G\;Q), HAXAGXQ:Q) =0,  Gy=GX;:Qu)

in a neighbourhood U C D x V of a solution (X\g, Go; Qg) of the equation (4.1).
The functions (4.2); and (4.3), are satisfying the indentities

(4.4) QA G;Q))=Q,  G\QN.G) =6

on U and are differentiable in certain neighbourhoods of (Xg, Gg) and (Ao, Qq),
respectively.

All the following considerations refer to an arbitrary fixed material point X €
B having the position X € B in the configuration k.

DEerFINITION 4.1, The state (Xo,Gp; Qg) € D x V, Xg = (Fo,8), is called an
isothermal E.S. at constant strain ¥y for the material point X € B if it is a solution
of Eq.(4.1) and if Go+Qqp = 0. The state (X\g,0;Qq) € D x V, Ng = (Fy,0) is
called a strictly isothermal E.S. al constant strain ¥y for the material point X € B if
it verifies Eq. (4.1).

With these definitions, the following theorem can be proved (see [8]).

THEOREM 4.1. If the functional H satisfies the above conditions, then:

1) every state (X.0;0) € D x V is a strictly E.S.;

2) the second order tensor

(4.5) [0gH(X.0;0)] " 9GH(X. 0;0)

is positive definite.
We denote by & C D x V the set of isothermal E.S. and by & C & the subset
of strictly isothermal E.S. at constant strain for a material point X' € B.

REMARK 4.1. The preceding theorem shows that & and therefore £ are non-
void sets. Moreover, for every a priori given g = (Fy.6p) € Lin* xR* at X € B
the nonvoid set

(4.6)  T(No)={R.G;Q EDxV|G-Q=0. HXp.G;Q) =0} € £
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is a 2-dimensional manifold in the 6-dimensional space of tuples (G;Q) and
(0;0) € 3(Ng). From (4.1) - (4.4) it results that for every (Gg; Qp) € X (o) there
exists a neighbourhood U (Gg; Qg) such that

47)  UG.QINE0)={(X, G Q)€ Px V|G = G(rg;Q). Q-GN Q) = 0}
= {0, G;Q € D x V| Q= Q\o; 6), G-Q(ho; 6) = 0}
={(X\0.G:Q P x V|G =Gy Q). Q=Qo;G). G Q)+ Qs G) =0},

REMARK 4.2. The only isothermal E.S. at constant strain for a material point
X € B of the thermoelastic materials with Cattaneo’s heat flux evolution equation
(3.9) is the strictly E.S. (Xg,0;0).

DerFINITION 4.2 If (Mo, Go; Qo) € &, then the set D(Xg, Go; Qo) C 'V of vectors
Q* €V for which the solution Q = Q(t) of the Cauchy problem

(4.8) Q =H0.G;Q). Q) =Q",
exists on [0, ) and satisfies the condition
(4.9) lim Q() = Qu.

is called the domain of attraction of the E.S. (Xg.Gg; Qq) at constant strain and
temperature.

If Qo € D(Xg, Go; Qo) is an interior point, then (X\g, Gg; Qo) € & is said to be
an asymplotically stable E.S.

The ES. (Xg, Go; Qo) € & is called Lyapunov stable if for each = > 0 there exists
6 = 6(¢) > 0 such that every solution Q = Q(t) of Eq.(4.8), satisfies

(4.10) Q) = Qol <&, 20,
whenever
(4.11) 1Q(0) - Qf < 4.

REMARK 4.3. For every Q= € D(Xy,Gy; Qp) and every X € B there exists at
least one process 7* € PP(B) such that

QX.0)=Q", FX./)=Fy. 6(X.1) =6,

(4.12)
GX.1)-QX,/)=0. (>0.

Indeed, using the Remark 2.1 it results that the process 7= € P(8) defined by
the motion

(4.13) x=X(Y,t) = X+F[Y-X]. (Y.1) € Bx[0.).
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and by the temperature field
(4.14) 0 =0(Y, 1) =6y +g(t)-[Y - X], (Y.t) € B x[0,00),

where ¢ — g(t) € V, t € [0,x), is a differentiable application satisfying the
condition g(t) - Q(¢) = 0, t > 0, and Q(t) = Q(X, 1), the solution of the Cauchy
problem (4.8), satisfies (4.12). For the process here defined we have f*‘(x, ty=10
and 0 (x,t) = 0.

THEOREM 4.2.

1) If (XQ, Go; Qo) S )\g = (FO, 00), then

(4.15) (Xo; Q) > ¥(No; Qo) Q € D(Xo.Go; Qo);

2) if (N, Go; Qo) € € is asymptotically stable then the preceding inequality holds
in a neighbourhood U(Qq) of Qo U(Qo) C D(Xo. Go; Qo) and, consequently, there
exists vy € R such that

(4.16) v (No; Qo) = 1Go;
3) if (N0, 0; Qo) € &y and there exists a neighbourhood U(Qyq) of Qq such that

@17 P Q > Qo). Q# Qo€ U(Qo) N D(Xo, Go; Qo)
then (Xg,0; Qq) is Lyapunov stable.

Proof
1. From (1.21) it results that for processes 7* constructed as in Remark 4.3

we have z]r(t) < 0 on [0, ), and consequently
PN Q) = (1) < 0(0) = v(Xo; Q) = (X Q). 1> 0.

If we make here ¢t — oo, and take into account that llim Q(t) = Qg because
— 00

Q* € D(Ng, Go; Qo), we obtain (4.15).

2. In our hypotheses the differentiable function o:(X\g, « ) attains its minimum
at Qg on the set U(Gg, Qp) N X (Ng), as described in (4.7),. This means that Qq is
a point of local conditional minimum under the side condition Q - G(X\y; Q) = 0.
Therefore there exists vy € R such that

@ dv(Xo; Qo) = 1o [G(Xo; Qo) + Qoo G(No; Qo) -

On the other hand, differentiating the relation Q(Xg; G) - G(Xg; Q) = 0 (see
(4.7)3) with respect to Q at the point Qg and taking into account (4.2); we obtain

() QouIoG(ho; Qo) = 0.
From (a) and (b) we get (4.16).
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3. From (2.20) we have
QU (Mo; Q) -H(X0,0;Q0) <0, Qe V.
This condition together with (4.17) shows that the function
V(X +):V—R
can serve as a Lyapunov function [6, 7] for the autonomous differential system

(4.18) Q = H(\g.0;Qp)

and therefore (X\g, 0; Qg) € & is asymptotically stable.
Concluding this theorem we note that if (Xg,0;Qq) € & is asymptotically
stable then

(4.16) dov(Xo; Qo) = 0.

DEFINITION 4.3. Let X! = (F9,0%) € Lin™ x R" be given at the material point
X € B. The vectorial equation
(4.19) do(N% Q) = vG
is referred to as the equation of isothermal internal equilibrium at constant tempera-
ture #° and constant strain ¥° for the material point X € B.

REMARK 4.4. The unknowns in (4.19) are the triplets (G, Q, ) € VxVx[R. The
part 1 of the preceding theorem shows that if (A°, Gy; Qp) is an asymptotically
stable E.S. then there exists 15 € R such that (Gg, Qq. 1) satisfies (4.19), i.e. is a
solution of the system

(4.20) G:Q=0, HX\.G;Q =0, 3g¢(N\%Q) = vG.

DEFINITION 4.4. The thermoelastic material under consideration is called strictly
dissipative [1] if

(4.21) X =(F,0)=0, G:Q=0, Q#0= >0,

where 7 is the specific rate of production of entropy defined by (1.20).

REMARK 4.5. From (1.20) and (2.16) it follows that the considered material
is strictly dissipative if and only if

(422)  Go-Q=0 and (X\.Gp;Q) €& = dot(Ng; Q) H(Xp. Gp; Q) < 0.

Using the same line of arguments which leads us to the part 1 of the preceding
theorem we can prove the
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THEOREM 4.3. If (No.Go; Qo) € & is asymptotically stable and if there exists
U(Qo) € D(XNo,Go; Qo) a neighbourhood Qg such that the inequality in (4.22)
holds on U(Qo)\{Qo}, then

(4.23) (X0, Q) > #(Xg,Qo), Qo # Q € U(Qu).

THEOREM 4.4. If (X, 0;Qq) € & and

(4.24) ot (ha; Q) - HX.0:Q) < 0, Qo # Q€ U(Qu),
where U(Qq) is a neighbourhood of Qq, then:

1) (X0, 0; Qo) is asymprotically stable if and only if (4.23) holds;

2) if (X\o,0; Qp) is asymptotically stable then it is Lyapunov stable.

P ro o f. The necessary part of 1 is a result of the preceding theorem. The
sufficiency of 1 follows from Lyapunov’s theorem on asymptotic stability since in
this case the function ¢/(Xg; + ) is a Lyapunov function [6, 7] for the autonomous
differential system (4.18). The part 2 of the theorem is a consequence of the
preceding theorem and of the Lyapunov’s stability theorem [6, 7].

REMARK 4.6. If the material is strictly dissipative and (Xg,0;Qq) € & is
asymptotically stable, the inequality (4.23) holds and (X.0;Qq) € & is Lyapunov
stable.

REMARK 4.7. The only E.S. (X, 0;0) € & (see Remark 4.2) of a thermoelastic
material obeying the Cattaneo’s heat flux evolution equation (3.9) is asymptoti-
cally stable if and only if the characteristic roots of T~'(\) have positive real
parts [6, 7].

5. Consistency with thermostatics

In this section we assume that for each Ay = (Fy,fp) € Lin* x R" there
exists a unique pair (Gp, Qq) € V x V such that (Xg. Gg; Qo) € &. Using (4.2); we
denote
(5.1) Dy = {(Xo, Go) € D (Mo, Go; Qo) = (No» Go; Q(hg; Go)) € £).

The set Dy C D is referred to as the equilibrium part of D and is supposed to be
a subdomain of D. B B

On Dy we define the equilibrium response functions v, 7, and §q giving the
equilibrium free energy 1y, the equilibrium entropy 1y, and the equilibrium first
Piola—Kirchhoff stress tensor Sy through equilibrium constitutive equations.
(52) vo = Po(Xo; Go) = ©(Xo; Q(XNo; Go)),
(5.3) o = To(Xo; Go) = 11(Xo; Q(No; Go)) = —st(No; Q(Xo. Go)),
(5.4) So = So(Xo; Go) = S(XNo; Q(Xo; Go)) = Jrv(Xo; Q(Xo. Go))-
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REMARK 5.1. If (X, Gg) € Dy is asymptotically stable, i.e. (Ag.Gg;Q(Xo;Go)) € €
is asymptotically stable, then

(5.5) a(;‘l,[_’o()\g;co) = 0,
(5.6) dabo(Nos Go) = g (No; Go),
(5.7) I o(No; Go) = Jkt(No; Go).

Indeed from (4.7); and (5.2) it results that in a neighbourhood of (X\g. Gg; Q)
we have

(5.8)  Yo(N\6G) =¢v(NQ(NG),  Q=Q()\G), G-QX;G)=0.

Applying the chain rules with respect to G, # and F for (5.8); we obtain

(59) 360N G) = du(X QN 6)dGQ(N; 6),
(5.10) 9 Po(N; G) = dv(N; QN G)) + Do (N Q(N; G2 Q(N; G),
(5.11)  Pe(No; G) = Fr(N; Q(N; G)) + dot(N; Q(N; G))kQ(N; G).

If (Mo, Gq) € Dy, is asymptotically stable then in view of Theorem 4.2, there
exists vy € R such that (a) dg ;’A"(Xn; Qo) = 119Gy, and therefore we have (b)
d6Po(Xo; Go) = 1GodeQ(No. Go). Differentiating Q(X\; G) - G(X\;Q) = 0 with
respect to G in the point (X, Gy) € Dy and taking into account (4.2); we have
GOOGQ(XO;G[)) = 0 which, together with (5.9) and (b), implies (5.5). Differ-
entiating (5.8)3 with respect to ¢ and F in the point (Xg,Gy) € Dy we obtain
(c) G(,i)gQ(XO;CO) = 0 and (d) G(,HFQ()\O;GO) = (. If we evaluate (5.10), (5.11)
in (Ao, Gg) € Dy we obtain (5.6) and (5.7) in virtue of (b), (¢) and (d).

Thus we obtain the following theorem of consistency with thermostatics ([1, 3]).

THEOREM 5.1. If the set D C Dy of asymptotically stable pairs (X", G"), X\™ =
(F*,0%) is an open and connected set then:
1) the equilibrium function of free energy is independent of G~ i.e.

(5.12) o = Uo(N7);

2) the equilibrium functions of entropy and of the stress tensor are independent

of G*, ie.
(5.13) m=7o(X),  So=So(N\7),
and they are determined by the function Vg through the relations

(5.14) e — 000, 80 = Oro.

http://rcin.org.pl
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REMARK 5.2. Of course we have
(5.15) G QX6 =0, [N,6")ED-

Writing the first order Taylor’s formula of Q in the point (X\*,0) € Dy we
obtain

(5.16) Q\*;G™) = Ko(A")G* + o(|G")),
where
(5.17) KoA) = [0 QON50)]

because (5.15) implies Q(X™;0) = 0 [4].
The relation (5.16) shows that at an asymptotically E.S. the Fourier law holds
within an error of order o(|G*|) ([4, S, 1]).

6. Entropy as an independent variable

The quantity

(6.1) e = JE(N; Q),
is called the heat capacity of the body. In virtue of (3.3) and (2.15),
(6.2) ¢ = 09pn(N; Q).

In what follows we suppose ¢ > 0 [1] on D x V. This hypothesis implies that the
function

(6.3) X\ Q) — 1(X\;Q) € R, AN, G;Q)eDxV, A = (F,0),

is smoothly invertible with respect to # on P x V. Consequently the constitutive
functionals of the thermoelastic material may be written as follows

(6.4) e = &X: Q).
(6.5) 0= (% Q).
(6.6) S = S(:\; Q).
6.7)  Q =H(XG;Q). (N.G;Q) eDxV. X=(Fn).

where the function 6(F. +;Q) is the inverse of the function 7(F, «; Q) defined in
(6.3), D C Lin® x R x Vis a domain completely determined by the domain D,
and

(68)  &XQ)=EF.0(%Q:Q) = v(F.HXN Q)1 Q) +nf(X; Q).
(6.9) SN Q) = S(FI(X; Q) Q)
(6.10) A(X.G;Q) = /I (F.6(X\;Q).G; Q).
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Applying the chain rule to (6.8) with respect to 7 and F and taking into account
the entropy relation (2.15),, we obtain

(6.11) 0 =0,  S= .0

which means that the temperature functional § and the stress tensor functional

S are determined by the internal energy functional .
The chain rule with respect to Q applied to (6.8) and the entropy relation
(2.15), leads to

(6.12) d0E(X; Q) = do'(F,8(X\; Q). G; Q)
so that the Dissipation Inequality (2.16) becomes

(6.13) 0:0,E(%; Q)0E(X; Q) - H(X.G; Q) + GQ < 0.
Therefore
(6.14) Q-G=0 = doi(\;Q)-H(X.G;Q) <0,

and, in particular, we have
(6.15) d9E(\; Q) - H(X.0;Q) < 0.
The counterpart of theorem 3.1 is the
THEOREM 6.1. If € is twice continuously differentiable and the heat flux evolution
equation (6.7) has the Cattaneo’s form
(6.16) TNQ +Q=-KN\G. X\ =(F.).

where the second order tensors T and K are nonsingular, then the dissipation in-
equality (6.13) holds if and only if on D x V:

1) K(X\) is positive definite and

2) the second order tensor function

(6.17) X —Z(N) = [RV)] TR e Lin. X =(Fy).
is given by
(6.18) Z = o, [0209) © (9g8) + 0,032 .

Proof Asin the proof of Theorem 3.1, we conclude that the inequality
obtained by inserting (6.16) into (6.13) holds if and only if we have

(6.19) (TN 95X Q)] - Q > 0,
(6.20) 2.0, QUZT (N 992(X; Q) = Q.
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Using the temperature relation (6.11); we write (6.20) in the form
(6.20) 0, 0,50%; QoE(N; Q) = Z'(N)Q.

Differentiating this relation with respect to Q we get (6.18). From (6.20') and
(6.19) it results

(6.21) Q-K'NQ=>0, QeV,

which means that K~!, and therefore K is positive definite.

REMARK 6.1. We have to note that in this case it is difficult to derive relations
similar to the relations (3.14)-(3.19). On the other hand, the Z is not symmetric.

DEeFINITION 6.1. The state (XO,GO; Q) € DxV, io = (Fo.10) is called an
isentropic E.S. at constant strain ¥y for the material point X € B if

(6.22) Go+ Qo =0, H(Xo, Go; Qo) = 0.

The state (in.O; Qo) € D xV, )~\0 = (Fo,n0). is a strictly isentropic E.S. at
constant strain ¥ for the material point X € B if

(6.23) H(Xo.0; Q) = 0.

We will denote by ¢ E the set of isentropic E.S. and by & S0 C & the subset of strictly
isentropic E.S. for a given material point X € B.

REMARK 6.2. From (6.10) it follows that if (X\g. GO,QO) €D xVand
()\o.Go, Q) € D x V are two states related by 6y = H()\ Qo) then

(6.24) N\.Go;Qo) € € & (N.Go; Qo) € E.

DeFINITION 6.2. If ()\0 Gp; Q) € ¢ €, then the set I)()\O Go; Qo) C V of points
Q™ €V for which the solution Q = Q(I) of the Cauchy problem

(6.25) Q =HX.Gi;Q).  Q(0) =
exists in [0, 00) and satisfies the condition
(6.26) Jim Q() = Qo.

will be referred to as the domain of attraction of the E.S. (ig. Go; Qo) ar constant
strain and entropy o = (Fo. m0).

The isentropic E.S. ()\0 Go; Qo) is said to be asymptotically stable if Qg € D
()\O,GO,QO) is an interior point.
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The isentropic E.S. (X\g, Gg; Qo) will be called Lyapunov stable if for every
¢ > 0 there exists a 6 = (¢) > 0 such that every solution Q = Q(f) of the
differential equation (6.25); satisfies the condition |Q(t) — Qo] < ¢ on [0, )
whenever |Q(0) — Qq| < é.

Similar results to those of theorem 4.2 are given by the

THEOREM 6.2. o
1) If (>\0. G();Q()) € &, )\0 = (F(), 170). then
(6.27) Ero; Q) > E(X0; Qo). Q" € D(Xo, Go; Qo);

2) if ()~\0; Gg; Qo) e £ is asympiotically stable then the preceding inequality holds
in a neighbourhood U(Qg) C f)()\o,Go;Qo) of Qq and there exists iy € R such
that
(6.28) 90Z(Xo, Qo) = #Go;

3) if ():0, 0; Qo) € & and if there exists a neighbourhood U(Qg) of Qg such that
(6.29) EX0;Q) > #X;Qo), Qo # Q € U(Qo) N D(XNg. Go; Qo).

then (io, 0; Qq) 15 Lyapunov stable E.S.

REMARK 6.3. From (6.10), (6.12) and Remark 4.5 it results that the material
is strictly dissipative if and only if
(630) Gp-Q=0 and (Xg.Gp;Q) €& = o(ho; Q)+ H(Np; Go; Q) < 0.
Thus we obtain the following two theorems which are counterparts of Theorems
4.3 and 4.4.

THEOREM 6.3. If (io Go; Qo) € & is asymptotically stable and if there exists
a neighbourhood U(Qq) € D(Xg. Go; Qo) of Qq such that the inequality in (6.30)
holds on U(Qg)\{Qo} then

(6.31) Ene; Q) > Ee; Qo). Qo # Q€ U(Qy).
THEOREM 6.4. If (io;ﬂ; Q) € & and
(6.32) 90F(Xo; Q)+ H(Xp;0;Q) < 0, Qu # Q € U(Qy),

where U(Qo) is a neighbourhood of Qq then:

1) (io, 0; Qq) is asymptotically stable if and only if (6.31) holds and

2}.df ():0, 0; Qo) is asymptotically stable then it is Lyapunov stable.

REMARK 6.4. From theorems 6.3 and 6.4 we conclude that if the material is
strictly dissipative and (A\g,0; Qq) € & is asymptotically stable, then (6.31) holds
and (X, 0; Q) is Lyapunov stable.
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7. Internal energy as an independent variable
Because # > 0, the temperature relation (6.11),
(7.1) 0=0,:3%Q, X=(F7),

implies that the function  — ¢ = & (F,7;Q) € R, 5 € R, is smoothly invertible
for any fixed F and Q. Denoting by ¢ — n = 7(F,¢; Q) € R, ¢ € R the inverse of
the function &(F, «; Q) and substituting it into (6.5)—(6.7) we obtain the following
constitutive equations of the thermoelastic material

(7.2) n = i(Xx;Q),
(7.3) 0 = 0(X; Q).
(7.4) s = 8(\; Q).
(15) Q= H(\.G;Q), (A.G;QeDxV., X=(Fn),

where D ¢ Lin* x R x V is a domain completely determined by the domain D
and therefore by the domain D, and

(7.6) A(X;Q) = A(F.ii(X; Q) Q),
(1.7) S(X\;Q) = S(F.ii(X\; Q) Q).
(1.8) H(X\;Q) = H(F./(X;Q); Q).

Applying the chain rules with respect to ¢, F, and Q to the identity
(7.9) e =EF, )(XN;Q)%Q). X\ = (F.¢),
and taking into account the temperature relation (6.11);, we obtain
(7.10) b=.7)", S=—00080=—0.0-7)"" 07
which means that the temperature functional # and the stress tensor functional

are determined by the entropy functional 7.
Differentiating (7.9) with respect to Q and using (7.1) we get

(7.11) doF(X; Q) = —Hgi(X; Q).

Thus the Dissipation Inequality (6.13) becomes

(112 o [0 Q)] T Aei(XiQ) TR G:Q) - G-Q 20,
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From here we have the implication
(7.13) Q:-G=0 = Jgi(X;Q)-H(X.G;Q) > 0,
and in particular we get
(7.14) do(71;Q) - H(X.0;Q) > 0.

DEeFINITION 7.1, The state (XO,GO; Q) € DxV, )'\0 = (Fy, =), is called an
isoenergetic E.S. at constant strain ¥y for the material point X € B if

(7.15) H(Xo, Go; Qo) = 0, Go+Qy=0.

The state (X, 0;Qq) € D x V is a strictly isoenergetic E.S. at constant strain F
for the material point X € B if
(7.16) F(X.0;Qq) = 0.

We will note by & the set of isoenergetic E.S. and by & C & the subset of strictly
isoenergetic E. S. of the material point X' € B.

ReEmMaRrk 7.1. From (7.8) it follows that if ():0. Go. Qo) € D xV, o = (Fo, 10),
and (X, Gg;Qp) € P x V, X\g = (Fy. <) are two states related by 79 = 7(\; Qp)
then

(7.17) N\, Go;Qo) € € & (X GpQo)eé.

DerFmniTiON 7.2, If (5\0. Go; Qo) € & then the set l§(5\(], Go; Qo) C V of vectors
Q™ €V for which the solution Q = Q(t) of the Cauchy problem

(7.18) Q =H(X.G;Q). Q) =Q
is defined on [0, ~) and satisfies the condition
(7.19) (ll_m\ Q(1) = Q.

is called the domain of attraction of the E.S. (5\0. Go; Qp)-

The isoenergetic E.S. (5\0. Go; Qo) is said to be asymprotically stable if Qg is
an interior point of the set I)()\ Gq; Qo).

The isoenergetic E.S. (5\. Go; Qo) will be referred to as Lyapunov stable if for
each £ > 0 there exists a &6 = &(¢) > 0 such that every solution Q = Q(f) of the
differential system (7.18), with |Q(0) — Qg| < ¢ satisfies |Q(1) — Qg < ¢ for all
t>0.

The following three theorems are counterparts of theorems (4.2)-(4.4) and
(6.2)-(6.4).
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THEORFM a8 o
1) If (N0, Go; Qo) € &, No = (Fo,¢0), then
(7.20) i(ho; Q) < i(X; Qo). Q € D(Xo, Go; Qo);

2) if (N0, Go; Qo) € & is asymptotically stable then the preceding inequality holds
in a neighbourhood U(Qy) C D()\O, Go; Qo) of the point Qg and there exists iy € R
such that

(7.21) 0qii(Xo: Qo) = #0Go;
3)if (X0, 0; Qo) € & and for a neighbourhood U(Qq) of Qg we have
(722) i@ <i(ReiQo). Qo # Q€ U(Qu) € D(Ro, Go; Qu),

then (5\0, 0; Q) is Lyapunov stable.
REMARK 7.2. From (7.8), (7.11), and (6.30) we come to the conclusion that
the thermoelastic material is strictly dissipative if and only if

(7.23)  Gp+Q=0 and (Ap.Gy;Q) €& = dgi(Xo; Q)+ H(Xg, Gp; Q) > 0.

THEOREM 7.2. If (No.Go; Qo) € & is asymptotically stable and there exists a
neighbourhood U(Qq) of Qp, U(Qp) C D(S\(].GQ;QO), such that the inequality in
(7.22) holds on U(Qo)\{Qo}. then

(7.24) i(Xo;Q) < 7(Xo; Qo). Qo # Q€ U/(Qy).
THEOREM 7.3. If (Ng.0;Qq) € & and
(7.25) doi(Xo; Q) - H( X, 0;Q) >0, Qg # Q€ U(Qy).

U/ (Qq) being a neighbourhood of Q. then

1) (XNo.0; Qq) is asymptotically stable if and only if (7.24) holds and

2) if (5\0,0; Qo) is asymptotically stable then it is Lyapunov stable.

REMARK 7.3. In virtue of Theorems 7.1 and 7.2 it results that if the thermo-
elastic material is strictly dissipative and (X, 0; Qq) € & is asymptotically stable,
then the inequality (7.24) holds and (. 0; Q) is a Lyapunov stable E.S.

Now, by using arguments similar to those in Sec. 9 of [1] we prove the following
theorem giving some relations between isothermal, isentropic and isoenergetic
asymptotic stability of an E.S.

THEOREM 7.4. Let (X, 0;Qq) € & Xo = (Fo. ), be a strictly isothermal E.S.
at constant strain ¥y for the material point X € B, and let us suppose that

(7.26) o = To(No; Qo); eo = £(X0; Qo), Xo = (Fo, m0);
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1) if the inequalities (4.24) and (6.32) hold, then the asymptotic stability of
(X0, 0; Qo) entails the asymptotic stability of (X, 0; Qo) € &o;

2) if the inequalities (6. 32) and (7.25) hold, then ()\0 0;Qq) € & is asymptot-
ically stable if and only if ()\0, 0; Qo) € & o = (Fo, cq) is asymptotically stable.

Proof.
1. Making use of the assumption

e = 35(N\; Q) = 8947i(X; Q) > 0
from (2.15); we obtain
(7.27) Rv(X; Q) < 0,

due to the hypothesis that ¢ is twice continuous differentiable.
Writing the second order Taylor’s formula with respect to the variable # and
using again (2.15); we have

U(F,8,Q) — (F.0;Q) + (6 — 8)i(F,0;Q) = 1/2(6 — 602 (F, 6., Q),
where 6. = 6.(F.6,6.Q) € (6.6"), and in view of (8.27) we get

(@)  $(F.05Q) > v(F.6;Q) + (¢ — #)ij(F.0; Q).
From (6.5), (6.8), and (7.26), we get
(0)  EN;Q) — ENg; Qo) = [¥(Fo. (%0 Q) Q) — ¥:(No; Q)|
+ [50\0; Q) - 90] 70 -

Because 6(F, +;Q) is the inverse of 7j(F. «;Q) we have i(F, (;(io; Q):;Q) = n
and, in view of (a) and (b), we obtain

(7.28)  &0;Q) — £0 = E(Ro; Q) — E(X0; Qo) = Y (o3 Q) — ¥(No; Qo).

Our hypotheses, Theorem 4.3, and (7.28) imply that if (Xg,0;Qq) C & is
asymptotlcally stable then it holds (6.27). Now by Theorem (6.4) we have that

()\0 0;Qp) € & is asymptotlcally stable. The conclusion 2 of the same Theorem
6.4 shows that (Xg,0;Qp) € & is even Lyapunov stable.

2. From (7.10), it follows that the function 7(F.;Q), which is inverse of
£(F,+;Q), is a strictly increasing function and therefore we have

(7.29) c0 < E(ha; Q) & 0 = 7(Xo; Q) < 7(Fo. 5(XNo; Q); Q).
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Now, the desired result is an immediate consequence of the Conclusion 1 of
the Theorem (6.4), of the equivalence (7.29), and of the Conclusion 1 of the
Theorem 7.3.

REMARK 7.4. Combining this result with the point 2 of Theorems 6.4 and 7.3
it follows that if (X\g,0;Qp) is an isentropic (resp. isoenergetic) asymptotically
stable E.S., then it is an isoenergetic (resp. isentropic) Lyapunov stable E.S.

The counterpart of Theorems (3.1) and (6.1) is the following

THEOREM 7.5. If the functional 1) is twice continuously differentiable and the
heat flux evolution equation (7.5) is of the Cattaneo kind

(7.30) TN Q +Q = -K(\G,

where the second order tensor functions T and K are invertible, then the Dissipation
Inequality (7.12) is satisfied if and only if on DxV

1. K(\) is positive definite and

2. The second order tensor function

= v H v ¥ .1-1 4 ~ v
(7.31) X —2ZX) = [KX)| TR)eLin, X =(Fe),
is given by
(7.32) Z = o 07087 — 20011 © Doil] (07) .

The proof of the theorem follows by using the same line of arguments as in
the proof of Theorem (6.1).
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